

The Personal Software
ProcessSM (PSPSM):
An Empirical Study of the
Impact of PSP on
Individual Engineers
Will Hayes

James W. Over

December 1997
Technical Report
CMU/SEI-97-TR-001

ESC-TR-97-001

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-97-TR-001

ESC-TR-97-001
December 1997

The Personal Software Process

SM

 (PSP

SM

):
An Empirical Study of the Impact of PSP on Individual Engineers

Will Hayes

James W. Over

Software Engineering Measurement and Analysis Initiative
Personal Software Process Initiative

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Jay Alonis, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright

©

 12/22/97 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L.
Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone:—(304) 284-9000 / FAX—(304) 284-
9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone—(703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218 / Phone—(703) 767-8274 or toll-free in the U.S.—1-800 225-3842.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Acknowledgments vii

1 Executive Summary 1
1.1 Study Results 2

1.1.1 Cost and Schedule Management 2
1.1.2 Quality Management 3
1.1.3 Cycle Time 3
1.1.4 Organizational Process Improvement 3

1.2 PSP Introduction 3
1.3 About the Study 4

2 Introduction and Background 5
2.1 The PSP Course 6

2.1.1 The PSP Process Levels 7
2.1.2 The Baseline Personal Process - PSP0 and PSP0.1 7
2.1.3 Personal Project Management - PSP1 and PSP1.1 8
2.1.4 Personal Quality Management - PSP2 and PSP2.1 9
2.1.5 Cyclic Personal Process - PSP3 10
2.1.6 Course Structure and Assignments 10

2.2 PSP Measures 12
2.2.1 Measurement Overview 12
2.2.2 PSP Derived Measures 18

3 Overview of the Data Set and Statistical Model 21
3.1 The Data Set 21
3.2 Statistical Model 21

4 Size Estimation 25
4.1 Group Trend 25
4.2 Analysis of Individual Changes in Size Estimation Accuracy 26
4.3 Summary of Improvements in Size Estimation Accuracy 27

5 Effort Estimation 29
5.1 Group Trend 29
5.2 Analysis of Individual Changes in Effort Estimation Accuracy 30
5.3 Summary of Improvements in Effort Estimation Accuracy 30

6 Defect Density 33
6.1 Group Trend 33
6.2 Analysis of Individual Changes in Defect Density 35
CMU/SEI-97-TR-001 i

6.2.1 Changes in Overall Defect Density 35
6.2.2 Changes in Defect Density in the Compile Phase 35
6.2.3 Changes in Defect Density in the Test Phase 35

6.3 Summary of Improvements in Defect Density 35

7 Pre-Compile Defect Yield 37
7.1 Group Trend 37
7.2 Analysis of Individual Changes in Yield 39
7.3 Summary of Improvements in Yield 39

8 Productivity 41
8.1 Group Trend 41
8.2 Analysis of Individual Changes in Productivity 42
8.3 Summary of Changes in Productivity 42

9 Conclusions 43

References 45

Appendix A Descriptive Data 47
A.1 Availability of Data 47
A.2 Typical Values and Variation 48
A.3 Data Used in Specific Analyses 51

A.3.1 Data Used in Analyses of Estimation Accuracy (Size and Effort) 51
A.3.2 Data Used in Analyses of Defect Density 52
A.3.3 Data Used in Analyses of Pre-Compile Defect Yield 53
A.3.4 Data Used in Analyses of Productivity 54

Appendix B Statistical Methods 55
B.1 Repeated Measures Analysis of Variance 55

B.1.1 Assumptions Underlying the Correct Use of
Repeated Measures ANOVA 56

B.2 Post-Hoc Analyses 58
B.3 Confirmatory Analyses Using Transformed Data 58

B.3.1 Transformations Used to Confirm Analyses of
Estimation Accuracy 59

B.3.2 Transformations Used to Confirm Analyses of Defect Density 59
B.3.3 Confirmatory Analysis of Yield 60
B.3.4 Transformations Used to Confirm Analyses of Productivity 60
ii CMU/SEI-97-TR-001

List of Figures

Figure 2-1: The PSP Process Levels 7
Figure 2-2: Time Recording Log 13
Figure 2-3: Defect Type Standard 14
Figure 2-4: Defect Recording Log 15
Figure 4-1: Distributions of Size Estimation Accuracy by PSP Level 26
Figure 5-1: Distributions of Effort Estimation Accuracy by PSP Level 29
Figure 6-1: Trends in Average Defect Density 33
Figure 6-2: Defect Density Distributions for Compile and Test Phases 34
Figure 7-1: Average Yield 37
Figure 7-2: Yields for Each Assignment 38
Figure 8-1: Average Productivity 41
CMU/SEI-97-TR-001 iii

iv CMU/SEI-97-TR-001

List of Tables

Table 2-1: Steps in the Baseline PSP 8
Table 2-2: Standard Course Structure 11
Table 2-3: PSP LOC Type Definitions 16
Table 2-4: Sample PSP Project Plan Summary Form 17
Table 2-5: Definitions of PSP Measures 18
Table 4-1: Sample Data for Size Estimation 27
Table 5-1: Sample Data for Effort Estimation 31
Table 6-1: Sample Data for Defect Density 36
Table 7-1: Sample Data for Pre-Compile Defect Yield 40
Table 8-1: Average Productivity 42
Table A-1: Class Sizes and Types 47
Table A-2: Number of Engineers Reporting Totals by Assignment Number 47
Table A-3: Availability of Phase-Specific Effort by Assignment Number 48
Table A-4: Sample Size for Each Analysis 51
Table A-5: Availability of Data for Defect Density Analysis 53
CMU/SEI-97-TR-001 v

vi CMU/SEI-97-TR-001

Acknowledgments

The authors of this report wish to extend their gratitude to the 298 software engineers who
worked to collect the data analyzed here, as well as the instructors and organizations that
provided this data to us.

The reviewers of our initial draft (many of whom are in the group above) provided invaluable
feedback leading to improvements in this report. For this feedback, we thank

Michael Zuccher provided database support, and a strong sense of team spirit in the creation
of a single database from over 300 spreadsheet files. We are grateful for his hard work.

We wish to thank Bob Lang, Marsha Pomeroy-Huff, Bill McSteeen, and Pennie Walters for
their assistance in editing and revising this report.

Jim McCurley and Dave Zubrow provided consultation and feedback regarding the many
statistical issues confronted during the analyses. Their contributions in suggesting and
validating the choice of statistical methods are much appreciated.

Finally, for his continued pioneering work in the field of software engineering, we wish to
recognize Watts Humphrey. His vision and tireless effort made this work possible.

Peter Abowd Bob Musson

Dan Burton Mark Paulk

Khaled El Emam Bill Peterson

Wolf Goethert Marsha Pomeroy-Huff

Dennis Goldenson Bob Powels

Tom Hilburn Dan Roy

Andy Huber Jeff Schwalb

Watts Humphrey Barry Shostak

Mike Konrad David Silverberg

Jim McCurley Dave Zubrow
CMU/SEI-97-TR-001 vii

viii CMU/SEI-97-TR-001

The Personal Software Process (PSP):
An Empirical Study of the Impact of PSP

on Individual Engineers

Abstract: This report documents the results of a study that is important to
everyone who manages or develops software. The study examines the impact
of the Personal Software ProcessSM (PSPSM) on the performance of 298
software engineers.1 The report describes the effect of PSP on key
performance dimensions of these engineers, including their ability to estimate
and plan their work, the quality of the software they produced, the quality of
their work process, and their productivity. The report also discusses how
improvements in personal capability also improve organizational performance
in several areas: cost and schedule management, delivered product quality,
and product cycle time.

1 Executive Summary

The PSP is a defined and measured software process designed to be used by an individual
software engineer. The PSP was developed by Watts Humphrey and is described in his book
A Discipline for Software Engineering [Humphrey 95]. Its intended use is to guide the planning
and development of software modules or small programs, but it is adaptable to other personal
tasks.

Like the SEI Capability Maturity ModelSM for Software,2 the PSP is based on process
improvement principles. While the CMM® is focused on improving organizational capability,3

the focus of the PSP is the individual engineer. To foster improvement at the personal level,
PSP extends process management and control to the software engineer. With PSP, engineers
develop software using a disciplined, structured approach.

They follow a defined process, plan, measure, and track their work, manage product quality,
and apply quantitative feedback to improve their personal work processes, leading to

• better estimating

• better planning and tracking

1. PSP and Personal Software Process are service marks of Carnegie Mellon University.

2. Capability Maturity Model is a service mark of Carnegie Mellon University.

3. CMM is registered in the U.S. Patent and Trademark Office.
CMU/SEI-97-TR-001 1

• protection against overcommitment

• a personal commitment to quality

• the engineers’ involvement in continuous process improvement

Thus, both the individual and the organization’s capability are improved.

1.1 Study Results
In this study we examined five personal process improvement dimensions of the PSP: size
and effort estimation accuracy, product quality, process quality, and personal productivity. We
found that the PSP improved performance in the first four of these dimensions without any loss
in the fifth area, productivity.

• Effort estimates improved by a factor of 1.75 (median improvement).

• Size estimates improved by a factor of 2.5 (median improvement).

• The tendency to underestimate size and effort was reduced. The number of
overestimates and underestimates were more evenly balanced.

• Product quality, defects found in the product at unit test, improved 2.5 times
(median improvement).

• Process quality, the percentage of defects found before compile, increased
by 50% (median improvement).

• Personal productivity, lines of code produced per hour, did not change
significantly. However, the improvement in product quality resulting from the
PSP is expected to improve productivity and cycle time as measured at the
project level (i.e., when integration and system test phase effort are included
in productivity and cycle time).

These study results have significant implications for any organization that develops software.
They indicate that the PSP can help software engineers achieve statistically significant
improvements in four areas that are of critical importance from a business perspective: cost
and schedule, product quality, cycle time, and organizational process improvement. Early
results from three industry case studies support this conclusion [Ferguson 97].

1.1.1 Cost and Schedule Management
A critical business need for all organizations that develop software is better cost and schedule
management. Cost and schedule problems often begin when projects make commitments that
are based on inadequate estimates of size and development resources. PSP addresses this
problem by showing engineers how to make better size and resource estimates using
statistical techniques and historical data. Estimates with the PSP were more accurate, and
equally important, an initial bias towards underestimating shifted to a more balanced mix of
overestimates and underestimates. A more balanced estimation error means that the errors
tend to cancel, rather than compound, when multiple estimates are combined.
2 CMU/SEI-97-TR-001

1.1.2 Quality Management
A second critical business need is for improved software quality. Poor quality management
now limits our ability to field many critical systems, increases software development costs, and
makes development schedules even harder to predict. Many of these quality problems stem
from the practice of relying on testing to manage software quality. But finding and fixing
defects in test is costly, ineffective, and unpredictable.

The most efficient and effective way to manage software quality is through a comprehensive
program focused on removing defects early, at the source. The PSP helps engineers to find
and remove defects where they are injected, before compile, inspection, unit test, integration
test, or system test. With fewer defects to find and remove in integration and system test, test
costs are reduced sharply, schedules are more predictable, fewer defects are released to the
field, maintenance and repair costs are reduced, and customer satisfaction is increased.

1.1.3 Cycle Time
A third critical business need is for reduced product cycle time. Cycle time can be reduced
through better planning and the elimination of rework through improvements in product quality.
Accurate plans allow for tighter scheduling and greater concurrency among planned activities.
Better quality through early defect removal reduces waste and further increases planning
accuracy by reducing a source of variation, the discovery and repair of defects in integration
and system test.

With PSP, engineers learn how to gather the process data needed to minimize cycle time. The
data helps them to build accurate plans, eliminate rework, and reduce integration and system
test by as much as four to five times [Ferguson 97].

1.1.4 Organizational Process Improvement
A fourth critical business need is process improvement. It is well understood that process
improvement can increase competitive advantage, but it has been difficult to involve software
engineers. They often view process improvement and product quality as a management or
staff activity, not as their personal responsibility. With PSP, engineers gain personal
experience with process improvement. They become process owners, directly involved in the
measurement, management, and improvement of the software process.

1.2 PSP Introduction
Successful introduction of the PSP requires sponsorship and participation by all management
levels. An effective strategy is to first involve key executives and managers, then to begin
training engineers in the PSP, implementing on a project-by-project basis.
CMU/SEI-97-TR-001 3

The most significant cost in introducing the PSP is training the engineers. Engineers will
typically spend from 125 to 150 hours to complete PSP training over a period of one to three
months. This investment can be quickly recovered through reductions in test and rework costs,
increased productivity,4 and efficiencies resulting from more accurate plans. A project team
of six engineers developing a product of at least 15 KLOC will typically save enough time in
integration and system test on their first project to cover the cost of PSP training.

1.3 About the Study
The objectives of this study were to test key assertions about the benefits of the PSP and to
consider whether the observed results can be generalized beyond the study participants.
Because the PSP was developed to improve individual performance, the study examined
changes in individual performance as new practices were introduced. Though changes in the
group average are reported, the focus of the study has been on the average change for
individuals in the group, rather than on the change in the group average. Using this model,
each person provided his/her own baseline to the analysis, so variation among individuals
does not ‘contaminate’ the statistical results.

The report includes detailed presentations of the statistical analyses conducted on size and
effort estimation accuracy, process yield, defect density, and productivity. The report also
includes other observations uncovered during the statistical analysis and study conclusions.
Preceding the analysis sections is an overview of the PSP, the PSP process, and the PSP
course. A detailed description of the PSP basic measures,5 planning and measurement forms,
and the development and data collection processes are also included to provide additional
context for understanding the results.

As the analyses show, the PSP improved personal performance in four of five dimensions
studied. We know that similar results can be achieved in practice [Ferguson 97] and
encourage you to consider the potential impact on your organization’s performance.

4. Personal productivity was unchanged, but product cycle time and project productivity should improve due to
reductions in integration and system test cost resulting from improved quality at the PSP level.

5. These are time (effort), defects, and size.
4 CMU/SEI-97-TR-001

2 Introduction and Background

All businesses are becoming software businesses. That is, more and more businesses now
develop and incorporate software in the products they produce, or develop software to support
the design, manufacture, or delivery of the products and services they provide. Many are
finding that as the software component of their business grows, schedule delays, cost
overruns, and quality problems caused by software are becoming their number one business
problem. Suddenly, software development has become the high-risk element in their business
plans. Moreover, despite their best management efforts, they find their risk of failure
increasing with each increase in the size or complexity of the software they produce.

Software businesses have at least one thing in common. The business is dependent on
people. Software products are made of hundreds to millions of individual computer
instructions, each one handcrafted by a software engineer. And so, the technical practices and
experience of their engineers largely determine the outcome of the development process, as
has been widely recognized [Boehm 81].

Software businesses also share a common set of needs: better cost and schedule
management, improved software quality, and reduced software development cycle time. PSP
directly addresses these needs by improving the technical practices and individual abilities of
software engineers, and by providing a quantitative basis for managing the development
process. By improving individual performance, PSP can improve the performance of the
organization, as individual improvements in aggregate are reflected at the organizational level.

PSP can improve the business of software development in several ways:

• Data from the PSP improve planning and tracking of software projects.

• Early defect removal results in higher quality products, as well as reductions
in test costs and cycle time.

• PSP provides a classroom setting for learning and practicing process
improvement. Short feedback cycles and personal data make it easier to gain
understanding through experience.

• PSP helps engineers and their managers learn to practice quantitative
process management. They learn to use defined processes and collect data
to manage, control, and improve the work.

• Finally, PSP exposes engineers to 12 of the CMM Key Process Areas
(KPAs). They are better prepared to participate in CMM-based improvement.

As the data illustrate, the PSP significantly improves personal performance during the PSP
training course. We believe that widespread adoption of the PSP will produce the same
results, and that similar benefits will be observed at the project and organizational levels.
CMU/SEI-97-TR-001 5

2.1 The PSP Course
The PSP provides a framework for teaching engineers about the software process, and a
starting point from which they can evolve their own personal processes. The PSP is based on
the same industrial practices that are found in the SEI CMM, but scaled-down for individual
use. It is a defined and measured, individualized process for consistently and efficiently
developing high quality software modules or small programs. It has been adapted to many
other kinds of software engineering tasks, such as developing software requirements,
software specifications, and test cases. The PSP can also be scaled up to support small
projects by integrating individual personal processes with a project process that was based on
the PSP architecture. In general, once learned, the principles and concepts in the PSP can be
applied to any structured, repetitive task.

The SEI is working to transition the PSP into software engineering education programs in both
industrial and academic settings. We began offering PSP training in October 1994. Our initial
offering was a train-the-trainer course. Since then, more than fifty PSP instructors have been
trained to teach the PSP and five companies have been licensed to provide PSP training to
software engineers in industry.1 We have also provided on-site training to more than 200
engineers and managers.

The SEI is also working with academia to support the use of PSP in computer science and
software engineering education at the graduate and undergraduate levels. In June of 1997,
the SEI and Embry-Riddle Aeronautical University held the first PSP Faculty Workshop. The
purpose of the workshop was to introduce university faculty to the PSP and the standard PSP
course. The SEI plans to continue to support the academic community by holding similar
workshops in the future.

The standard PSP course prepares an engineer to apply the PSP in practice. The course
follows a staged learning strategy described in the textbook A Discipline for Software
Engineering [Humphrey 95]. The text was designed for use in graduate and senior-level
undergraduate courses. Because the textbook is self-contained, experienced engineers could
use the textbook to help them learn the PSP on their own, but most engineers need the
structure and support of a formal training course to complete the training.

The PSP course incorporates what has been called a “self-convincing” learning strategy that
uses data from the engineer’s own performance to improve learning and motivate use. The
course introduces the PSP practices in steps corresponding to seven PSP process levels.
Each level builds on the capabilities developed and historical data gathered in the previous
level. Engineers learn to use the PSP by writing ten programs, one or two at each of the seven
levels, and preparing five written reports. Engineers may use any design method or
programming language in which they are fluent. The programs are typically around one

1. See “SEI Transition Partners for Personal Software Process (PSP) Training” on the SEI Web site:
http://www.sei.cmu.edu/participation/trans.part.psp.html
6 CMU/SEI-97-TR-001

hundred lines of code (LOC) and require a few hours on average to complete. While writing
the programs, engineers gather process data that are summarized and analyzed during a
postmortem phase. With such a short feedback loop, engineers can quickly see the effect of
PSP on their own performance. They convince themselves that the PSP can help them to
improve their performance; therefore, they are motivated to begin using the PSP after the
course.

2.1.1 The PSP Process Levels
The seven process levels used to introduce the PSP are shown in Figure 2-1. Each level
builds on the prior level by adding a few process steps to it. This minimizes the impact of
process change on the engineer, who needs only to adapt the new techniques into an existing
baseline of practices.

Figure 2-1: The PSP Process Levels

2.1.2 The Baseline Personal Process - PSP0 and PSP0.1
The baseline personal process (PSP0 and PSP0.1) provides an introduction to the PSP and
establishes an initial base of historical size, time, and defect data. Engineers write three
programs at this level. They are allowed to use their current methods, but do so within the
framework of the six steps in the baseline process shown in Table 2-1.
CMU/SEI-97-TR-001 7

PSP0 introduces basic process measurement and planning. Development time, defects, and
program size are measured and recorded on provided forms. A simple plan summary form is
used to document planned and actual results. A form for recording process improvement
proposals (PIPs) is also introduced (PSP0.1). The PIP form provides engineers with a
convenient way to record process problems and proposed solutions.

2.1.3 Personal Project Management - PSP1 and PSP1.1
PSP1 and PSP1.1 focus on personal project management techniques, introducing size and
effort estimating, schedule planning, and schedule tracking methods. Size and effort
estimates are made using the PROBE method. (PROBE stands for PRoxy-Based Estimating.)
With PROBE, engineers use the relative size of a proxy to make their initial estimate, then use
historical data to convert the relative size of the proxy to LOC. Example proxies for estimating
program size are objects,2 functions, and procedures. For object-oriented languages, the
relative size of objects and their methods is used as a proxy. For procedural languages, the
relative size of functions or procedures is used as a proxy. Any proxy for size may be used so
long as the proxy is correlated with effort, can be estimated during planning, and can be
counted in the product. Other examples include screens or screen objects, scripts, reports,
and document pages.

Using PROBE, the size estimate is made by first identifying all of the objects that must be
developed. Then the type and relative size of the object are determined. The type refers to the
general category of component—e.g., computational, input/output, control logic, etc. The five
relative size ranges in the PSP are: very small, small, medium, large, and very large. The
relative size is then converted to LOC using a size range table based on historical size data
for the proxy. The estimated size of the newly developed code is the sum of all new objects,
plus any modifications or additions to existing base code. Predicted program size and effort
are estimated using the statistical method linear regression. Linear regression makes use of

2. In the textbook A Discipline for Software Engineering [Humphrey 95], the word object is often used as a syn-
onym for class, function, or procedure.

Step Phase Description

1 Plan Plan the work and document the plan

2 Design Design the program

3 Code Implement the design

4 Compile Compile the program and fix and log all defects found

5 Test Test the program and fix and log all defects found

6 Postmortem Record actual time, defect, and size data on the plan

Table 2-1: Steps in the Baseline PSP
8 CMU/SEI-97-TR-001

the historical relationship between prior estimates of size and actual size and effort to generate
predicted values for program size and effort. Finally, a prediction interval is calculated that
gives the likely range around the estimate, based on the variance found in the historical data.
The prediction interval can be used to assess the quality of the estimate.

PSP uses the earned value method for schedule planning and tracking. The earned value
method is a standard management technique that assigns a planned value to each task in a
project. A task’s planned value is based on the percentage of the total planned project effort
that the task will take. As tasks are completed, the task’s planned value becomes earned value
for the project. The project’s earned value then becomes an indicator of the percentage of
completed work. When tracked week by week, the project’s earned value can be compared to
its planned value to determine status, to estimate rate of progress, and to project the
completion date for the project.

2.1.4 Personal Quality Management - PSP2 and PSP2.1
PSP2 and PSP2.1 add quality management methods to the PSP: personal design and code
reviews, a design notation, design templates, design verification techniques, and measures
for managing process and product quality.

The goal of quality management in the PSP is to find and remove all defects before the first
compile. The measure associated with this goal is yield. Yield is defined as the percent of
defects injected before compile that were removed before compile. A yield of 100% occurs
when all the defects injected before compile are removed before compile.

Two new process steps, design review and code review, are included at PSP2 to help
engineers achieve 100% yield. These are personal reviews conducted by an engineer on
his/her own design or code. They are structured, data-driven review processes that are guided
by personal review checklists derived from the engineer’s historical defect data.

Starting with PSP2, engineers also begin using the historical data to plan for quality and
control quality during development. Their goal is to remove all the defects they inject before
the first compile. During planning, they estimate the number of defects that they will inject and
remove in each phase. Then they use the historical correlation between review rates and yield
to plan effective and efficient reviews. During development, they control quality by monitoring
the actual defects injected and removed versus planned, and by comparing actual review
rates to established limits (e.g., less than 200 lines of code reviewed per hour). With sufficient
data and practice, engineers are capable of eliminating 60% to 70% of the defects they inject
before their first compile.

Reviews are quite effective for eliminating most of the defects found in compile, and many of
the defects found in test. But to substantially reduce test defects, better quality designs are
needed. PSP2.1 addresses this need by adding a design notation, four design templates, and
design verification methods to the PSP. The intent is not to introduce a new design method,
but to ensure that the designer examines and documents the design from different
CMU/SEI-97-TR-001 9

perspectives. This improves the design process and makes design verification and review
more effective. The design templates in the PSP provide four perspectives on the design: an
operational specification, a functional specification, a state specification, and a logic
specification.

2.1.5 Cyclic Personal Process - PSP3
The Cyclic Personal Process, PSP3, addresses the need to efficiently scale the PSP up to
larger projects without sacrificing quality or productivity. In the class engineers learn that their
productivity is highest between some minimum and maximum size range. Below this range,
productivity declines due to fixed overhead costs. Above this range, productivity declines
because the process scalability limit has been reached. PSP3 addresses this scalability limit
by introducing a cyclic development strategy where large programs are decomposed into
parts for development and then integrated. This strategy ensures that engineers are working
at their maximum productivity and product quality levels, with only incremental, not
exponential, increases in overhead for larger projects.

To support this development approach, PSP3 introduces high-level design, high-level design
review, cycle planning, and development cycles based on the PSP2.1 process. Two new
forms are also introduced: a cycle summary to summarize size, development time, and
defects for each cycle; and an issue tracking log for documenting issues that may affect future
or completed cycles. Using PSP3, engineers decompose their project into a series of PSP2.1
cycles, then integrate and test the output of each cycle. Because the programs they produce
with PSP2.1 are of high quality, integration and test costs are minimized.

2.1.6 Course Structure and Assignments
The PSP textbook, A Discipline for Software Engineering [Humphrey 95], describes a
standard PSP course structure. This structure, shown in Table 2-2, includes the course topics
covered in the lecture and assigned reading, the associated programming exercise, its
description, and the PSP process level used for the assignment.
10 CMU/SEI-97-TR-001

The exercise sequence shown in Table 2-2 is for the “A series” exercises. An alternate “B
series” containing nine exercises is also provided in the textbook. In addition to the
programming exercises, there are also five report exercises including two standards (R1 and
R2), and three analyses (R3, R4, and R5).

The PSP course is a one-semester course in an academic setting. Several different course
formats have been used in industry. A popular format consists of a one-week session on
planning, covering PSP0 and PSP1, followed by a one-week session on quality that covers
PSP2 and PSP3. Each session is separated by a month. Two to three homework assignments

Course Topic Exercise Exercise Description PSP Level

The Personal Software Process
Strategy and the Baseline PSP

1A Calculate the mean and standard deviation of N
real numbers stored in a linked list

PSP0

The Planning Process 2A

R1

R2

Count the LOC in a program source file

Produce a LOC counting standard

Produce a coding standard

PSP0.1

Measuring Software Size 3A Enhance program 2A to count object LOC or
function/procedure LOC

PSP0.1

R3 Defect analysis report

Estimating Software Size 4A Calculate the linear regression parameters for N
pairs of real numbers stored in a linked list

PSP1

Resource and Schedule
Estimating

5A Numerical integration using Simpson’s rule PSP1.1

Measurements in the Personal
Software Process

6A Enhance program 4A to calculate a 90% and
70% prediction interval

PSP1.1

Design and Code Reviews R4 Midterm process analysis report

Software Quality Management 7A Calculate the correlation of N pairs of real
numbers stored in a linked list

PSP2

Software Design 8A Sort a linked list PSP2 or
PSP2.1

Software Design Verification 9A Chi-square test for normality PSP2.1

Scaling-up the PSP 10A Calculate the multiple linear regression
parameters for N sets of four real numbers
stored in a linked list

PSP3

Defining the Software Process
and Using the PSP

R5 Final process analysis report

Table 2-2: Standard Course Structure
CMU/SEI-97-TR-001 11

are assigned after each training session. The PSP course has also been taught in one-day-
per-week, two-day-per-week, and one-day-every-other week formats. So long as the standard
course structure is used, and students are given sufficient time to complete the exercises, the
course schedule can be varied without affecting results.

2.2 PSP Measures

2.2.1 Measurement Overview
This section provides an overview of the basic PSP measures, forms, and measurement
processes. This information is provided to give the reader some context for data that were
analyzed for this study.

There are three basic measures in the PSP: development time, defects, and size. All other
PSP measures are derived from these three basic measures. The measurement process and
forms for these measures are introduced during the first three assignments at PSP process
levels PSP0 and PSP0.1. Development time and defect measures are introduced on the first
assignment; size is deferred until a program for counting LOC has been developed in
assignment 2.

Development Time Measurement

Minutes are the unit of measure for development time. Engineers track the number of minutes
they spend in each PSP phase, less time for any interruptions such as phone calls, coffee
breaks, etc. A form, the Time Recording Log, is used to record development time.

The example Time Recording Log (Figure 2-2) illustrates how this form is used. In the
example, the engineer started the Plan phase of his project on May 13 at 7:58 and finished
planning at 8:45. The elapsed time was 47 minutes, but actual effort, or Delta Time, was only
44 minutes, due to an interruption of three minutes to take a phone call. The engineer started
the Design phase at 8:47 and finished at 10:29. A two-minute interruption gives a Delta Time
of 100 minutes. The remaining phases, Code, Compile, and Test are recorded in a similar
manner.
12 CMU/SEI-97-TR-001

The advantages of this approach to measuring development time are

• Using minutes is precise and simplifies calculations involving development
time.

• Recording interruptions to work reduces the number of time log entries,
provides a more accurate measure of the actual time spent, and a more
accurate basis for estimating actual development time.

• Tracking interruption time separately can help engineers deal objectively
with issues that affect time management, such as a noisy work environment
or inappropriate mix of responsibilities (e.g., software development and help
desk support).

• Time log entries take substantially less than a minute to record, but provide
a wealth of detailed historical data for planning, tracking, and process
improvement.

A defect is defined as any change that must be made to the design or code in order to get the
program to compile or test correctly. Defects are recorded on the Defect Recording Log as
they are found and fixed. The example Defect Recording Log (Figure 2-4) shows the
information that is recorded for each defect: the date, sequence number, defect type, phase
in which the defect was injected, phase in which it was removed, fix time,3 and a description
of the problem and fix.

When an engineer injects a new defect while trying to fix an existing defect, proper accounting
of fix time becomes more complicated. A common mistake is to include the fix time for the new
defect twice. To help with this problem, a space is provided to record a reference to the original
defect that was being fixed. The number of the original defect that was being fixed is recorded
in the fix defect reference of the new defect.

3. The time, in minutes, spent finding and fixing the defect.

Time Recording Log

Date Start Stop Interruption
Time

Delta
Time

Phase Comments

5/13 7:58 8:45 3 44 Plan phone call

8:47 10:29 2 100 Design create and review design

7:49 8:59 70 Code coded main and all functions

9:15 9:46 31 Compile compiled and linked

9:47 10:10 23 Test ran tests A, B, and C

4:33 4:51 18 Postmortem

Figure 2-2: Time Recording Log
CMU/SEI-97-TR-001 13

Each defect is classified according to a defect type standard. The standard includes 10 defect
types (see Figure 2-3) in a simple, easy-to-use classification scheme designed to support
defect analysis. Engineers can refine the standard to meet personal needs, but they are
encouraged to wait until they have sufficient data to justify a change.

In the example Defect Recording Log (Figure 2-4), the engineer found the first defect on May
13. The defect was a type 20 (syntax error) that was injected during the code phase and
removed during compile. The engineer spent 22 minutes finding and fixing the defect. The
second error, also a syntax error, was injected during the code phase and removed during
compile, and took 18 minutes to find and fix.

Type Number Type Name Description

10 Documentation comments, messages

20 Syntax spelling, punctuation, typos, instruction formats

30 Build, Package change management, library, version control

40 Assignment declaration, duplicate names, scope, limits

50 Interface procedure calls and references, I/O, user formats

60 Checking error messages, inadequate checks

70 Data structure, content

80 Function logic, pointers, loops, recursion, computation, function defects

90 System configuration, timing, memory

100 Environment design, compile, test, or other support system problems

Figure 2-3: Defect Type Standard
14 CMU/SEI-97-TR-001

Size Measurement

The primary purpose of size measurement in the PSP is to provide a basis for estimating
development time. Lines of code were chosen for this purpose because they meet the
following criteria: they can be automatically counted, precisely defined, and are well correlated
with development effort based on the PSP research [Humphrey 95, pp. 115-116]. Size is also
used to normalize other data, such as productivity (LOC per hour) and defect density (defects
per KLOC). While LOC are suitable for the programming assignments in the PSP course, any
measure that meets these same criteria can be used in practice.

In the PSP course, as in practice, each program involves some amount of new development,
enhancement, and/or reuse. Therefore, the total LOC in a program will have several different
sources, including some new LOC, some existing LOC that may have been modified, and
some reused LOC. Because LOC are the basis for estimates of development time, it is
important to account for these different types of LOC separately.

Defect Recording Log

Date Number Type Inject Remove Fix Time Fix Defect

5/13 1 20 CODE CMPL 22

Description: syntax error in scanf statement

Date Number Type Inject Remove Fix Time Fix Defect

5/13 2 20 CODE CMPL 18

Description: error in linked list struct type declarations within access functions

Date Number Type Inject Remove Fix Time Fix Defect

5/13 3-6 20 CODE CMPL 1

Description: missing ;

Date Number Type Inject Remove Fix Time Fix Defect

5/13 7 20 CODE CMPL 1

Description: incorrect spelling of identifier in declaration

Date Number Type Inject Remove Fix Time Fix Defect

5/13 8 20 CODE CMPL 1

Description: function declaration error

Date Number Type Inject Remove Fix Time Fix Defect

5/13 9 30 CODE TEST 1

Description: link error, missing include for math.h

Figure 2-4: Defect Recording Log
CMU/SEI-97-TR-001 15

PSP uses the LOC accounting scheme shown in Table 2-3. Base LOC are any LOC from an
existing program that will serve as the starting point for the program being developed. Deleted
and modified LOC are those base LOC that are being deleted or modified. Added LOC is the
sum of all newly developed object, function, or procedure LOC, plus additions to the base
LOC. Reused LOC are the LOC taken from the engineer’s reuse library and used without
modification. If these LOC are modified, then they are considered to be base LOC.

New and changed LOC is the sum of added LOC and modified LOC. New and changed LOC,
not total LOC, is the most commonly used size measure in the PSP. For example, new and
changed LOC are the basis for size and effort estimating, productivity (LOC/hour), and defect
density (defects/KLOC). Please note that improvements in quality and productivity found in
this study are therefore not the result of increased reuse. Finally, total LOC is the total program
size, and total new reused LOC are those added LOC that were written to be reused in the
future.

Type of LOC Definition

Base LOC from a previous version

Deleted Deletions from the Base LOC

Modified Modifications to the Base LOC

Added New objects, functions, procedures, or any other added LOC

Reused LOC from a previous program that is used without modification

New & Changed The sum of Added and Modified LOC

Total LOC The total program LOC

Total New Reused New or added LOC that were written to be reusable

Table 2-3: PSP LOC Type Definitions
16 CMU/SEI-97-TR-001

Program Size (LOC): Plan Actual To Date

Base(B) 0 0

(Measured) (Measured)

 Deleted (D) 0 0

(Estimated) (Counted)

 Modified (M) 0 0

(Estimated) (Counted)

 Added (A) 112 137

(N-M) (T-B+D-R)

 Reused (R) 174 174 316

(Estimated) (Counted)

Total New & Changed (N) 112 137 759

(Estimated) (A+M)

Total LOC (T) 286 311 1161

(N+B-M-D+R) (Measured)

Total New Reused 0 0 326

Time in Phase (min.) Plan Actual To Date To Date %

 Planning 42 44 287 17.2

 Design 76 56 490 29.4

 Design review

 Code 48 61 337 20.2

 Code review 30 27 27 1.6

 Compile 15 1 106 6.4

 Test 26 38 326 19.6

 Postmortem 13 20 94 5.6

 Total 250 247 1667 100.0

Defects Injected Plan Actual To Date To Date %

 Planning 0 0 0 0.0

 Design 2 1 10 18.2

 Design review 0 0 0 0.0

 Code 6 6 40 72.7

 Code review 0 0 0 0.0

 Compile 0 0 2 3.6

 Test 0 0 3 5.5

 Total Development 8 7 55 100

Defects Removed Plan Actual To Date To Date %

 Planning 0 0 0 0.0

 Design 0 0 0 0.0

 Design review 0 0 0 0.0

 Code 0 0 1 1.8

 Code review 0 5 5 9.1

 Compile 4 0 24 43.6

 Test 4 2 25 45.5

 Total Development 8 7 55 100.0

 After Development 0 0 0

Figure 2-5: Sample PSP Project Plan Summary Form
CMU/SEI-97-TR-001 17

Project Summary Data

Project summary data are recorded on the Project Plan Summary form. This form provides a
convenient summary of planned and actual values for program size, development time, and
defects, and a summary of these same data for all projects completed to date. The project plan
summary is the source for all data used in this study. Figure 2-5 shows the four sections of the
project plan summary that were used: Program Size, Time in Phase, Defects Injected, and
Defects Removed.

The data on the plan summary form has many practical applications for the software engineer.
The data can be used to track the current project, as historical data for planning future
projects, and as baseline process data for evaluating process improvements.

2.2.2 PSP Derived Measures
Each PSP level introduces new measures to help engineers manage and improve their
performance. These measures are derived from the three basic PSP measures: development
time, defects, and size.

Table 2-4 contains a partial list of the derived measures available in the PSP and their
definitions. These measurement definitions are included to provide context for the analyses
that follow.

Measure Definition

Interruption time The elapsed time for small interruptions from project work such as a phone
call

Delta Time Elapsed time in minutes from start to stop less interruptions

Stop - Start - Interruptions

Planned Time in Phase The estimated time to be spent in a phase for a project

Actual Time in Phase The sum of Delta Times for a phase of a project

Total Time The sum of planned or actual time for all phases of a project

Time in Phase To Date The sum of Actual Time in Phase for all completed projects

Total Time To Date The sum of Time in Phase To Date for all phases of all projects

Time in Phase To Date% 100 * Time in Phase To Date for a phase divided by Total Time in Phase
To Date

Compile Time The time from the start of the first compile until the first clean compile

Test Time The time from the start of the initial test until test completion

Defect Any element of a program design or implementation that must be
changed to correct the programa

Defect type See Figure 2-3, Defect Type Standard

Fix Time The time to find and fix a defect

Table 2-4: Definitions of PSP Measures
18 CMU/SEI-97-TR-001

a. An error or mistake made by a software engineer becomes a defect when it goes undetected during design or
implementation. If it is corrected before the end of the phase in which it was injected then typically there is no defect.
If it is found at the phase-end review or during compile, test, or after test, then a defect is recorded.

b. The standard definition of COQ includes appraisal cost, failure cost, and prevention cost. Only appraisal costs
and failure costs are included in the PSP.

c. Design review rates are based on new and changed LOC. For planning purposes, engineers use estimated
new and changed LOC to arrive at planned review rates.

LOC A logical line of code as defined in the engineers counting and coding
standard

LOC Type See Table 2-2, LOC Types

LOC/Hour Total new and changed LOC developed divided by the total development
hours

Estimating Accuracy The degree to which the estimate matches the result. Calculated for time
and size

%Error = 100*(Actual-Estimate)/Estimate

Test Defects/KLOC The defects removed in the test phase per new and changed KLOC

1000*(Defects removed in Test)/Actual New and Changed LOC

Compile Defects/KLOC The defects removed in compile per new and changed KLOC

1000*(Defects removed in Compile)/Actual New and Changed LOC

Total Defects/KLOC The total defects removed per new and changed KLOC

1000*(Total Defects removed)/Actual New and Changed LOC

Yield The percent of defects injected before the first compile that are removed
before the first compile

100*(defects found before the first compile)/(defects injected before the
first compile)

Appraisal Time Time spent in design and code reviews

Failure Time Time spent in compile and test

Cost of Quality (COQ) Cost of Quality = Appraisal Time + Failure Timeb

COQ Appraisal/Failure Ratio (A/FR) A/FR = Appraisal Time/Failure Time

Review Rate Review rate is lines of code reviewed per hourc

60 * New and Changed LOC/review minutes

Measure Definition

Table 2-4: Definitions of PSP Measures
CMU/SEI-97-TR-001 19

20 CMU/SEI-97-TR-001

3 Overview of the Data Set and Statistical Model

This section provides a brief summary of the data used in this study, as well as an overview
of the statistical model used. More complete information on these two topics is provided in
Appendices A and B.

3.1 The Data Set
Each programming assignment results in some 70 pieces of data being collected by each
engineer. These data are used by the engineers to monitor their work on the individual
assignments, as well as to analyze their personal software process for improvement
decisions. The PSP training course also identifies specific data analyses for engineers to
perform and submit as part of the reports written during the class.

Instructors enter the engineers’ data into a spreadsheet provided with the course materials.
The paper forms completed by the engineers are collected by the instructor, and the class data
are analyzed and used to provide feedback to the engineers. During the training, trends in
class data provide insights to engineers, who may then compare their own data with that of
the group.

Given this careful focus on data and statistical analysis, the quality and accuracy of the data
used in any given class tends to be exceptional. However, our secondary analysis suffers from
problems associated with using data intended for another purpose. That is, the data were
collected to provide feedback to individual engineers, not for us to write this report. There are
many cases where instructors tailored the training course (including selection of assignments,
data collection requirements, and sequence of introduction for process changes). In addition,
there are cases where engineers did not complete the entire course.

In all, a total of 23 PSP classes consisting of 298 engineers provided the data used in this
report. Each analysis presented is based on at least 170 cases where complete data were
avaialble for that analysis. Detailed information about the data set and selection criteria for
inclusion in each analysis are provided in Appendix A. To summarize the data in gross terms,
over 300,000 lines of code were written during a total of more than 15,000 hours by 298
engineers. During this time, the engineers discovered and removed approximately 22,000
defects.

3.2 Statistical Model
Engineers use statistical methods during PSP training to analyze their personal data and
make judgments about the benefits of changes to their personal software processes. In this
report, we perform a secondary analysis of these engineers’ data in aggregate form. The
benefits associated with a larger pool of data are well understood in research of this type.
Unless there is evidence of general applicability, the stellar performance of an individual
engineer provides little incentive for widespread use of any methodology.
CMU/SEI-97-TR-001 21

Differences in performance between engineers is typically the greatest source of variability in
software engineering research, and this study is no exception. However, the design of the PSP
training class, and the standardization of each engineer’s measurement practice, allow the
use of statistical models which are well suited for dealing with the variation among engineers.

In the analyses summarized here, the changes in engineers’ data over the course of nine
programming assignments are studied. Rather than analyzing changes in group averages,
this study focuses on the average changes of individual engineers. Some engineers
performed better than others from the first assignment, and some improved faster than others
during the course of training. In order to discover the pattern of improvement in the presence
of these natural differences between engineers, the statistical method known as the repeated
measures analysis of variance (ANOVA) is used [Tabachnick 89]. This method is briefly
described below; a more detailed explanation of this method is provided in Appendix B.

In brief, the repeated measures analysis of variance takes advantage of situations where the
same people are measured over a succession of trials. By treating previous trials as baselines,
the differences in measures across trials (rather than the measures themselves) are analyzed
to uncover trends across the data. This allows for differences among baselines to be factored
out of the analysis. In addition, the different rates of improvement between people can be
viewed more clearly. If the majority of people change substantially (relative to their own
baselines), the statistical test will reveal this pattern. If only a few people improve in
performance, the statistical test is not likely to suggest a statistically significant difference, no
matter how large the improvement of these few people.

In the following five sections, repeated measures analysis of variance is used to test
hypotheses about the intended benefits of PSP training. Each analysis is focused on a subset
of the measures collected, as appropriate to the hypothesis at hand. Selection criteria are
used to combat problems associated with missing data, as well as data entry errors. These
selection criteria are fully described in Appendix A.

The focus of the hypotheses tested, and therefore the focus of the statistical analyses, is on
changes across the first three major process levels in the training class. Each level (PSP0,
PSP1, and PSP2) contains three programming assignments. The data from the three
assignments are pooled together (as described in Appendix A) to form process-level metrics
for each engineer. Therefore, in the analysis, the three assignments in each level are treated
as three instantiations of the same process. Strictly speaking, there are process changes that
occur during these three assignments. However, the hypotheses tested are specific to the
process changes that occur among the major PSP levels. Therefore, the more minor process
changes that occur from assignment to assignment within a process level are not studied here.
22 CMU/SEI-97-TR-001

Support for the appropriateness of this treatment is obtained when the statistical model is
altered to include an “assignment within level” effect.1 In this model, statistical tests are carried
out to establish whether or not the three assignments within PSP levels differ from each other,
as well as statistical tests for differences between PSP levels. Using this more elaborate
model, the differences between PSP levels identified by the analyses presented in Sections 4
through 8 were all found to be statistically significant. These statistical findings indicate that
the differences between PSP levels remain, even when systematic differences between the
assignments within levels is factored out.

For each of the five analyses, when the statistical test revealed a significant difference among
the three PSP levels, follow-up analyses were performed to compare two PSP levels at a time.
These follow-up analyses helped to more clearly identify where changes occur in the course
of training. See Appendix B for a more complete (and technically complex) discussion of the
statistical procedures.

1. This effect represents the differences among the first, second, and third assignments in the PSP levels. The
comparison is among (1,4,7), (2,5,8), and (3,6,9). The analysis reported here does not compare individual pro-
gramming assignments.
CMU/SEI-97-TR-001 23

24 CMU/SEI-97-TR-001

4 Size Estimation

Estimating the size of a job prior to deciding how long it will take to complete, while logical to
most people, seems to be a difficult practice to instill in software engineers. The PSP provides
a proxy-based estimation method (introduced during PSP level 1) to help engineers
decompose the program and estimate the size of each element, based on historical data.
Introduction of this method is designed to enable engineers to become more accurate
estimators of their own work.

While there will always be a subjective element to estimation no matter how much data it is
based on, the PSP training strives to teach engineers how to make the best use of their own
past experience. When the size estimation method is introduced at the start of PSP level 1,
the engineers have data from the three previous assignments as a basis for estimating the
fourth. Therefore, the hypothesis tested in this section of the study is as follows:

As engineers progress through the PSP training, their size estimates gradually
grow closer to the actual size of the program at the end. More specifically, with
the introduction of a formal estimation technique for size in PSP level 1, there
is a notable improvement in the accuracy of engineers’ size estimates.

4.1 Group Trend
The distributions shown in Figure 4-1 illustrate the performance of engineers’ size estimation
for the three PSP levels. The values plotted were derived by summing the data1 for the three
assignments in each PSP level and computing the estimation accuracy value by calculating
(Estimated Size - Actual Size) / Estimated Size.2 With the exception of assignment 1 (where
size estimates are not required), only the data for engineers who provided size estimates for
all programs are included in the charts and the subsequent analysis. In all, 170 engineers are
represented here.

The horizontal axis on each of the three plots in Figure 4-1 represents the value of estimation
accuracy, ranging from -300% to +100%.3 The vertical axis represents the number of
engineers at a particular level of estimation accuracy.

1. All representations of program size (whether estimated or actual) are based on new and changed lines of code.

2. This formula differs from the one used in the PSP training class. For the purpose of this study the Actual is
subtracted from the Estimate so that underestimates result in a negative value and overestimates result in a
positive value. In the training class the equation used is (Actual - Estimate)/Estimate.

3. As one might infer from this range of values for estimation accuracy, the computation of this metric leads to a
skewed distribution by definition. This matter is discussed in detail in Appendix B.
CMU/SEI-97-TR-001 25

Improvement in accuracy for any given engineer could be seen in two different ways. First, the
absolute distance of the estimation accuracy metric from zero would be reduced. Second, over
the course of several assignments, both overestimates and underestimates would be seen.
This is in contrast to a pattern of consistent underestimating (or overestimating).

Figure 4-1: Distributions of Size Estimation Accuracy by PSP Level

With respect to the performance of the group, the distributions in Figure 4-1 show a general
reduction in the distance from zero for the values of size estimation accuracy. The long ‘tail’ of
the distribution in the top panel for PSP 0 (stretching out to -300%) is considerably shortened
by the third panel, which represents PSP level 2. In addition, the distribution appears to be
more symmetrically spread around zero in the third panel. Finally, the number of engineers
achieving a value near zero during PSP level 2 is more than twice that of PSP level 0.

4.2 Analysis of Individual Changes in Size Estimation Accuracy
While the trends illustrated above support the claim of improved size estimation for the group,
the goal of PSP is to help individual engineers. The repeated measures ANOVA conducted
shows that on average, individual engineers do improve their size estimation accuracy.

The analysis comparing the pooled size estimation accuracy values for each PSP level for
each engineer revealed statistically significant differences across the three PSP levels (p=
.041). The follow-up analysis comparing adjacent pairs of PSP levels revealed statistically
significant differences between PSP levels 0 and 1 (p=.037). The difference between PSP
levels 1 and 2 is not statistically significant.

100%0 %-100%-200%-300%
0

20

40
 PSP Level 2
Size Estimation Accuracy

N
um

be
r

of

E
ng

in
ee

rs

100%0 %-100%-200%-300%
0

20

40
 PSP Level 1
Size Estimation Accuracy

N
um

be
r

of

E
ng

in
ee

rs

100%0 %-100%-200%-300%
0

20

40
 PSP Level 0
Size Estimation Accuracy

N
um

be
r

of

E
ng

in
ee

rs

Estimation Accuracy Value
26 CMU/SEI-97-TR-001

These statistical findings support the hypothesis that size estimation improves with PSP, and
that the improvement is most notable when the PROBE estimation method is introduced
during PSP level 1.

4.3 Summary of Improvements in Size Estimation Accuracy
Accurate size estimates are a fundamental building block for realistic project plans. Training
in PSP provides individual engineers with an ability to improve their skill in estimating the size
of the products they produce. This ability is clearly demonstrated in the results presented here.

The median individual improvement in size estimation accuracy is a factor of 2.5. This value
derives from examining the ratio of size estimation accuracy during PSP level 0 and size
estimation accuracy during PSP level 2. Hence, 50% of the engineers reduced the error in
their size estimates by a factor of 2.5 or greater.

To illustrate this improvement in more concrete terms, the table below reflects the
performance of a single engineer selected from the data set. This example shows one of the
more outstanding improvements observed in the data set.

Table 4-1: Sample Data for Size Estimation

Assignment
Estimated

 Size
Actual
Size

Size
Estimation
Accuracy

Trend in Size Estimation Accuracy

1 N/A 67 N/A

2 100 34 66%

3 60 197 -228%

4 106 113 -7%

5 87 49 44%

6 155 149 4%

7 137 152 -11%

8 97 72 26%

9 268 280 -4%

PSP0 aggregate size estimation accuracy = - 44.38%

PSP2 aggregate size estimation accuracy = - 0.40%

Size estimation accuracy improvement factor = 111.4

987654321
-250.0%

-200.0%

-150.0%

-100.0%

-50.0%

0.0%

50.0%

100.0%

A i N b

E
st

im
at

io
n

A
cc

ur
ac

y

CMU/SEI-97-TR-001 27

28 CMU/SEI-97-TR-001

5 Effort Estimation

Hardly a single software engineer has escaped the need to estimate how long it would take
them to produce some product—be it a module of code, a design specification, or a series of
test cases. However, the question posed to the practicing engineer typically takes the form of
“Can you have it done by next week?” rather than a request for an honest evaluation of how
much effort is required. The intuition-based algorithms in the mind of most seasoned software
engineers are typically the result of years of experience, putting their reputation and credibility
on the line with supervisors.

The PSP helps engineers in this environment by arming them with effort estimation data. In
this section, data are used to test the following hypothesis:

As engineers progress through the PSP training, their effort estimates grow
closer to the actual effort expended for the entire life cycle. More specifically,
with the introduction of a statistical technique (linear regression) in PSP level
1, there is a notable improvement in the accuracy of engineers’ effort
estimates.

5.1 Group Trend
The distributions shown in Figure 5-1 illustrate the performance of engineers’ effort estimation
for the three PSP levels. Again, the values plotted are based on pooling the effort estimates
and the effort actuals for the three assignments in each level.

Figure 5-1: Distributions of Effort Estimation Accuracy by PSP Level

100%0 %-100%-200%
0

10

20

30

40
 PSP Level 1
Efffort Estimation Accuracy

N
um

be
r

of

E
ng

in
ee

rs

100%0 %-100%-200%
0

10

20

30

40
 PSP Level 2
Efffort Estimation Accuracy

N
um

be
r

of

E
ng

in
ee

rs

100%0 %-100%-200%
0

10

20

30

40
 PSP Level 0
Efffort Estimation Accuracy

N
um

be
r

of

E
ng

in
ee

rs

Estimation Accuracy Value
CMU/SEI-97-TR-001 29

A comparison of the three distributions in Figure 5-1 shows that the majority of engineers
underestimated their effort in PSP level 0. For PSP level 1, the distribution is more nearly
symmetrical (the number of engineers overestimating is closer to the number of engineers
underestimating), though underestimates of 200% still occur. Finally, for PSP level 2, the
distribution is closer still to the desired shape (symmetrical with narrow range, centered on
zero), and the number of engineers with estimation accuracy values near zero is substantially
larger.

5.2 Analysis of Individual Changes in Effort Estimation Accuracy
The repeated measures ANOVA for effort estimation conducted shows that on average,
individual engineers do improve their effort estimation accuracy.

The analysis comparing the pooled effort estimation accuracy values for each PSP level
revealed a statistically significant difference across the three PSP levels (p < .0005). The
follow-up analysis comparing adjacent pairs of PSP levels revealed statistically significant
differences between PSP levels 0 and 1 (p < .0005). The difference between PSP levels 1 and
2 is not statistically significant. These statistical findings support the hypothesis that effort
estimation accuracy improves with PSP and that the improvement is most notable at PSP
level 1.

5.3 Summary of Improvements in Effort Estimation Accuracy
Use of historical data for deriving effort estimates is common practice in the software industry
today. However, estimation at the level of an individual engineer’s workload remains a
challenge. The PSP training provides engineers with the ability to make estimates, and to
improve the estimating process, at the level of an individual engineer. This ability is clearly
demonstrated in the results presented here.

The median improvement in effort estimation accuracy is a factor of 1.75. This value derives
from examining the ratio of effort estimation accuracy during PSP level 0 and effort estimation
accuracy during PSP level 2. Hence, 50% of the engineers reduced the error in their effort
estimates by a factor of 1.75 or greater.

Again, to illustrate this improvement in more concrete terms, the table below reflects the
performance of a single engineer selected from the data set.
30 CMU/SEI-97-TR-001

Table 5-1: Sample Data for Effort Estimation

Assignment
Estimated

 Effort
Actual
Effort

Effort
Estimation
Accuracy

Trend in Effort Estimation Accuracy

1 240 314 - 31%

2 180 205 - 14%

3 160 312 - 95%

4 252 282 - 12%

5 300 378 - 26%

6 600 419 30%

7 290 313 - 8%

8 180 192 - 7%

9 510 535 - 5%

PSP0 aggregate effort estimation accuracy = - 43.28%

PSP2 aggregate effort estimation accuracy = - 6.12%

Effort estimation accuracy improvement factor = 7.1

987654321
-100%

-75%

-50%

-25%

0%

25%

50%

Assignment Number
E

st
im

at
io

n
A

cc
ur

ac
y

CMU/SEI-97-TR-001 31

32 CMU/SEI-97-TR-001

6 Defect Density

Defect counts and measures of defect density (i.e., defects per KLOC) have traditionally
served as software quality measures. The PSP uses this method of measuring product quality,
as well as several process quality metrics. The consequence of high defect density in software
engineering is typically seen in the form of bug-fixing or rework effort incurred on projects.

In this section, the impact of PSP training on the defect density of the programs produced by
the engineers is addressed. In addition to overall defect density, a specific focus on the defect
density of programs during the compile and test phases of the life cycle is provided. Defects
that remain in the product at the end of the life cycle are the most costly to remove and have
frequently been used to estimate the defect density of the delivered product; therefore, a
reduction in these ‘late’ defects has a beneficial effect above and beyond the impact of a
reduction in overall defect density.

The hypotheses to be investigated in this section are as follows:

As engineers progress through PSP training, the number of defects injected
and therefore removed per thousand lines of code (KLOC) decreases.

With the introduction of design and code reviews in PSP level 2, the defect
densities of programs entering the compile and test phases decrease
significantly.

6.1 Group Trend
Figure 6-1 depicts the change in average defects per KLOC removed during compile and test,
as well as defects per KLOC over the entire life cycle. Data from 181 engineers who provided
complete data were used in the figures and analyses in this section.

Figure 6-1: Trends in Average Defect Density

210
0

20

40

60

80

100

Total

Compile

Test

PSP Level

D
ef

ec
ts

 P
er

 K
LO

C

CMU/SEI-97-TR-001 33

As Figure 6-1 shows, there is a modest decline in overall defect density across the three PSP
levels. More importantly, the number of defects removed in the compile and test phases (taken
together) are substantially lower for PSP level 2, as compared to PSP level 0.

Figure 6-2 (below) provides a more detailed examination of changes in defect density. The
horizontal axis on each chart represents the number of defects per KLOC and the vertical axis
represents the number of engineers reporting defect densities at a given value. The data
plotted are pooled defect densities for each PSP level. The three distributions in the left
column show defect densities in the compile phase, and the three distributions in the right
column show the defect densities in the test phase.

Figure 6-2: Defect Density Distributions for Compile and Test Phases

3002001000
0

40

80

120

3002001000
0

40

80

120

3002001000
0

40

80

120

2251507 50
0

50

100

150

2251507 50
0

50

100

150

2251507 50
0

50

100

150

Defects/KLOC removed in test

Defects/KLOC removed in test

Defects/KLOC removed in testDefects/KLOC removed in compile

Defects/KLOC removed in compile

Defects/KLOC removed in compile

N
um

be
r

of
 E

ng
in

ee
rs

N
um

be
r

of
 E

ng
in

ee
rs

N
um

be
r

of
 E

ng
in

ee
rs

N
um

be
r

of
 E

ng
in

ee
rs

N
um

be
r

of
 E

ng
in

ee
rs

N
um

be
r

of
 E

ng
in

ee
rs

PSP Level 0 PSP Level 0

PSP Level 1 PSP Level 1

PSP Level 2 PSP Level 2
34 CMU/SEI-97-TR-001

As Figure 6-2 illustrates, the defect densities in both the compile and test phases changed
substantially during the course of PSP training. As the distributions of defect density in compile
reveal, the vast majority of engineers reported fewer than 50 defects per KLOC during PSP
level 2, compared to PSP level 0, when many engineers reported more than 50 defects per
KLOC in compile. For defect density in the test phase, a similar decline in defects per KLOC
is observed, this time with the majority of engineers reporting fewer than 25 defects per KLOC
in test during PSP level 2.

6.2 Analysis of Individual Changes in Defect Density

6.2.1 Changes in Overall Defect Density
The analysis of overall defect density reveals a statistically significant difference in total defect
density across the three PSP levels (P < .0005). Specific comparisons of the three PSP levels
show that the difference in overall defect density between PSP levels 0 and 1 is statistically
significant (p < .0005), but that the difference between PSP levels 1 and 2 is not.

6.2.2 Changes in Defect Density in the Compile Phase
The analysis of defects per KLOC for products entering the compile phase reveals a
statistically significant difference in defect density across the three PSP levels (p < .0005).
Specific comparisons of the three PSP levels also reveal statistically significant differences
between PSP levels 0 and 1, as well as between PSP levels 1 and 2 (p < .0005 for both).

6.2.3 Changes in Defect Density in the Test Phase
The analysis of defects per KLOC for products entering the test phase reveals a statistically
significant difference in defect density across the three PSP levels (p < .0005). Specific
comparisons of the three PSP levels also reveal statistically significant differences between
PSP levels 0 and 1, as well as between PSP levels 1 and 2 (p < .0005 for both).

6.3 Summary of Improvements in Defect Density
A reduction in total defect density translates directly to a reduction in the amount of rework
needed to field a product. Furthermore, as the burden of defect removal activity is shifted to
earlier phases in the product life cycle, the cost of rework is significantly reduced.

The median reduction in total defect density is a factor of 1.5. The median reduction in defect
density for the compile phase is a factor of 3.7, and for the test phase, the median reduction
is a factor of 2.5. These quality improvements are illustrated in the table below with data from
a single engineer.
CMU/SEI-97-TR-001 35

Table 6-1: Sample Data for Defect Density

Assignment Total
Defects

per KLOC

Defects
per KLOC
Removed
in Compile

Defects
per KLOC
Removed

in Test

Trends in Defect Density Reduction

1 108.43 60.24 48.19

2 101.27 37.97 63.29

3 85.11 47.87 37.23

4 58.82 39.22 19.61

5 100.00 63.64 36.36

6 45.45 39.77 5.68

7 53.57 8.93 0.00

8 27.03 0.00 9.01

9 15.34 6.13 3.07

PSP0 Defect
Density

PSP2 Defect
Density

Improvement
Factor

Total Defect Density 94.29 25.50 3.7

Compile Phase 48.57 5.46 8.9

Test Phase 45.71 3.64 12.6

987654321
0

20

40

60

80

100

120
Total
Compile
Test

Assignment
D

ef
ec

ts
/K

LO
C

36 CMU/SEI-97-TR-001

7 Pre-Compile Defect Yield

One of the most powerful process metrics used in the PSP training is the pre-compile defect
yield (hereafter referred to simply as yield). Yield is the percentage of defects injected before
the compile phase that are removed before the first compile. The PSP training teaches
engineers to examine process quality by quantifying the yield of their personal software
process. By understanding how well their process works to prevent defects from “entering” the
last phases of the process, engineers can see for themselves the benefit of changes they
make to their processes.1 In general, the goal is to work for a yield of 100%.

The hypothesis to be addressed in this section is as follows:

As engineers progress through the PSP training, their yield increases
significantly. More specifically, the introduction of design review and code
review following PSP level 1 has a significant impact on the value of engineers’
yield.

7.1 Group Trend
Figure 7-1 shows the trend in average yield across the three PSP levels, with the dotted lines
representing ± 1 standard deviation. Data from 188 engineers reporting complete data were
used in the figures and analysis in this section.

Figure 7-1: Average Yield

1. It should be noted here that PSP students are not encouraged to rely solely on their pre-compile defect yield
as a quality indicator, and the data collected (including defect type, defect removal efficiency, and defect
removal leverage) provide a more complete picture for diagnosis of personal software processes than this
single analysis illustrates.

210
0%

20%

40%

60%

80%

PSP Level

P
re

-C
om

pi
le

 D
ef

ec
t

Y
ie

ld
CMU/SEI-97-TR-001 37

The increase in average yield from approximately 10% to nearly 55% from PSP level 1 to PSP
level 2 is difficult to miss. The major process change that occurs between PSP levels 1 and 2
is the introduction of formal design reviews and code reviews.

A more detailed depiction of the changing values of yield is provided in the boxplots below.
The rectangles in Figure 7-2 encapsulate the middle 50% of each distribution (with the lower
edge of the “box” equal to the 25th percentile and the upper edge equal to the 75th percentile).
The vertical line above each box extends to the highest value in each distribution that is not
classified as an outlier.2 The bar below the “box,” similarly, extends to the lowest value that is
not an outlier. The asterisk (*) in each box represents the median of the distribution (this is the
value that divides the group evenly in half).

Figure 7-2: Yields for Each Assignment

As the figure illustrates, prior to assignment 7, very few engineers removed defects from their
programs before the first compile. Starting with assignment 7, however, more than 75% of the
engineers removed more than a quarter of the defects before they compiled the program.

By looking at the median for each assignment (the asterisk in each box) it is apparent that at
the start of the training, half (or more) of the engineers removed no defects before compiling
their programs. Starting with assignment 7, however, the majority of engineers removed more
than half of the pre-compile defects before compilation.

2. There were many values of yield classified as outliers which are not shown in the figure above for the sake of
clarity. The statistical analyses presented later in this section include all available data, including the outliers.

* * * * * *

* * * *

1 2 3 4 5 6 7 8 9 10

Assignment Number

0%

25%

50%

75%

100%

P
re

-C
om

pi
le

 D
ef

ec
t Y

ie
ld
38 CMU/SEI-97-TR-001

7.2 Analysis of Individual Changes in Yield
While the change in average yield for the group of engineers is apparent when looking at the
figures discussed above, the changes in individual engineers’ yields are what allow them to
monitor their personal process.

The repeated measures ANOVA reveals that the differences in yields across the three PSP
levels is statistically significant (p < .0005). Specific comparisons of the three levels also show
that the difference between PSP levels 0 and 1 are not statistically significant, while the
difference between PSP levels 1 and 2 is significant (p < .0005).

7.3 Summary of Improvements in Yield
Early defect removal is one of the most economical ways to improve the quality of delivered
software products. Preventing unplanned rework from occurring in the final stages of a
software project allows more complete testing and assurance that the product will function as
expected when it is delivered. These post-development effects are not directly observable in
the PSP data (because the programming assignments are not delivered to a customer).
However, the significant improvement in early defect removal is apparent.

The median improvement in yield was an increase of 50% in the number of defects removed
before compile. This was computed by subtracting the yield for PSP level 0 from the yield for
PSP level 2 for each engineer, then computing the median of that distribution. Half of the
engineers improved their yield by more than 50%.
CMU/SEI-97-TR-001 39

To illustrate improvement of yield in more concrete terms, data from a single engineer are
presented below.

Table 7-1: Sample Data for Pre-Compile Defect Yield

Assignment Defects
Injected
Before

Compile

Defects
Removed

Before
Compile

Yield Trend in Pre-Compile Defect Yield

1 5 3 60%

2 7 0 0%

3 7 0 0%

4 2 0 0%

5 3 0 0%

6 1 0 0%

7 3 3 100%

8 3 2 67%

9 4 3 75%

PSP0 aggregate yield = 16%

PSP2 aggregate yield = 80%

Yield improvement = 64%

987654321
0%

25%

50%

75%

100%

Assignment

Y
ie

ld
40 CMU/SEI-97-TR-001

8 Productivity

Productivity is a major focus of most organizations that produce goods for customers. The
quantification of product output per unit of time spent is as old a metric as can be found in any
industry. In PSP training, the data collected by the engineers allow them to compute lines of
code per hour (LOC/Hr) as a measure of their personal productivity.

The hypothesis to be tested in this section is

As engineers progress through the PSP training, their productivity increases.
That is, the number of lines of code designed, written, and tested, per hour
spent increases between the first and last assignments.

8.1 Group Trend
Figure 8-1 shows the trend in average productivity across the three PSP levels, with the dotted
lines representing ± 1 standard deviation. Data from 196 engineers reporting actual time and
actual product size are used in the figure and subsequent analysis in this section.

Figure 8-1: Average Productivity

The trend line in the figure above shows very little fluctuation in average productivity across
the three PSP levels. The average hovers near 25 LOC/Hr for all three levels.

210
10

15

20

25

30

35

40

PSP Level

Li
ne

s
of

 C
od

e
P

er
 H

ou
r

CMU/SEI-97-TR-001 41

8.2 Analysis of Individual Changes in Productivity
The repeated measures ANOVA reveals that the differences in productivity across the three
PSP levels is statistically significant (p = .012). Specific comparisons show that the difference
between PSP levels 0 and 1 is not significantly different, but the difference between PSP
levels 1 and 2 is significantly different (p = .004). However, when PSP level 0 is compared with
level 2, the difference is not statistically significant. This set of statistical results, while
interesting from a statistical point of view, is barely meaningful from a substantive point of
view. To illustrate this point, Table 8-1 lists the average productivity for each level.

Examining the averages, we see that there is a reduction in productivity of approximately one
line of code per hour between levels 0 and 1 (which is not statistically significant). Between
levels 1 and 2, there is an increase in productivity of approximately two lines of code per hour
(which is statistically significant). Finally, from level 0 to level 2, there is an increase in
productivity of approximately one line of code per hour (which is not statistically significant).

8.3 Summary of Changes in Productivity
While the statistical workings of the repeated measures ANOVA are sensitive to the changes
in individual productivity values (rather than the changes in group averages illustrated above),
examination of individual changes reveals a similar pattern. We therefore conclude that
although significant fluctuation in productivity occurred (statistically), no real substantive gain
or loss in productivity was observed. This finding leads us to reject the hypothesis that
productivity increases during PSP training.

PSP Level Average Productivity

0 23.927 LOC/Hr

1 22.958 LOC/Hr

2 24.899 LOC/Hr

Table 8-1: Average Productivity
42 CMU/SEI-97-TR-001

9 Conclusions

The objectives of this study were to examine the effect of the Personal Software Process on
the performance of software engineers, and to consider whether the observed results could
be generalized beyond the study participants. Because the PSP was developed to improve
individual performance through the gradual introduction of new practices, the study took a
similar approach, examining the change in individual performance as these practices were
introduced.

Our analyses grouped individual data by PSP process level and then examined the change in
individual performance that occurred from level to level. Using this approach we found that the
improvements in four dimensions: size estimation accuracy, effort estimation accuracy,
product quality, and process quality, were statistically significant. No statistically significant
change in productivity was found, and so we can state that the improvements observed in the
other performance dimensions were achieved without any loss of productivity.

In conclusion, the analyses reported here substantiate that trends in personal performance
observed during PSP training are significant, and that the observed improvements represent
real change in individual performance, not a change in the average performance of the group.
Furthermore, we are confident that the observed improvements are due to the PSP and can
be generalized.
CMU/SEI-97-TR-001 43

44 CMU/SEI-97-TR-001

References

[Boehm 81] Boehm, B.W. Software Engineering Economics. Englewood Cliffs,
N.J.: Prentice-Hall, 1981.

[Ferguson 97] Ferguson, Pat; Humphrey, Watts S.; Khajenoori, Soheil; Macke,
Susan; & Matvya, Annette. “Introducing the Personal Software
Process: Three Industry Case Studies.” IEEE Computer 30, 5 (May
1997): 24-31.

[Greenhous 59] Greenhous, S.W. & Geisser, S. “On Methods in the Analysis of
Profile Data.” Psychometrika 24, 2 (June 1959): 95-112.

[Harwell 92] Harwell, Michael R.; Rubinstein, Elaine N.; Hayes, William S.; &
Olds, Corley C. “Summarizing Monte Carlo Results in
Methodological Research: The One- and Two-Factor Fixed Effects
ANOVA Cases.” Journal of Educational Statistics 17, 4 (Winter
1992): 315-339.

[Humphrey 95] Humphrey, Watts S. A Discipline for Software Engineering.
Reading, Ma.: Addison-Wesley, 1995.

[Mauchly 40] Mauchly, J.W. “Significance Test for Sphericity of a Normal
N-Variate Distribution.” Annals of Mathematical Statistics 11 (1940):
204-209.

[Page 63] Page, E.B. “Ordered Hypotheses for Multiple Treatments: A
Significance Test for Linear Ranks.” Journal of the American
Statistical Association 58, 301 (March 1963): 216-230.

[Tabachnick 89] Tabachnick, B. G. & Fidell, L. S. Using Multivariate Statistics.
New York: Harper Collins, 1989.
CMU/SEI-97-TR-001 45

46 CMU/SEI-97-TR-001

Appendix A Descriptive Data
The data analyzed in this report are derived from 23 offerings of the PSP training course. As
described above, this course is aimed at software engineering practitioners and has been
offered in academic and industrial settings. Table A-1 provides information about the size of
the classes that provided data for this report, as well as the types of classes included.

As shown in the table above, the typical class size for PSP training is relatively small.
Approximately half of the classes were offered in an academic setting (i.e., offered to graduate
and undergraduate students), and a little less than half of the classes were given to practicing
engineers in commercial software development organizations.

A.1 Availability of Data
Many of the SEI-trained instructors in the field have made tailoring decisions to accommodate
the needs of the population that they serve. Although tailored versions of the course retain the
fundamentals of the PSP, they have led to differences in the amount of data available for the
analyses in this report. In addition, the drop-out rate for the course is relatively high. Table A-
2 provides a summary of the data available on total effort, size, and defect counts for the 10
programming assignments.

In all, the data set used in this report contains data from 298 engineers. However, as shown
in Table A-2, there is a wide range of difference in the data available from individuals in this
group. The most notable difference is the small number of engineers providing totals for
assignment 10. This occurred mostly because there were several instructors who tailored the
class to exclude assignment 10.

Class Size Category Number of Classes Class Type Number of Classes

4 to 10 6 Instructor Training 4

11 to 15 11 Industry Setting 8

16 to 21 6 Academic Setting 11

Table A-1: Class Sizes and Types

Assignment 1 2 3 4 5 6 7 8 9 10

Effort 277 276 271 262 248 239 226 219 209 152

Size 265 274 271 262 248 239 226 219 209 152

Defects 277 273 267 259 244 235 224 214 202 150

Table A-2: Number of Engineers Reporting Totals by Assignment Number
CMU/SEI-97-TR-001 47

To conduct most of the analyses presented here, data at a much finer level of granularity is
needed. The following table shows one example of the availability of this more detailed data,
so that the reader is aware of the sample sizes used. The table below lists the number of
engineers who provided phase-specific effort data.

Several patterns in the table above are worth mentioning. First, while design and code reviews
were not explicitly introduced until program 7, some engineers carried out these reviews,
based on their past experience with them. Second, there was at least one class in the group
that chose not to introduce design review.

Finally, it is clear that the pattern of missing data is not identical across the various life-cycle
phases. That is, there are instances of engineers reporting effort on some phases but not
others. This pattern is not unlike what most researchers face when the data collection goals
and research goals are not the same. The data collected during PSP training was designed to
help engineers monitor and improve their processes, not to help in writing this report.

A.2 Typical Values and Variation
To give the reader a sense of the typical values of the measures being analyzed in this report,
the following series of charts is provided. In these charts, only engineers who provided
complete data (all 10 assignments completed) are included.

Assignment 1 2 3 4 5 6 7 8 9 10

Planning 268 271 267 261 248 239 226 218 209 152

Design 266 265 264 251 243 233 224 213 208 152

Design Review 2 4 6 4 13 15 138 132 124 149

Code 277 276 271 262 248 239 225 219 209 152

Code Review 2 7 8 10 20 22 223 219 208 152

Compile 277 276 271 260 246 239 222 214 209 151

Test 276 276 269 262 247 239 226 219 209 152

Table A-3: Availability of Phase-Specific Effort by Assignment Number
48 CMU/SEI-97-TR-001

In Figure A-1, the average number of new and changed lines of code produced for each of the
10 assignments is plotted by the solid black line, with the dotted lines above and below
showing +1 and -1 standard deviation, respectively.

Figure A-1: Average Size

In Figure A-2, the average effort for each of the 10 assignments is plotted by the solid black
line, with the dotted lines above and below showing +1 and -1 standard deviation, respectively.

Figure A-2: Average Effort

As shown above for each of the three PSP levels studied, the third programming assignment
(i.e., assignments 3, 6, and 9) is larger and takes more time than the previous two
assignments.

1 0987654321
0

50

100

150

200

250

300

Assignment

N
ew

 a
nd

 C
ha

ng
ed

 L

in
es

 o
f C

od
e

1 0987654321
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Assignment
H

ou
rs

 o
f

D
ev

el
op

m
en

t
T

im
e

(in
cl

ud
in

g
al

l
lif

ec
yc

le
 p

ha
se

s)
CMU/SEI-97-TR-001 49

The defect densities and productivity achieved by the engineers tend to vary from program to
program as well. The average overall defect density is plotted by the bold line in Figure A-3,
with the dotted lines above and below showing +1 and -1 standard deviation, respectively.

Figure A-3: Average Defect Density

The average productivity is plotted by the bold line in Figure A-4, with the dotted lines above
and below showing +1 and -1 standard deviation, respectively.

Figure A-4: Average Productivity

Figures A-3 and A-4 do not suggest any obvious similarities, as we saw for Figures A-1 and
A-2. For overall defect density (Figure A-3), a decreasing trend across the 10 programming
assignments is visible, with a notable increase for assignment 7. The trend for productivity
(Figure A-4) suggests no marked increase or decrease overall. A slight dip in productivity
during the middle of the assignment sequence is apparent, with the last assignment showing
an average productivity very close to that of the first assignment.

1 0987654321
0

50

100

150

200

250

Assignment

 N
um

be
r

of
 D

ef
ec

ts
P

er
 T

ho
us

an
d

Li
ne

s
of

 C
od

e

1 0987654321
0

10

20

30

40

50

Assignment

Li
ne

s
of

 C
od

e
P

er
 H

ou
r

50 CMU/SEI-97-TR-001

A.3 Data Used in Specific Analyses
Because of the varying amounts of data that are available across the different measures used
in PSP assignments, the sample size used in the analyses presented earlier in the report
varies from assignment to assignment. The table below lists each analysis and the number of
engineers on which they are based.

The limited sample sizes in each analysis (i.e., less than the total 298) derive from the fact that
the focus of the analysis is on tracking the performance of individual engineers as they
progress through the training. Therefore, if engineers do not report data for one or more
assignments in the series, it is impossible to say what their progress was with the level of
accuracy desired for this type of analysis.

The sample sizes shown in Table A-4 are the result of selection schemes to ensure
appropriate use of data where incomplete records exist. These selection schemes, and the
rationale that drove them, are described below.

A.3.1 Data Used in Analyses of Estimation Accuracy (Size and Effort)
First, because size estimates and effort estimates both play a central role in planning, and
because effort estimates are derived through the use of size estimates, only cases where both
types of estimates were available are used in the analyses.

Second, because the programs being estimated are generally small in size (see Figure A-1),
the estimates and actuals are pooled by PSP level. That is, for each level, an estimation
accuracy value is computed by summing the estimates across the three assignments,
summing the actuals across the three assignments, and then computing [(Estimate - Actual) /
Estimate]. Rather than using an average of three assignments within the level, this pooling
serves to reduce the magnitude of outliers and provides a data point tied to performance within
a PSP level. Thus, a “lucky guess” for the size of a given program (or effort required to produce
it) will have less impact on the measure of performance for that PSP level.

Report Section Sample Size

6. Size Estimation 170

7. Effort Estimation 170

8. Defect Density 181

9. Pre-Compile Defect Yield 188

10. Productivity 196

Table A-4: Sample Size for Each Analysis
CMU/SEI-97-TR-001 51

Third, because of the focus on PSP level differences and the fact that PSP level 3 contains
only one programming assignment, assignment 10 was excluded from all analyses of
estimation accuracy.

Fourth, because size estimates are not required for the first programming assignment, their
absence was not used to exclude cases.

As a result, a subset of 170 cases (from the total of 298) was used in the analyses of size and
effort estimation accuracy. All of these cases provided estimated and actual effort for all nine
assignments, actual size for all nine assignments, and estimated size for assignments 2
through 9.

A.3.2 Data Used in Analyses of Defect Density
For the analysis of defect density, the first nine programming assignments were used for the
same reasons as stated above. In order to be included in the analysis, defect removal counts
for the compile and test phases, as well as total defect counts, had to be available. In addition,
because defect densities are calculated using the actual size of the programs, actual program
size had to be available.

Instances where the total number of defects removed and the total number of defects injected
are not equal presented a difficult problem in the analysis. Such differences could arise as a
result of simple data entry errors, or they could be due to a data entry error related to reuse of
code. For example, if code from assignment 5 is reused in assignments 6 and 7, engineers
who uncovered defects in that code are supposed to record them in assignment 5 or in the
assignment they are working on, depending on whether the code is categorized as “reused”
code or “base” code.

Given that all data reported to the SEI derives from the spreadsheets completed by the
instructors (who are working with the paper forms submitted by the engineers), we expect that
some instructors were more careful than others in updating data from previous assignments,
based on defect detection in later assignments. Furthermore, we expect that some percentage
of the engineers in the PSP classes were inconsistent in the way they reported data in these
situations.

While the lack of exact correspondence between the number of defects injected and the
number removed presents an issue of precision, it seems reasonable to allow for some level
of noise in the data being analyzed. For this reason, a threshold of two defects was
established; that is, as long as the discrepancy between defects injected and removed was
two or less, the data were included in the analysis. It seems reasonable to conclude that such
small discrepancies arose from simple arithmetic errors or from loss of defect data when
instructors failed to revise the spreadsheet upon discovery of defects during reuse of code.
52 CMU/SEI-97-TR-001

Given these selection criteria, Table A-5 contains a listing, by assignment number, of the
number of engineers who reported valid data. The first row lists the number of engineers
providing sufficient data for each program. The second row lists the number of engineers
reporting defect counts that differed by two or less (injected versus removed). The third row
lists the number of engineers failing to report actual size. The fourth row lists the number of
engineers whose defect counts (injected versus removed) differed by more than two defects.
In all, 181 engineers provided complete data for all nine assignments by these criteria.

As was the case for the analysis of estimation accuracy, the defect densities used in the
analyses were computed by first pooling the defects and product sizes across the three
assignments within each PSP level, then computing defect density as [total number of defects
/ (total new and changed LOC/1000)].

A.3.3 Data Used in Analyses of Pre-Compile Defect Yield
The analysis of pre-compile defect yield was conducted using the first nine assignments, for
reasons discussed above. The yield value was computed based on pooled pre-compile defect
injection and removal counts, as discussed above.

Because the same criteria were used (as above) for cases where the number injected differed
from the number removed, the pooling of defect counts across assignments provided some
protection from spurious values of yield (i.e., in a case where the number of defects removed
exceeded the number injected, a yield value above 100% would be possible).

Once again, only cases with data from all nine assignments were included in the analysis.
Because zero is a valid defect count in the spreadsheets submitted to the SEI, data were
selected based on whether or not actual time was reported for each assignment.

There were 188 cases that met all these criteria, and the charts and analyses presented in
Section 9 are based on this subset.

Assignment Number

1 2 3 4 5 6 7 8 9

Complete data 255 258 257 260 237 234 215 211 200

Defect counts off by 2 or
less

8 6 12 1 10 4 9 6 8

No size reported 33 24 27 36 50 59 72 79 89

Defect counts off by more
than 2

2 2 1 1 1 2 2 1

Table A-5: Availability of Data for Defect Density Analysis
CMU/SEI-97-TR-001 53

A.3.4 Data Used in Analyses of Productivity
The elements of the productivity metric consist of the number of new and changed lines of
code, and the time spent completing the programming assignment. Therefore, only cases that
contained both of these elements for all nine assignments were included in the analysis.

The pooling method described above was used to compute productivity values for each PSP
level. Therefore, the value of productivity for PSP level 0 was calculated by summing the new
and changed LOC of programs 1, 2, and 3, and then dividing that sum by the total time spent
writing all three programs.
54 CMU/SEI-97-TR-001

Appendix B Statistical Methods
This appendix assumes that the reader has some fundamental knowledge of statistics, such
as might be gained from a series of undergraduate courses or a single graduate course
focused on the general linear model (or sum of squares-based statistics). The main goal in
providing this material is to allow other researchers in the field to understand fully the work
presented here, in the hope that this understanding will serve to motivate further work in this
exciting area of research.

For more information about the statistical methods used here, see the References on page 45
of this report for sources used in conducting this study. In particular, Using Multivariate
Statistics by Tabachnick and Fidell [Tabachnick 89] is quite useful.

B.1 Repeated Measures Analysis of Variance
The primary statistical technique used to test the impact of PSP training in this report is the
repeated measures ANalysis Of VAriance (ANOVA). This technique is well suited for a
situation in which measurements are taken repeatedly on the same subjects. The following
scenario describes one of the motivations for use of this statistical model.

In the study of the effect of a training course, a researcher may wish to compare
scores on a pretest with scores on a test administered after training.
Differences between these two test scores (given a host of other experimental
conditions) are then attributed to the effectiveness of the training. In order to
make a generalizable statement from such a study, individual differences must
be accounted for before the two sets of measurements can be meaningfully
compared. To simply state that the average post-test score for the group is
greater than the average pretest score could overlook the possibility that the
majority of subjects did not change at all, but one or two subjects scored
significantly higher on the post-test than they did on the pretest.

By performing the statistical test on the average change of the individuals (rather than the
change in group average), the repeated measures ANOVA provides a more rigorous analysis
of data collected over time from a single group of individuals. This additional level of precision,
however, places more stringent requirements on the data collection and interpretation
process. These requirements (referred to as assumptions in the statistical literature) are
addressed below.
CMU/SEI-97-TR-001 55

B.1.1 Assumptions Underlying the Correct Use of Repeated Measures ANOVA
In the broadest terms, the statistical model assumes that

• subjects are representative of the population of interest and are randomly
selected

• observations on these subjects are independent (from subject to subject)

• dependent variables are normally distributed in the population

• the variance-covariance matrices of dependent variables are identical

A great deal of published work in methodological research suggests that statistical tests of this
type are robust to violations of these assumptions [Harwell 92]. Unfortunately, many
researchers cite those findings and proceed to completely ignore the opportunity to better
understand their own statistical results. This section of the report addresses the condition of
our data with respect to these issues and explains the ways we have attempted to overcome
some of the issues deriving from violations of assumptions underlying the statistical model.

B.1.1.1 Representative Sample

Clearly, the sample used in this study is not a random sample from the population of all
software engineers. In the most conservative application of statistics, the generalizability of
our findings is limited to the group of engineers who provided the data analyzed here. The
sampling used here is often termed a “convenience sample,” and most experimental design
texts strongly caution readers to resist overgeneralization. Unfortunately, most authors offer
very little advice beyond these cautions.

The reasonable boundaries of generalization fall somewhere between the two different
populations (all engineers, versus the 298 providing data). Our claim is that future offerings of
PSP training will yield results of the type and magnitude reported here. Surely we would be
uncomfortable with generalizations to PSP-like courses that omitted key lessons, or that
involved radically different exercises. While we have not explicitly identified the vital
ingredients that make PSP courses and their outcomes similar, the experience to date
confirms that the core “technology” being transferred to SEI-trained instructors is repeatable.
We base our claim of generalizability on the similarity of class trends presented by each
instructor, as well as the results presented here. Therefore, while the sample used in the
analyses described in this report is not a random sample of software engineers, we feel
confident in claiming that engineers trained in PSP (using the SEI training course) will achieve
improvements similar to those documented here.

B.1.1.2 Independent Observations

In order for this assumption to be satisfied, we need to establish that the data collected from
one engineer is not (in some sense) dependent on the data from another engineer. A classic
issue which arises in this area is the effect of different instructors. In many settings, the
performance of students in a class is limited or enhanced by the quality of the instruction they
receive. Other examples of issues associated with independence of observations include
56 CMU/SEI-97-TR-001

gender, educational level, professional experience, and programming language used. When
variables outside the statistical equation can “account for” observed differences (or
similarities) in the data collected, the possibility of non-independent observations should be
explored.

In the most conservative application of statistics, such independence is rarely (if ever)
achieved. We do not claim that all potential confounding effects have been examined here.
We have taken care to get a large sample of engineering data, generated by engineers with a
variety of instructors, in hopes that such effects will be minimized.

B.1.1.3 Normally Distributed Populations

The assumption of normality is perhaps the most frequently violated assumption in the
application of ANOVA. Fortunately, this is typically the least costly error in cases where large
samples of data are analyzed. The Central Limit Theorem protects the researcher from being
terribly misled by the statistical results from moderately non-normal data.

In our analyses, we applied a multivariate (as opposed to a univariate) model to the data. This
means that the population distributions are assumed to be multivariate normal distributions.
Examination of plots and simple statistics (like skewness and kurtosis) are not generally useful
in checking for multivariate normality. Furthermore, examination of each variable for bivariate
normality actually does not provide protection against the violation of the multivariate normality
assumption.

Our approach in assessing the tenability of the multivariate normality assumption is to
examine the distribution of residuals in each analysis. A normal probability plot is drawn for
each dependent variable, and obvious deviations from normality are sought.

As shown in most of the figures in this report, much of the data we are working with tends to
follow a skewed distribution. In fact, our examination of normal probability plots for residuals
confirms that the normality assumption is violated for many of the analyses. In these
instances, we performed transformations on the original data and replicated the analyses with
the transformed scores. When the statistical results derived from the transformed variables
are consistent with those of the raw variables (and the plot of residuals indicates a more nearly
normal distribution), we can be confident that the lack of normality is not leading us astray.
These transformations and confirmatory analyses are described more fully in Section B.3.

B.1.1.4 Identical Variance-Covariance Matrices

Because we are using a multivariate treatment of the data in performing our omnibus tests,
the issue of variance-covariance homogeneity becomes moot. The measures from each
engineer are treated as an observed vector from a multivariate distribution, rather than a set
of observed data points from a family of univariate distributions.
CMU/SEI-97-TR-001 57

B.2 Post-Hoc Analyses
In each analysis, significant multivariate tests are followed by examination of univariate
ANOVA tables comparing pairs of PSP levels. In shifting to a reliance on the univariate
approach an additional assumption is placed on the condition of the data. The population
variance-covariance matrices are assumed to be homogeneous. While the multivariate
approach used in the omnibus test relaxes this assumption, proper interpretation of the
univariate results is dependent on this assumption.

In order to ensure that violations of the homogeneity of variance-covariance matrices
assumption were not causing us to misinterpret our results, we tested the sample data and
took appropriate steps to counteract the impact. We tested the appropriateness of this
assumption using Mauchly’s test of sphericity [Mauchly 40]. In cases where heterogeneity of
population variance-covariance matrices is suspected, several corrections are available to
combat the potential for misleading significance levels. The most conservative of these
methods is the Greenhous-Geisser epsilon [Greenhous 59]. Significant pairwise comparisons
reported in this paper rely on Greenhous-Geisser corrected F-tests, if the test for sphericity
was rejected.

B.3 Confirmatory Analyses Using Transformed Data
As discussed in Section B.1.1.3, the sample distributions of dependent variables analyzed in
this study are typically non-normal in shape. While this fact alone does not necessarily mean
the multivariate normality assumption is violated, examination of normal probability plots of the
residuals did suggest this as an issue for every analysis conducted.

In order to ensure that violations of the normality assumption are not causing gross
misinterpretations, we repeated most of the analyses using transformations of the dependent
variables that resulted in more nearly normal distributions. This allowed us to confirm that
significant differences observed based on “raw scores” do, in fact, reflect reliable patterns in
the data. Another option would be to work with the transformed data alone. However, when
discussing variables like the ones used here, the interpretation of the transformed data may
be questionable. For example, the log-transformed value of defect density means nothing to
the engineer who collected the data. In order for it to be usable in monitoring the engineer’s
personal process, the metric must be expressed in its “raw” form. Given this fact, significant
differences using the “raw” metrics have meaning, and significant differences using
transformed metrics lend support to this meaning (while ensuring that the necessary
preconditions for use of the statistical procedures have not been abused).

The two sets of analyses (“raw” and “transformed”) were compared to detect three critical
differences. First, the normal probability plots were compared to confirm that the
transformation did in fact result in a more nearly normal distribution of residuals. Second, the
alpha levels were compared to ensure that the type-I error rate was below .05 for both
analyses. Finally, the power values (computed for a nominal alpha level of .05) were
compared to ensure that the power of the F-test was not grossly deflated (i.e., below .5).
58 CMU/SEI-97-TR-001

Each of the transformation techniques used is discussed in detail below.

B.3.1 Transformations Used to Confirm Analyses of Estimation Accuracy
The careful reader will note that the definition of estimation accuracy (for both size and effort)
yields values that are not symmetrical around zero. The value of estimation accuracy is
calculated by dividing the difference between actual and estimate by the estimate. As a result,
there can never be an overestimate of greater than 100%.1 This definition of the dependent
variable will result in a negatively skewed distribution almost by definition. In essence, for a
given number of lines of code (or minutes of development time) misestimated, the distance of
the estimation accuracy value from zero will differ depending on its sign. Furthermore, this
difference is particularly exaggerated when the estimate is very small.

In order to combat the undesirable effects2 of this phenomenon on the statistical procedure,
the confirmatory analysis was conducted using a new definition of estimation accuracy. For
underestimates, the metric was computed using the actual in the denominator, while for
overestimates, the metric was computed using the estimate in the denominator. The result is
a more nearly normal distribution of “estimation accuracy” with a possible range of -1 to +1.
Examination of the normal probability plots confirmed that the transformation resulted in a
more nearly normal distribution of residuals as well.

B.3.2 Transformations Used to Confirm Analyses of Defect Density
As Figure 6-2 on page 34 reveals, the distributions of defect density tend to be positively
skewed, with long tails extending to the right and a truncated range at zero. This type of non-
normal distribution is to be expected given the source of the data. There can never be a
negative count for defects, so the truncation at zero is expected. In addition, we would expect
many small values of defect density and relatively fewer large values. This positively skewed
distribution is particularly expected when engineers (as a group) reduce the defect density of
the programs as they improve their quality during the course.

This is the type of data where either a logarithmic or inverse transformation can be used to
create a more nearly normal distribution [Tabachnick 89, page 85]. Based on our examination
of the effects of these two types of transformations on the distribution of residuals, the
logarithmic transformation was used in the confirmatory analysis.

1. Consider an extreme example, where the actual is infinity and the estimate is one. The value of estimation
accuracy approaches negative infinity (negative infinity divided by 1). On the other extreme, if the actual is 1
and the estimate is infinity, the value of estimation accuracy approaches 1 (infinity divided by infinity).

2. This is not an undesirable effect for the operational use of the metric itself, as it is intended to quantify the
‘amount of error’ in the estimate and not its distance from the actual.
CMU/SEI-97-TR-001 59

B.3.3 Confirmatory Analysis of Yield
The distributional forms of the three yield values (one pooled value for each PSP level)
presented the most challenging condition of non-normality. As Figure 7-2 on page 38
illustrates, the yield values for PSP levels 0 and 1 were consistently low, and only during PSP
level 2 did they begin to more fully reflect the entire range of possible values. This presents us
with two highly skewed distributions (PSP levels 0 and 1) and one fairly symmetrical
distribution (PSP level 2). We are hard-pressed to devise a single transformation that can be
applied to all three of these distributions in order to make them all more normal
simultaneously. Examination of the normal probability plots with the residuals from the ANOVA
confirmed that the distribution for PSP level 2 is fairly normal in form, whereas the distributions
for PSP levels 0 and 1 are grossly non-normal.

Given this condition, we rely on a nonparametric alternative to the repeated measures ANOVA
to perform the confirmatory analysis. In general, where the assumptions of the parametric test
can be met, procedures like ANOVA tend to be more powerful than their nonparametric
counterparts. However when the assumptions are not tenable, the nonparametric alternative
can often be the most powerful technique.

The Page test for ordered alternatives [Page 63] provides an alternative to the parametric
ANOVA technique and also allows a directional alternative hypothesis. In other words, this
technique allows us to test for significant differences across PSP levels without the
assumption of multivariate normality, and it allows us to test whether or not yields in
successive PSP levels are higher than previous levels.

Results from the Page test indicate statistically significant ordered differences in yield from
PSP level to PSP level (p < .00003).3 This analysis confirms the statistically significant
increase in yield documented in Section 7.

B.3.4 Transformations Used to Confirm Analyses of Productivity
The distributions of productivity for each PSP level show moderate positive skew. Again, this
type of distribution is to be expected, given the source of the data. There can never be a
productivity value of zero, since that would translate to zero lines of code per hour. While vast
differences in individual productivity exist among engineers, the number of very high
productivity values expected (versus very low) is relatively small. Therefore, we see many
engineers reporting moderate to low values of productivity, and a few engineers reporting
relatively high values of productivity.

3. The actual p-value is likely to be much smaller. This test was conducted ‘by hand,’ as our statistical package
does not provide for it. The smallest value in the table we used had a p of .00003 for a test statistic of 4; our
test statistic was 12.6!
60 CMU/SEI-97-TR-001

This type of “non-normality” is often treated with a square-root transformation. The normal
probability plots of residuals for the original analysis (using “raw” values of productivity)
indicated a departure from normality, so the confirmatory analysis was carried out with square-
root-transformed productivity values. Examination of the normal probability plots (from the
analysis of transformed data) confirmed that the transformation did, in fact, result in more
nearly normal distributions of residuals.
CMU/SEI-97-TR-001 61

62 CMU/SEI-97-TR-001

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. agency use only (leave blank) 2. report date

December 1997

3. report type and dates covered

Final

4. title and subtitle

The Personal Software Process (PSP):
An Empirical Study of the Impact of PSP on Individual Engineers

5. funding numbers

C — F19628-95-C-0003

6. author(s)

Will Hayes, James W. Over
7. performing organization name(s) and address(es)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. performing organization
report number

CMU/SEI-97-TR-001

9. sponsoring/monitoring agency name(s) and address(es)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. sponsoring/monitoring
agency report number

ESC-TR-97-001

11. supplementary notes

12.a distribution/availability statement

Unclassified/Unlimited, DTIC, NTIS
12.b distribution code

13. abstract (maximum 200 words)

This report documents the results of a study that is important to everyone who manages or
develops software. The study examines the impact of the Personal Software Process (PSP) on the
performance of 298 software engineers. The report describes the effect of PSP on key
performance dimensions of these engineers, including their ability to estimate and plan their work,
the quality of the software they produced, the quality of their work process, and their productivity.
The report also discusses how improvements in personal capability also improve organizational
performance in several areas: cost and schedule management, delivered product quality, and
product cycle time.

14. subject terms

capability maturity model, empirical studies, personal software process,
process improvement, PSP

15. number of pages

62 pp.
16. Price Code

17. security classification
of report

UNCLASSIFIED

18. security classification
of this page

UNCLASSIFIED

19. security classification
of abstract

UNCLASSIFIED

20. limitation of abstract

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	1 Executive Summary
	1.1 Study Results
	1.1.1 Cost and Schedule Management
	1.1.2 Quality Management
	1.1.3 Cycle Time
	1.1.4 Organizational Process Improvement

	1.2 PSP Introduction
	1.3 About the Study

	2 Introduction and Background
	2.1 The PSP Course
	2.1.1 The PSP Process Levels
	2.1.2 The Baseline Personal Process - PSP0 and PSP...
	2.1.3 Personal Project Management - PSP1 and PSP1....
	2.1.4 Personal Quality Management - PSP2 and PSP2....
	2.1.5 Cyclic Personal Process - PSP3
	2.1.6 Course Structure and Assignments

	2.2 PSP Measures
	2.2.1 Measurement Overview
	2.2.2 PSP Derived Measures

	3 Overview of the Data Set and Statistical Model
	3.1 The Data Set
	3.2 Statistical Model

	4 Size Estimation
	4.1 Group Trend
	4.2 Analysis of Individual Changes in Size Estimat...
	4.3 Summary of Improvements in Size Estimation Acc...

	5 Effort Estimation
	5.1 Group Trend
	5.2 Analysis of Individual Changes in Effort Estim...
	5.3 Summary of Improvements in Effort Estimation A...

	6 Defect Density
	6.1 Group Trend
	6.2 Analysis of Individual Changes in Defect Densi...
	6.2.1 Changes in Overall Defect Density
	6.2.2 Changes in Defect Density in the Compile Pha...
	6.2.3 Changes in Defect Density in the Test Phase

	6.3 Summary of Improvements in Defect Density

	7 Pre-Compile Defect Yield
	7.1 Group Trend
	7.2 Analysis of Individual Changes in Yield
	7.3 Summary of Improvements in Yield

	8 Productivity
	8.1 Group Trend
	8.2 Analysis of Individual Changes in Productivity...
	8.3 Summary of Changes in Productivity

	9 Conclusions
	References
	Appendix A Descriptive Data
	A.1 Availability of Data
	A.2 Typical Values and Variation
	A.3 Data Used in Specific Analyses
	A.3.1 Data Used in Analyses of Estimation Accuracy...
	A.3.2 Data Used in Analyses of Defect Density
	A.3.3 Data Used in Analyses of Pre-Compile Defect ...
	A.3.4 Data Used in Analyses of Productivity

	Appendix B Statistical Methods
	B.1 Repeated Measures Analysis of Variance
	B.1.1 Assumptions Underlying the Correct Use of Re...

	B.2 Post-Hoc Analyses
	B.3 Confirmatory Analyses Using Transformed Data
	B.3.1 Transformations Used to Confirm Analyses of ...
	B.3.2 Transformations Used to Confirm Analyses of ...
	B.3.3 Confirmatory Analysis of Yield
	B.3.4 Transformations Used to Confirm Analyses of ...

