
Unified Modeling Language For Real-Time Systems Design Page 1
Rational Software Corporation

Unified Modeling Language
for Real-Time Systems Design

Introduction

The Unified Modeling Language, or UML, is a third-generation object-oriented modeling
language. It adapts and extends the published works of Grady Booch, Jim Rumbaugh, and
Ivar Jacobson [Booch94, OMT91, OOSE92] and contains improvements and suggestions
made by dozens of others. The UML is being presented to the Object Management Group
in the hope that it will become a standard modeling language for object-oriented
development. Because the UML is meant to be applicable to the modeling of all types of
systems, it applies equally well to real-time systems, client/server, and other kinds of
“standard” software applications. It provides a rich set of notations and promises to be
supported by all major CASE tool vendors.

The purpose of this white paper is to discuss some of the highlights of the UML,
particularly as they apply to the design of real-time systems. This work is based on the
latest drafts of the UML documentation available at the time of writing [UML0.8,
UML0.91]. Because of the depth of these documents, this paper addresses only the most
fundamental elements of the UML but omits many details. For the latest and most
complete information, please see the object technology section of Rational Software
Corporation’s Web site (http://www.rational.com/ot/uml.html.

An Object-Oriented Approach to Modeling Systems

Structured methods clearly separate data from functions, decreasing their cohesion.
Object-oriented (OO) methods take a different approach. They unify data and the
functions that operate on them into software components called objects. In the real-time
world, objects are models of things such as sensors, motors, and communication
interfaces. The following table provides an informal object-oriented description of these
kinds of objects:

Object Type Data Functions
Temperature Sensor Temperature Acquire( )

Calibration Constant Set Calibration( )

Stepper Motor Position Step Forward( )
Step Backward( )
Park( )
Power( )

RS232 Interface Data to be Transmitted Send Message( )
Data Received Receive Message( )



Unified Modeling Language For Real-Time Systems Design Page 2
Rational Software Corporation

Object Type Data Functions
Baud Rate Set Comm Parameters( )
Parity Pause( )
Stop Bits Start( )
Start Bits Get Error( )
Last Error Clear Error ( )

Because some of the objects in a system can be replicates of one another, it would be
redundant and tedious to specify the data and functions of each. OO methods use the
notion of a class to capture, in one place, the structure (for example, the common data
fields) and the behavior (for example, common functions callable) of such objects.

A class is like a C-language struct declaration that contains both data and function
(pointer) fields. Structs are definitions of groups of fields that are closely related. All
variables of the same struct type look alike in that they all have the same fields.
Correspondingly, every object has a definition that is prescribed by its class. But unlike C
structs, which generally define only data fields, an object’s class defines both its data and
its functions in one cohesive structure. Using the UML terminology, the data portion of an
object is defined by a set of attributes, and the functional portion of an object is defined by
a set of operations.

While every object of a given class has exactly the same structure and behavior, each
object is unique in that changes to one do not automatically affect others. For example,
every object of the Temperature Sensor class has its own copy of the data items
Temperature and Calibration Constant, as well as its own access to the operations
Acquire( ) and Set Calibration( ).

Structuring data and functions into classes is fundamental to modeling with an OO
approach. Another key principle of object orientation is encapsulation. This principle
states that the data portion of an object is accessible only through the functions defined by
the object’s class. Encapsulation makes objects more reliable and safe in that:

• Users of an object cannot directly affect the state of the object, but rather must go
through a more controlled interface, such as a function call.

• Developers of an object’s class can make changes to the data portion often with little
or no impact on the users.

Learning to appreciate and efficiently use encapsulation is often the most difficult part of
making the “paradigm shift” that is required when going from a structured method
background to an object-oriented method.

Modeling with UML Diagrams

While tables like those in the previous section provide a convenient way to informally
capture class definitions, the UML goes much further in the kinds of information that can



Unified Modeling Language For Real-Time Systems Design Page 3
Rational Software Corporation

be modeled. The easiest way to describe the various modeling aspects of the UML is
through the notation defined for its various types of diagrams.

The UML distinguishes between the notions of model and diagram. A model contains all
of the underlying elements of information about a system under consideration and does so
independently of how those elements are visually presented. A diagram is a particular
visualization of certain kinds elements from a model and generally exposes only a subset of
those elements’ detailed information. A given model element might exist on multiple
diagrams, but there is but one definition of that element in the underlying model.

This paper introduces the notation and semantics for the following kinds of diagrams
supported in the UML:

• Class diagram

• Use-case diagram

• Interaction diagram
− Sequence diagram
− Collaboration diagram

• State diagram

• Component diagram

• Deployment diagram

Each type of diagram captures a different perspective, or view, of the system’s underlying
model. For any of the diagram types, multiple diagrams of that type may exist.

Note that not all of these diagram types have features specifically intended for the
modeling of real-time systems. In particular, interaction, state, and deployment diagrams
have the most to offer in the real-time arena. But for completeness, the following sections
describe the notation and semantics for each of these types of diagrams.

Class Diagram

As with other object-oriented methods, the class diagram is core to a UML model. A class
diagram shows the important abstractions in a system and how they relate to each other.
The primary elements found on class diagrams are class icons and relationship icons.

Classes, Attributes, and Operations

Individual classes are represented in the UML as solid, outline rectangles with one, two,
or three compartments. Figure 1 shows how the classes described in the previous tables
can be represented using the UML class icons. The first compartment is for the name of
the class and is required. The second and third compartments are optional and may be
used to list the attributes and operations defined by the class.



Unified Modeling Language For Real-Time Systems Design Page 4
Rational Software Corporation

Temperature Sensor

temperature
calibration constant

acquire( )
set calibration( )

Stepper Motor

position

step forward( )
step backward( )
park( )
power( )

RS232 Interface

data to be transmitted
data received
baud rate
parity
stop bits
start bits
last error

send message( )
receive message( )
set comm parameters( )
pause( )
start( )
get error( )
clear error( )

Figure 1: Class icons with attribute and operation compartments

While displaying such details for a few specific classes can be useful, showing all class
members for all classes in a model can quickly clutter a class diagram. Such complexity
defeats the purpose for using class diagrams, which is to provide some degree of
abstraction above the vast underlying details found in any nontrivial model. This is why the
UML allows a class icon to suppress displaying any or all of its members. This principle is
key to the UML: Diagrams do not generally expose the total contents of a model, but
rather only some subset of the model’s details.

Thus, all of the icons shown in Figure 2 are valid representations for the class
Temperature Sensor—they are merely different views of the underlying model.

Temperature Sensor

temperature
calibration constant

acquire( )
set calibration( )

Temperature Sensor

acquire( )
set calibration( )

Temperature Sensor

Figure 2: Multiple views of the same underlying class model

Relationships

Stand-alone classes provide only so much value in and of themselves. Most classes in a
system will be related to other classes so that their corresponding objects can collaborate
to accomplish more complex functionality. So in addition to classes, attributes, and
operations, class diagrams also depict various types of relationships that exist between
dependent classes.



Unified Modeling Language For Real-Time Systems Design Page 5
Rational Software Corporation

The UML distinguishes between several different kinds of relationships, each of which has
its own set of special adornments and associated meanings. Figure 3 illustrates a few of
the most basic types and forms of relationships.

Class 1 Class 2

Bi-Directional Association

association name

role-1 role-2

Part

Whole

Aggregation Association

Superclass

Subclass

Client Supplier

Uni-Directional Association

association name

Inheritance

Client Supplier

Dependency

Formal Args

Parameterized Class

Instantiated Class<Actual Args>

Template Instantiation

Figure 3: Types of UML relationships

As an example of how some of these relationships might be used, consider a simple system
in which a controller uses a sensor with an analog-to-digital converter to acquire
information. This same controller then uses an actuator to affect its environment. The
system may use a temperature sensor to activate either a heater or a fan for closed-loop
control. Additionally, it may use a pressure sensor to provide information about a gas line
that it uses to control a valve with a stepper motor. A class diagram for such a system is
shown below:

Temperature Sensor Stepper MotorPressure Sensor

Fan Heater

1

A/D Converter

1 0..*
Sensor

1

1

1
1

Controller

0..*

1

0..*
Actuator

1

0..*
gets data from sends commands to

Figure 4: Simple sensor-actuator-controller system

The boxes visually represent the key abstractions of this system as classes. The lines
connecting these classes represent various types of relationships between these
abstractions. From these classes, software objects will be created to carry out the



Unified Modeling Language For Real-Time Systems Design Page 6
Rational Software Corporation

responsibilities of the system. The following subsections describe the UML notation used
for relationships in more detail.

Associations

An association is used to represent a structural dependency between objects, generally of
different classes. For example, the line between the Controller and the Sensor in Figure 4
means that there exists some connection between objects of these classes. The textual
annotation on the line clarifies the situation. The label “gets data from” indicates that an
instance of the Controller class acquires information from possibly a number of instances
of the Sensor class. Similarly, an instance of the Controller class “sends commands to”
possibly a number of instances of the Actuator class.

To specify how many instances are to participate in an association, the UML defines
adornments for multiplicity. If you look closely at Figure 4, you will see small numbers
and/or asterisks next to the endpoints of the associations. These indicators specify the
potential numbers of objects participating in the relationship. The association between the
Controller and Sensor classes states that a given instance of the Controller class can be
linked with “zero-to-many” Sensor objects, as indicated by the 0..* symbols next to the
Sensor class. Similarly, a given instance of the Sensor class can be linked with precisely
one Controller object. Multiplicity can be indicated by either a constant (when known) or
with a ‘*’ to indicate “many.” An unadorned relationship end is assumed to be
“unspecified” in its multiplicity; no default value is assumed in the UML.

Associations are bidirectional by default. This means that an instance of one class can
navigate to instances of the other class, and vice versa. Navigability is often realized by
objects maintaining references of some kind between associated objects. When a
association is left in its bidirectional form, there will exist a circular dependency between
the corresponding objects, resulting in a peer-to-peer relationship between those objects.
As a design decision, one may “turn off navigability” in one direction of the association so
as to simplify the implementation and establish a more client-supplier relationship. In a
unidirectional association, the UML introduces an arrowhead at the supplier end of the
line segment.

Although bidirectional associations are useful for analysis modeling, they can be expensive
and unnecessarily complex to implement directly. During design, it is common to establish
a client-supplier relationship so that the client knows about the server, but not vice versa.
For example, a Sensor object might act as a server providing monitored data to a number
of clients. The Sensor has no idea which objects may ask for the information, but the client
objects know how to ask for the monitored value from the Sensor.

Aggregation

An aggregation is a special form of an association that is used to show that one kind of
object is composed, at least in part, of another. For example, a Sensor may be composed
of a number of components, including an A/D converter as is shown on Figure 4. The line



Unified Modeling Language For Real-Time Systems Design Page 7
Rational Software Corporation

between the Sensor and the A/D Converter classes has a small diamond at the Sensor end,
suggesting that instances of the A/D Converter class are “part-of” some instance of the
Sensor class. The Sensor is thus designated to be the aggregate—that is, the “Whole” in
the Whole-Part relationship.

Aggregation indicates that the lifetime of the parts are dependent on the lifetime of the
whole. This means that part-side objects cannot be created unless and until their associated
aggregate-side object is created. Similarly, part objects cannot be destroyed by any object
other than the aggregate object that created them in the first place. In the example, a
Sensor object contains an A/D Converter object, and thus controls the lifetime of its A/D
Converter. This is not true for objects emanating from a regular association relationship. A
Controller object has a lifetime independent from that of a Sensor object, and vice versa.

Aggregation can be further refined in the UML to denote how the aggregate’s
containment of its parts is implemented. The default is by reference, which means that the
Whole object maintains a pointer or a reference to its parts. The hollow diamond symbol
used earlier indicates by-reference implementation. But when aggregation is by value, the
Whole object declares an actual instance of the Part object within the body of the Whole
object itself, thus making the part object physically contained by the whole. By-value
containment is indicated by filling in the diamond symbol on the aggregate side of the
relationship (see Figure 5).

Part

By-Reference Whole

Part

By-Value Whole

Figure 5: Types of aggregation containment

By-value aggregation has the same semantics as an attribute. While the form used is
largely subjective, the aggregation form may be desired when the contained object has
complex structure itself.

Inheritance

An inheritance relationship is used when one class is to share the structure and behavior
defined by another; that is, when one class is a specialization or extension of the other.
Referring again to Figure 4, a Temperature Sensor is a more specialized type of Sensor. In
the UML, the more generalized class is called the superclass and the more specialized
class is called the subclass. A subclass inherits all the attributes and operations specified in
its superclass, as well as any relationship dependencies that the superclass might have



Unified Modeling Language For Real-Time Systems Design Page 8
Rational Software Corporation

against other classes. A subclass may then specialize the implementation of inherited
operations, or extend the superclass’ structure and behavior by adding brand new data and
operations.

Focusing just on the domain of motors, a basic Motor class might have operations,
Power( ) and Speed( ). A DC Motor will specialize the base Motor behavior by applying
voltage to control the motor speed. A Stepper Motor can specialize the behavior of a DC
Motor by adjusting the frequency of stepping. A Stepper Motor can additionally extend
the behavior of its superclass by adding a Zero( ) operation. These distinctions can be
made by creating a separate class for each particular “kind-of” motor and connecting them
with an inheritance relationship. When inheritance is used in this way, it is referred to as
specialization.

Inheritance may work in the other direction as well. Referring back to Figure 4, one might
first identify abstractions for Fan, Stepper Motor, and Heater, and then later realize that
these kinds of objects share some common attributes, operations, and relationships. In this
case, a more general class called Actuator was created so that these common features
could be maintained in one place. When inheritance is used in this way, it is referred to as
generalization.

Inheritance is probably one of the most intriguing aspects of object modeling. It provides a
means for constructing highly reusable components. But one should use inheritance very
carefully, for it is often used when aggregation or another type of relationship might be
more appropriate. As a general guideline, whenever your domain experiences suggest that
one type of object is “kind-of” like another, inheritance is probably a good candidate for
the relationship choice. But if it is more intuitive to use the expression “part-of,”
“contains,” or “has,” then aggregation is most likely the better choice. And if one object is
neither “kind-of” nor “part-of” another, then an appropriately labeled association will
often be your best choice.

Dependency

Associations and inheritance relationships generally affect the structure of objects
generated from their related classes. But sometimes a class is related to another simply
because of the services that are being used. In the UML, a dependency relationship means
that a client class depends on some service(s) of a supplier class, but does not have an
internal structural dependency against the supplier. The most common form of general
dependency is found when an operation defined in a client class takes on an argument that
is of some other class type.

Instantiates

An instantiates relationship is a special type of dependency that exists between a
parameterized class and the class that is created as a result of instantiation. Parameterized
classes are templates for regular classes because they are set up to function independently
of the type of information with which actual classes will work. Container classes are most



Unified Modeling Language For Real-Time Systems Design Page 9
Rational Software Corporation

often implemented as parameterized classes so that they can be written without regard of
the type of items that are being contained.

The UML denotes a parameterized class by having a smaller dashed box contain the name
of the formal parameter(s) to the parameterized class (see Figure 6). These formal
parameters are usually generic class or type names. The result of an instantiation
relationship is an instantiated class that is named with the parameterized class as a prefix,
followed by an angle-bracketed name that represents the actual parameter of the
instantiation (usually some other plain class name). The instantiates relationship often
provides an alternative to inheritance for constructing reusable components.

Vector

Vector<int>

Base

Vector<Sensor>

Figure 6: Example of a parameterized class and two instantiations

Use-Case Diagram

Uses cases are broad-stroke descriptions of how a system will be used. They provide a
natural high-level view of the intended functionality of the system that is understandable
by engineers and nonengineers alike. Use cases, therefore, are invaluable for talking with
customers and marketing executives who must specify the system to be implemented. An
example use case-diagram is shown in Figure 7.



Unified Modeling Language For Real-Time Systems Design Page 10
Rational Software Corporation

«actor»
Physician

ECG Machine

«actor»
Patient

«actor»
Chart

Recorder

«actor»
Remote
DisplayMonitor normal

cardiac function

Trigger on
abnormal event

Print out
ECG history

View Error Log

Service
functions

«actor»
Service Rep

Upgrade Software

Figure 7: Use case example

The large rectangle shows the boundaries of the system. The rectangles arranged around
the system are external entities that interface with the system. These external entities are
modeled as classes, but annotated with a special property called a stereotype (discussed
later) designating them as actors. An actor will generally initiate a use case but sometimes
may be the recipient of the system usage.

The ellipses inside the system rectangle indicate the use cases themselves. In Figure 7, we
see six primary types of system uses, each represented by a single use case ellipse. Some
use cases will depend on others, as denoted by the dependency relationships between use
case ellipses. For example, one use case is to print out reports containing the ECG case
history. The “Trigger on abnormal event” use case will actually use the facilities of the
print use case if it automatically prints out a chart recording during a cardiac event.

Interaction Diagrams

Class and use-case diagrams are very static in nature. That is, they are useful at capturing
the structural nature of a system design in a very generalized way. Hence, these diagrams
are not very useful for specifying real-time requirements or design constraints. Interaction
diagrams, however, do have applicability to timing and sequencing requirements. This
section will introduce interaction diagrams and will point out those features in the UML
that have particular applicability to real-time system design.



Unified Modeling Language For Real-Time Systems Design Page 11
Rational Software Corporation

Scenarios

A use case is a general pattern or strategy of system use. Consider the use case “Monitor
normal cardiac function.” This broad statement might include the physician setting up the
ECG monitor to display four waveforms in one case, or six in another. He may set a
bradycardia alarm to annunciate if the heart rate falls below 50 beats per minute in one
situation, or 40, or 34. The waveform sweep speeds may be set to 12.5, 25, or 50 mm/sec.
In one situation, the patient may not have any abnormal cardiac events; in another, he may
have tachycardia or asystole.

The point is that a use case represents many different possible threads of specific
interaction. Each specific thread through a use case is called a scenario. In other words, a
scenario is a specific instance of a use case.

An example of a scenario from the “Monitor normal cardiac function” use case would be:

• The physician powers up the ECG machine with 12 leads in place.

• The physician sets up for four waveforms at 25 mm/sec sweep speed.

• The physician sets the bradycardia alarm at 40 bpm and the tachycardia alarm at 110
bpm.

• The patient undergoes an asystole event.

• The system detects the asystole and raises the bradycardia alarm.

• The physician provides therapy to correct the problem (external to the system
boundary).

• The system detects the restarted heart rate to be 45 bpm and lowers the alarm.

A scenario is a particular path through the system functionality, but a single use case
represents many related yet distinctly different scenarios.

In system behavioral modeling, it is common to depict dozens of scenarios for each use
case. In an attempt to provide some graphical abstraction on top of all the details, the
UML provides two notations for modeling scenarios: the sequence diagram and the
collaboration diagram. Objects are shown on both types of diagrams using rectangles just
as for classes. To differentiate between objects and classes, the name in an object rectangle
is underlined. The class of the object may optionally follow the object name and a colon
(‘:’).

Sequence Diagram

Sequence diagrams use object icons with vertical dashed lines projected downward on the
diagram. The horizontal directed lines represent the messages passed between objects.
Time flows from the top of the page downward. Unless specifically annotated, only the
sequence of messages is shown, not the exact time.



Unified Modeling Language For Real-Time Systems Design Page 12
Rational Software Corporation

The above scenario may be modeled by using a sequence diagram as shown below in
Figure 8:

«actor»
Physcian

Waveform
Controller

Use 4 waveforms

Set sweep
speed(25)

Heart Rate
Parameter

Set Bradycardia Alarm(40)

Set Tachycardia Alarm(110)

«actor»
Patient

Rate=50

Rate=47

Rate=0
Asystole event

Alarm
Manager

Raise Bradycardia
Alarm

Alarm
Display

Alarm text

Physcian performs his
magic Rate=45

Lower Bradycardia
Alarm

Clear alarm

Physician sets up
for patient monitoring

Figure 8: Example of a sequence diagram

The textual annotations along the left edge of the diagram are optional and are referred to
as a script. Each statement in the script helps explain one or more messages being passed
in the diagram. A script may directly correspond to the actual scenario that is being
modeled by the sequence diagram.

For real-time designs, exact timing often must be specified. The UML allows textual
annotations to be added to sequence diagrams when timing is important. Figure 9 shows a
scenario for the real-time display of the waveforms. You can see that two different
notations are used to specify timing. The first uses short horizontal lines with a time
indication between them. The second labels the messages and specifies a timing expression
between curly braces using these message labels.



Unified Modeling Language For Real-Time Systems Design Page 13
Rational Software Corporation

«actor»
Display
Timer

Waveform 1
Parameter

«actor»
Patient

8 samples

Waveform 1
Display

Waveform
Controller

8 samples

8 samples

33 ms ± 1 ms

Stop Waveform

a

b

{b-a = 33 ms ± 1 ms}

Scale

Scale

Scale

DrawTo

DrawTo

Configure Lead
Set Lead

Set Scaling(Amplitude, time)
Set Timeout

Run( )

DrawToTimeout

Timeout

Timeout

DrawToTimeout

Timeout DrawTo

8 ms

Stop Display

Stop( ) Stop( )

Figure 9: Sequence diagram with timing marks

Collaboration Diagram

The other notation for modeling scenarios is the collaboration diagram. Figure 10 models
the same scenario as was done in Figure 8, but in this case as a collaboration diagram.
Because there is no “top” to a collaboration diagram, sequence numbers must be attached
to the messages to indicate the relative order in which the messages are sent in the
scenario. The arrows show the message direction.

You can see that sequence progression is more prominent in the sequence diagram, but
structure is more obvious in the collaboration diagram. Timing annotations can be added
to collaboration diagrams as well.



Unified Modeling Language For Real-Time Systems Design Page 14
Rational Software Corporation

«actor»
Physcian

Waveform
Controller

Heart Rate
Parameter

«actor»
Patient

Alarm 
Manager

Alarm 
Display

2. Use 4 waveforms
3. Set Sweep Speed (25)

1. Rate = 50
4. Rarte = 47
7. Rate = 0
10. Rate = 45

5. Set Bradycardia alarm (40)
6. Set Tachycardia alarm (110)

8. Raise Bradycardia Alarm
11. Lower Bradycardia Alarm

9. Alarm Text
12. Clear alarm

Figure 10: ECG scenario using collaboration diagram

Message Synchronization

Real-time systems often concern themselves with the synchronization of concurrent
processes during message passing. The UML provides icons that can be added to any
message to indicate its concurrent behavior. The symbols are taken from Booch’s earlier
work [Booch94].

Message Synchonization
Simple Call

Balking Rendezvous

Asynchronous

Timeout Rendezvous

Synchronous Rendezvous

Figure 11: Message synchronization icons



Unified Modeling Language For Real-Time Systems Design Page 15
Rational Software Corporation

These symbols can be used in conjunction with messages to indicate how the concurrent
processes are synchronized during the message transfer.

• Simple Call
Simple messages denote that the synchronization either has not yet been specified or
is a sequential message (for example, function call semantics).

• Synchronous Rendezvous
A synchronous rendezvous means that the sender will wait indefinitely for the
receiver to accept the message before continuing on with its processing.

• Timeout Rendezvous
A timeout rendezvous indicates that the sender will wait for the receiver to be ready
for the message up to some fixed period of time before aborting the message
transmission process and continuing on with its processing.

• Balking Rendezvous
A balking rendezvous means that if the receiver of the message is not immediately
ready to accept the message, the sender aborts the message and continues.

• Asynchronous
An asynchronous message means that the sender sends the message immediately and
continues on with processing without waiting for the receiver to acknowledge its
readiness for receiving the message.

State Diagram

The UML state models are based on finite state machines using an extended Harel state
chart notation. Harel state charts are more powerful than the more common Mealy-Moore
diagrams because state charts support:

• Guards on transitions

• Propagated transitions

• Actions on transitions

• Actions on state entry

• Activities occurring as long as a state is active

• Actions on state exit

• Nesting of states

• Concurrency

Figure 12 shows a simple state diagram for a system with two concurrent processes: the
power subsystem and the application subsystem. Note that these processes are
independent: the application doesn’t care if it is receiving power from the battery or from
the wall outlet. Similarly, the power subsystem is independent of what the application itself



Unified Modeling Language For Real-Time Systems Design Page 16
Rational Software Corporation

is doing. The dashed line separates the two state machines, providing a clear indication
that the states are both independent and concurrent.1

Operational

Startup

Error

Off

Battery Mains

Application Subsystem

Power Subsystem

mains on line

mains off line

Switch to On

POST Complete

Error Detected

Switch to Off

Running OK

Figure 12: Simple concurrent state machine

Within the application subsystem itself, we see several states. The Off and Error states are
clear enough, but both Startup and Operational states are nested within another state
called Running OK. What does this mean?

Startup and Operational are substates of the superstate, Running OK. When the
application subsystem is in the state of Running OK, it must also be in one of these
substates. Nesting states in this way allows states to be hierarchically decomposed,
allowing the developer to break down complex state machines into simpler structures.

One of the benefits of nesting states is that it removes duplicated transitions. Note the
Error Detected transition from the Running OK to Error state. Because Startup and
Operational are substates of Running OK, this transition applies to both substates. Flat
Mealy-Moore state models would require two transitions here, one from each of the
substates. In fact, a full Mealy-Moore model of this simple system requires a total of 22
transitions!

                                               
1 Note that this diagram shows the concurrent states from two different classes on the same diagram.
Although this is fine, and illustrates a valid point in this context, it is more common to show only the
states of a single class on one diagram. Combining the state machine on a single diagram is especially
useful when the two state machines interact nontrivially.



Unified Modeling Language For Real-Time Systems Design Page 17
Rational Software Corporation

Transitions are more elaborate in the UML than even in the Harel notation. The UML
syntax for transitions is:

event (arguments)[condition] ^target .sendEvent(arguments)/ operation (arguments)

Each of these fields is optional—even the name may be omitted when it is clear when the
transition will be taken. Let’s examine each of these fields in turn.

The event is the name of the transition. Often this is the only thing specified for the
transition. The transition name has an optional argument list to indicate when data is
present in the transition, such as an error code or a monitored value. This argument list is
enclosed within parentheses like a standard function call. A guard condition is shown in
square brackets. A guard is a condition that must be met before the transition is taken. The
sendEvent list is a comma-separated list of events, directed toward a given target object,
each with possible arguments. Such events will be propagated outside of the enclosing
object as a result of this transition. This is largely how concurrent state machines
communicate, allowing a transition in one state machine to affect other concurrent state
machines. Lastly, the operation list specifies a comma-separated list of functions (each
with possible arguments) that will be called as a result of the transition being taken.

Within states, both entry and exit actions, as well as an ongoing activity, may be specified.
An entry action is a function that is called when the state is entered (even when the
transition is self-directed). An exit action is a function that is executed when the state is
exited (even when the transition is self-directed). Activities denote processing that
continues until completion, or until interrupted by a transition (even when the transition is
self-directed). Figure 13 shows a simple timer behavioral model.

Start Cmd(count) /
Set count value,
start timer

Stop Cmd

Timeout /
raise interrupt

Idle

Counting Down

do / Flash LED
exit / Stop Timer

Tick /
Decrement value

Figure 13: Retriggerable one-shot timer



Unified Modeling Language For Real-Time Systems Design Page 18
Rational Software Corporation

Component Diagram

All of the previously discussed diagrams address elements of a system’s logical model. By
“logical,” we mean that the system is being modeled somewhat independently of exactly
how actual software components are named and organized. The purpose of a component
diagram is to model the development view of a system’s components and their
relationships.

For each logical element in the model, there generally exists a default mapping to an
implementation artifact. For example, a class from the logical model might map to two
files in a C++ implementation: a .h file for the class definition and a .cpp file for the class
member function definitions. If this default mapping was inappropriate for a certain class,
a component diagram could be used to define a more appropriate representation.

Deployment Diagram

Real-time systems are often delivered on custom platforms, and the engineer must develop
not only the software, but the hardware components as well. The hardware devices must
be bound together with the portions of software they will run. The UML provides
deployment diagrams to show the organization of the hardware and the binding of the
software to the physical devices. Deployment diagrams show various hardware devices
and their physical interfaces. The type of the hardware device is given by its stereotype
(discussed below), such as Processor, Device, Display, Memory, Disk, and so on.

Advanced UML Features

The UML provides a number of advanced notations and semantics when more complex
modeling is required. Although some of these advanced features are intended to cover the
more “corner cases” of modeling needs, others are necessary for extending the UML in a
controlled way and for supporting system modeling in-the-large. Two such advanced
features are stereotypes and packages.

Stereotypes

A stereotype is the metaclassification of an element in the UML. It identifies the type of
the element in the UML. For example, predefined UML class stereotypes include Event,
Exception, Interface, Metaclass, and Utility. Predefined task stereotypes include Process
and Thread.

The primary advantages of stereotypes are first that it is possible to refer to the type of the
element, as in “That class is an Exception class;” and second that the UML is extensible by
the user of the method through the definition additional stereotypes.

Stereotypes are indicated with a name that is enclosed by guillemots (« »), as is shown in
Figure 14:



Unified Modeling Language For Real-Time Systems Design Page 19
Rational Software Corporation

«interface»
Queue

Linked List
<Message>

Communications
Gnome

«conforms»
Client

«conforms»
Server

Message

1

n

Figure 14: Use of stereotypes in class diagram

As shown in the figure, an instantiated Linked List class provides an underlying
implementation model for managing a collection (of bus messages in this case). An
interface class Queue provides the clients with queue functionality by providing queue-like
access behavior even though the actual implementation uses a linked list. The stereotype
of the Queue class is «interface» because it provides an interface for the Linked List class.
The dependency relationship also has a stereotype called «conforms», meaning that the
relationships conform to the specified interface.

Large-Scale Logical Packaging

For large-scale development, the UML supports the concept of packages. A package is a
grouping of inherently cohesive entities. All of the classes in a model can be packaged by
area of concern, such as user interface, device I/O, and so on. The implemented code can
be packaged into subsystems that represented deployed software components. The
notation for packages is a tabbed folder. Stereotypes clarify the type of package
(«category» for the class model or «subsystem» for the code model).

Packages provide a namespace for the items it contains. This becomes important as a
system grows larger, and particularly when third-party software is being used. If a name
collision occurs between components, they can be placed into separate packages and
referenced with their fully qualified naming scheme:

packageName::componentName

Conclusion

The UML is a third-generation object-oriented modeling language that is particularly
appropriate for real-time systems. It provides support for modeling classes, objects, and
the many kinds of relationships among them, including association, aggregation,
inheritance, dependency, and instantiation. Use cases are directly supported with scenarios



Unified Modeling Language For Real-Time Systems Design Page 20
Rational Software Corporation

for detailed descriptions of required system behavior. Interaction diagrams graphically
model scenarios and can include both timing and message synchronization annotations.
Enhanced finite state machine modeling supports a number of real-time features, including
concurrency, event propagation, and nested states. The UML is itself extensible though
the definition of additional stereotypes. Real-time developers can use the UML to model
either simple or complex systems clearly and succinctly. Many CASE tool vendors have
already committed to supporting the UML, and it is likely that the UML will become the
standard notation for object-oriented systems development for the future.

Acknowledgments

The initial drafts of this paper were written by Bruce Douglass of A Priori Software. The
current release was edited by Gary Cernosek of Rational Software Corporation. Any
feedback regarding this paper may be sent to Gary Cernosek at garyc@rational.com.

References

[Booch94] Booch, G.: Object-Oriented Analysis and Design with Applications,
Benjamin/Cummings, 1994.

[OMT91] Rumbaugh, J., et al.: Object-Oriented Modeling and Design, Prentice Hall,
1991.

[OOSE92] Jacobson, I., et al.: Object-Oriented Software Engineering, Addison-
Wesley, 1992.

[UML0.8] Booch, G. and Rumbaugh, J.: “Unified Method for Object-Oriented
Development,” Documentation Set Version 0.8, October 1995.

[UML0.91] Booch, G.; Jacobson, I.; and Rumbaugh, J.: “The Unified Modeling
Language for Object-Oriented Development,” Documentation Set Version
0.91 Addendum UML Update, September 1996.


