您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
TensorFlow全新的数据读取方式:Dataset API入门教程
 
  1897  次浏览      19
 2017-11-28 
 
编辑推荐:
本文来源csdn,介绍了介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。

Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。

此前,在TensorFlow中读取数据一般有两种方法:

1.使用placeholder读内存中的数据

2.使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解TensorFlow数据读取机制)

相Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。

本文就来为大家详细地介绍一下Dataset API的使用方法(包括在非Eager模式和Eager模式下两种情况)。

Dataset API的导入

在TensorFlow 1.3中,Dataset API是放在contrib包中的:

tf.contrib.data.Dataset

而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员:

tf.data.Dataset

下面的示例代码将以TensorFlow 1.4版本为例,如果使用TensorFlow 1.3的话,需要进行简单的修改(即加上contrib)。

基本概念:Dataset与Iterator

让我们从基础的类来了解Dataset API。参考Google官方给出的Dataset API中的类图:

在初学时,我们只需要关注两个最重要的基础类:Dataset和Iterator。

Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。

先以最简单的,Dataset的每一个元素是一个数字为例:

import tensorflow as tf

import numpy as np

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

这样,我们就创建了一个dataset,这个dataset中含有5个元素,分别是1.0, 2.0, 3.0, 4.0, 5.0。

如何将这个dataset中的元素取出呢?方法是从Dataset中示例化一个Iterator,然后对Iterator进行迭代。

在非Eager模式下,读取上述dataset中元素的方法为:

iterator = dataset.make_one_shot_iterator()

one_element = iterator.get_next()

with tf.Session() as sess:

for i in range(5):

print(sess.run(one_element))

对应的输出结果应该就是从1.0到5.0。语句iterator = dataset.make_one_shot_iterator()从dataset中实例化了一个Iterator,这个Iterator是一个“one shot iterator”,即只能从头到尾读取一次。one_element = iterator.get_next()表示从iterator里取出一个元素。由于这是非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。

如果一个dataset中元素被读取完了,再尝试sess.run(one_element)的话,就会抛出tf.errors.OutOfRangeError异常,这个行为与使用队列方式读取数据的行为是一致的。在实际程序中,可以在外界捕捉这个异常以判断数据是否读取完,请参考下面的代码:

dataset = tf.data.Dataset.from_tensor_

slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

iterator = dataset.make_one_shot_iterator()

one_element = iterator.get_next()

with tf.Session() as sess:

try:

while True:

print(sess.run(one_element))

except tf.errors.OutOfRangeError:

print("end!")

在Eager模式中,创建Iterator的方式有所不同。是通过tfe.Iterator(dataset)的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run():

dataset = tf.data.Dataset.from_tensor_slices

(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

iterator = dataset.make_one_shot_iterator()

one_element = iterator.get_next()

with tf.Session() as sess:

try:

while True:

print(sess.run(one_element))

except tf.errors.OutOfRangeError:

print("end!")

从内存中创建更复杂的Dataset

之前我们用tf.data.Dataset.from_tensor_slices创建了一个最简单的Dataset:

dataset = tf.data.Dataset.from_tensor_slices

(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

其实,tf.data.Dataset.from_tensor_slices的功能不止如此,它的真正作用是切分传入Tensor的第一个维度,生成相应的dataset。

例如:

dataset = tf.data.Dataset.from_tensor_slices(np.random.

uniform(size=(5, 2)))

传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。

在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个Python中的元组,或是Python中的词典。例如,在图像识别问题中,一个元素可以是{“image”: image_tensor, “label”: label_tensor}的形式,这样处理起来更方便。

dataset = tf.data.Dataset.from_tensor_slices(

{

"a": np.array([1.0, 2.0, 3.0, 4.0, 5.0]),

"b": np.random.uniform(size=(5, 2))

}

)

这时函数会分别切分”a”中的数值以及”b”中的数值,最终dataset中的一个元素就是类似于{“a”: 1.0, “b”: [0.9, 0.1]}的形式。

利用tf.data.Dataset.from_tensor_slices创建每个元素是一个tuple的dataset也是可以的:

dataset = tf.data.Dataset.from_tensor_slices(

(np.array([1.0, 2.0, 3.0, 4.0, 5.0]), np.random.uniform(size=(5, 2)))

)

对Dataset中的元素做变换

Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。

常用的Transformation有:

1.map

2.batch

3.shuffle

4.repeat

下面就分别进行介绍。

(1)map

map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:

dataset = tf.data.Dataset.from_tensor_slices

(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
dataset = dataset.map(lambda x: x + 1) #

2.0, 3.0, 4.0, 5.0, 6.0

(2)batch

batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:

dataset = dataset.batch(32)

(3)shuffle

shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:

dataset = dataset.shuffle(buffer_size=10000)

(4)repeat

repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

dataset = dataset.repeat(5)

如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:

dataset = dataset.repeat()

读入磁盘图片与对应label

讲到这里,我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。

对应的程序为(从官方示例程序修改而来):

# 函数的功能时将filename对应的图片文件读进来,

并缩放到统一的大小
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string)
image_resized = tf.image.resize_images

(image_decoded, [28, 28])
return image_resized, label

# 图片文件的列表
filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])
# label[i]就是图片filenames[i]的label
labels = tf.constant([0, 37, ...])

# 此时dataset中的一个元素是(filename, label)
dataset = tf.data.Dataset.from_tensor_slices

((filenames, labels))

# 此时dataset中的一个元素是(image_resized, label)
dataset = dataset.map(_parse_function)

# 此时dataset中的一个元素是(image_resized_batch,

label_batch)
dataset = dataset.shuffle(buffersize=1000).batch(32)

.repeat(10)

在这个过程中,dataset经历三次转变:

1.运行dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))后,dataset的一个元素是(filename, label)。filename是图片的文件名,label是图片对应的标签。

2.之后通过map,将filename对应的图片读入,并缩放为28x28的大小。此时dataset中的一个元素是(image_resized, label)

3.最后,dataset.shuffle(buffersize=1000).batch(32).repeat(10)的功能是:在每个epoch内将图片打乱组成大小为32的batch,并重复10次。最终,dataset中的一个元素是(image_resized_batch, label_batch),image_resized_batch的形状为(32, 28, 28, 3),而label_batch的形状为(32, ),接下来我们就可以用这两个Tensor来建立模型了。

Dataset的其它创建方法

除了tf.data.Dataset.from_tensor_slices外,目前Dataset API还提供了另外三种创建Dataset的方式:

1.tf.data.TextLineDataset():这个函数的输入是一个文件的列表,输出是一个dataset。dataset中的每一个元素就对应了文件中的一行。可以使用这个函数来读入CSV文件。

2.tf.data.FixedLengthRecordDataset():这个函数的输入是一个文件的列表和一个record_bytes,之后dataset的每一个元素就是文件中固定字节数record_bytes的内容。通常用来读取以二进制形式保存的文件,如CIFAR10数据集就是这种形式。

3.tf.data.TFRecordDataset():顾名思义,这个函数是用来读TFRecord文件的,dataset中的每一个元素就是一个TFExample。

它们的详细使用方法可以参阅文档:Module: tf.data

更多类型的Iterator

在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_one_shot_iterator()来创建一个one shot iterator。除了这种one shot iterator外,还有三个更复杂的Iterator,即:

1.initializable iterator

2.reinitializable iterator

3.feedable iterator

initializable iterator必须要在使用前通过sess.run()来初始化。使用initializable iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator。一个简单的initializable iterator使用示例:

limit = tf.placeholder(dtype=tf.int32, shape=[])

dataset = tf.data.Dataset.from_tensor_slices

(tf.range(start=0, limit=limit))

iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

with tf.Session() as sess:
sess.run(iterator.initializer, feed_dict={limit: 10})
for i in range(10):
value = sess.run(next_element)
assert i == value

此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。

initializable iterator还有一个功能:读入较大的数组。

在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):

# 从硬盘中读入两个Numpy数组
with np.load("/var/data/training_data.npy")

as data:
features = data["features"]
labels = data["labels"]

features_placeholder = tf.placeholder(features.

dtype, features.shape)
labels_placeholder = tf.placeholder(labels.dtype,

labels.shape)

dataset = tf.data.Dataset.from_tensor_slices(

(features_placeholder, labels_placeholder))
iterator = dataset.make_initializable_iterator()
sess.run(iterator.initializer, feed_dict={feature

s_placeholder: features,
labels_placeholder: labels})

reinitializable iterator和feedable iterator相比initializable iterator更复杂,也更加少用,如果想要了解它们的功能,可以参阅官方介绍,这里就不再赘述了。

总结

本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。

在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。

在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

作为兼容两种模式的Dataset API,在今后应该会成为TensorFlow读取数据的主流方式。关于Dataset API的进一步介绍,可以参阅下面的资料:

1.Importing Data :官方Guide

2.Module: tf.data: API文档

3.Introduction to TensorFlow Datasets and Estimators:如何联合使用Dataset和Estimator

 

   
1897 次浏览       19
相关文章

基于图卷积网络的图深度学习
自动驾驶中的3D目标检测
工业机器人控制系统架构介绍
项目实战:如何构建知识图谱
 
相关文档

5G人工智能物联网的典型应用
深度学习在自动驾驶中的应用
图神经网络在交叉学科领域的应用研究
无人机系统原理
相关课程

人工智能、机器学习&TensorFlow
机器人软件开发技术
人工智能,机器学习和深度学习
图像处理算法方法与实践