您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
让Spark如虎添翼的Zeppelin – 基础篇
 
作者:rangerwolf 来源:51cto 发布于;2016-8-31
   次浏览      
 

简介

Spark 是一个非常好的计算平台,支持多种语言,同时基于内存的计算速度也非常快。整个开源社区也很活跃。

但是Spark在易用性上面还是有一些美中不足。 对于刚接触的人来说,上手以及环境搭建还是有一些困难。 另外,如果希望将结果绘制成图表分享给别人,还需要很长一段路程。

目前已经有一些解决方案:

【TBD】Jupyter Notebook

使用很广泛,但是看起来主要还是以前ipython-notebook的增强版。

目前笔者对其了解不多

Spark 母公司DataBricks提供的DataBricks Community Edition, 里面自带Spark集群 + Notebook。

易用性、功能性都很不错。缺点是集群架设在AWS之上,无法跟自己本地的Spark 集群连在一起

Apache Zeppelin

这是一个刚刚从Incubation转正的项目

但是已经在各大公司均有采用,比如美团、微软等等

本文主要就是介绍如何在本地搭建一个Zeppelin 使得Spark更易用,同时可以很方便的将自己的工作成功展示给客户

借用别人的一个效果图镇楼^_^

注意:

Zeppelin自带Spark实例,您无需自己构建一个Spark 集群就可以学习Zeppelin

Zeppelin 当前(2016年8月19日)最新版本0.6.1, 只兼容2.0+

1)如果您本地有Spark 集群并且版本是1.6.1 + Scala 2.10 , 请下载Zeppelin 0.6.0的版本

2)如果官网的速度比较慢,可以参考下面的方式到百度盘下载

链接: http://pan.baidu.com/s/1ctBBJo 密码: e68g

1、 下载

如果您需要的是0.6.0的版本,可以参考上面百度盘的下载链接。

如果您需要的是0.6.1+的版本,可以直接到官网下载, 里面的Mirror下载速度一般还不错

2、 安装

版本: Zeppelin 0.6.0 + 自建Spark集群(1.6.1)

感觉Zeppelin还是不太成熟,并开箱就用,还需要不少人工调整才能正常工作

1)解压之后,首先需要从模板创建一个新的zeppelin-env.sh, 并设置SPARK_HOME. 比如:

1export SPARK_HOME=/usr/lib/spark

如果是基于Hadoop 或者 Mesos 搭建的Spark 集群,还需要进行另外的设置。

2)从模板创建一个新的zeppelin-site.xml,并将之前的8080端口改到比如8089,避免与Tomcat等端口冲突

  <property> 
<name>zeppelin.server.port</name>
<value>8089</value>
<description>Server port.</description>
</property>

3)替换jackson相关类库

a)默认自带的是2.5.*, 但是实际使用的时候指定的是2.4.4

b)并且可能2.4.4 与 2.5.* 并不完全兼容。

c)因此需要使用2.4.4 替换2.5.* , 有下面3个jar需要替换:

 
jackson-annotations-2.4.4.jar 
jackson-core-2.4.4.jar
jackson-databind-2.4.4.jar

d)这真的是非常坑人的一个地方。。。

做完上诉几步之后,就可以启动啦:

启动/停止命令:

 bin/zeppelin-daemon.sh stop/start

启动之后,打开http://localhost:8089 就可以看到Zeppelin的主界面啦

3. 配置Spark解释器

Spark Interpreter的配置非常简单,可以直接参考下图的配置方式:

4. 几点使用经验

Zeppline自带比较详细的Tutorial, 各位看自带的notebook tutorial 可能效果更好。 但是我在第一次使用的时候,遇到了不少坑,在此记录下来,给大家做个参考:

(1) 任务提交之后不会自动停止

当Zeppelin 提交任务之后,可以看到Spark Master UI 上面,当前任务即使执行完成了,也不会自动退掉

这是因为,Zeppelin 默认就像人手工运行了spark-shell spark://master-ip:7077 一样, 除非手动关闭shell命令,否则会一直占用着资源

解决办法就是将spark 解释器(interpreter) 重启

手动的重启办法:

1.打开Interpreter界面,搜索到Spark部分并点击重启

2.推荐: 调用Restful API 进行重启。

a.可以通过Chrome的Network 监控看一下点击restart之后具体调用的API的情况。如下图:

b.这个ID(2BUDQXH2R)在各自的环境可能各不相同。另外这个API是PUT的方式,可以直接使用下面的python代码在UI上自动重启

 
 %python 
import requests
r = requests.put("http://IP:8089/api/interpreter/setting/restart/2BUDQXH2R")
print r.text

(2) 异常提示:Cannot call methods on a stopped SparkContext

比如我们在Spark Master UI 上面将当前job kill 之后,在Zeppelin这边重启执行任务就会遇到这个异常信息。

解决办法很简单: 重启解析器

(3) 不要主动调用 sc.stop()

这是官方明确说明的:scala 的spark-shell 自动初始化了SparkContext / SqlContext 等等

不能自己调用sc.stop() 之后重启创建一个SparkContext

可能笔者水平原因,尝试自己创建新的sc 之后,各种奇奇怪怪的问题

(4) 关于python module

Python Interpreter可以使用当前Zeppelin所在机器的python 所有的model

同时支持python 2 与 python 3

这是一个很有用的功能,比如我使用spark将数据计算完成之后,生成了一个并不太大的csv文件。这个时候完全可以使用Pandas强大的处理能力来进行二次处理,并最终使用Zeppelin的自动绘图能力生成报表

与Tableau之类的BI工具相比功能差了一些,不过各有所长。Zeppelin 对程序员来说可以算是非常方便的一个工具了。 对日常的一些简单报表的工作量大大减小了

(5) 可以设置自动运行时间

在整个Note的最上端,可以设置当前notebook 定期执行。 而且注意: 还可以设置执行完成之后自动重启interpreter 参考下图:

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]

APP推广之巧用工具进行数据分析
Hadoop Hive基础sql语法
应用多级缓存模式支撑海量读服务
HBase 超详细介绍
HBase技术详细介绍
Spark动态资源分配
更多...   

Hadoop与Spark大数据架构
Hadoop原理与高级实践
Hadoop原理、应用与优化
大数据体系框架与应用
大数据的技术与实践
Spark大数据处理技术

GE 区块链技术与实现培训
航天科工某子公司 Nodejs高级应用开发
中盛益华 卓越管理者必须具备的五项能力
某信息技术公司 Python培训
某博彩IT系统厂商 易用性测试与评估
中国邮储银行 测试成熟度模型集成(TMMI)
中物院 产品经理与产品管理
更多...