您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
Hadoop 的 Server 及其线程模型分析
 
来源:码农网 发布于:2017-8-17
   次浏览      
 

一、Listener

Listener线程,当Server处于运行状态时,其负责监听来自客户端的连接,并使用Select模式处理Accept事件。

同时,它开启了一个空闲连接(Idle Connection)处理例程,如果有过期的空闲连接,就关闭。这个例程通过一个计时器来实现。

当select操作调用时,它可能会阻塞,这给了其它线程执行的机会。当有accept事件发生,它就会被唤醒以处理全部的事件,处理事件是进行一个doAccept的调用。

doAccept:

void doAccept(SelectionKey key) throws InterruptedException, IOException, OutOfMemoryError {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel channel;
while ((channel = server.accept()) != null) {

channel.configureBlocking(false);
channel.socket().setTcpNoDelay(tcpNoDelay);
channel.socket().setKeepAlive(true);

Reader reader = getReader();
Connection c = connectionManager.register(channel);
key.attach(c); // so closeCurrentConnection can get the object
reader.addConnection(c);
}
}

由于多个连接可能同时发起申请,所以这里采用了while循环处理。

这里最关键的是设置了新建立的socket为非阻塞,这一点是基于性能的考虑,非阻塞的方式尽可能的读取socket接收缓冲区中的数据,这一点保证了将来会调用这个socket进行接收的Reader和进行发送的Responder线程不会因为发送和接收而阻塞,如果整个通讯过程都比较繁忙,那么Reader和Responder线程的就可以尽量不阻塞在I/O上,这样可以显著减少线程上下文切换的次数,提高cpu的利用率。

最后,获取了一个Reader,将此连接加入Reader的缓冲队列,同时让连接管理器监视并管理这个连接的生存期。

获取Reader的方式如下:

//最简单的负载均衡
Reader getReader() {
currentReader = (currentReader + 1) % readers.length;
return readers[currentReader];
}

二、Reader

当一个新建立的连接被加入Reader的缓冲队列pendingConnections之后,Reader也被唤醒,以处理此连接上的数据接收。

public void addConnection(Connection conn) throws InterruptedException {
pendingConnections.put(conn);
readSelector.wakeup();
}

Server中配置了多个Reader线程,显然是为了提高并发服务连接的能力。

下面是Reader的主要逻辑:

while(true) {
...
//取出一个连接,可能阻塞
Connection conn = pendingConnections.take();
//向select注册一个读事件
conn.channel.register(readSelector, SelectionKey.OP_READ, conn);
...
//进行select,可能阻塞
readSelector.select();
...
//依次读取数据
for(keys){
doRead(key);
}
...
}

当Server还在运行时,Reader线程尽可能多地处理缓冲队列中的连接,注册每一个连接的READ事件,采用select模式来获取连接上有数据接收的通知。当有数据需要接收时,它尽最大可能读取select返回的连接上的数据,以防止Listener线程因为没有运行时间而发生饥饿(starving)。

如果Listener线程饥饿,造成的结果是并发能力急剧下降,来自客户端的新连接请求超时或无法建立。

注意在从缓冲队列中获取连接时,Reader可能会发生阻塞,因为它采用了LinkedBlockingQueue类中的take方法,这个方法在队列为空时会阻塞,这样Reader线程得以阻塞,以给其它线程执行的时间。

Reader线程的唤醒时机有两个:

Listener建立了新连接,并将此连接加入1个Reader的缓冲队列;

select调用返回。

在Reader的doRead调用中,其主要调用了readAndProcess方法,此方法循环处理数据,接收数据包的头部、上下文头部和真正的数据。

这个过程中值得一提的是下面的这个channelRead方法:

private int channelRead(ReadableByteChannel channel,
ByteBuffer buffer) throws IOException {

int count = (buffer.remaining() <= NIO_BUFFER_LIMIT) ?
channel.read(buffer) : channelIO(channel, null, buffer);
if (count > 0) {
rpcMetrics.incrReceivedBytes(count);
}
return count;
}

channelRead会判断数据接收数组buffer中的剩余未读数据,如果大于一个临界值NIO_BUFFER_LIMIT,就采取分片的技巧来多次地读,以防止jdk对large buffer采取变为direct buffer的优化。

这一点,也许是考虑到direct buffer在建立时会有一些开销,同时在jdk1.6之前direct buffer不会被GC回收,因为它们分配在JVM的堆外的内存空间中。

到底这样优化的效果如何,没有测试,也就略过。也许是为了减少GC的负担。

在Reader读取到一个完整的RpcRequest包之后,会调用processOneRpc方法,此调用将进入业务逻辑环节。这个方法,会从接受到的数据包中,反序列化出RpcRequest的头部和数据,依此构造一个RpcRequest对象,设置客户端需要的跟踪信息(trace info),然后构造一个Call对象,如下图所示:

此后,在Handler处理时,就以Call为单位,这是一个包含了与连接相关信息的封装对象。

有了Call对象后,将其加入Server的callQueue队列,以供Handler处理。因为采用了put方法,所以当callQueue满时(Handler忙),Reader会发生阻塞,如下所示:

callQueue.put(call); // queue the call; maybe blocked here

三、Handler

Handler就是根据rpc请求中的方法(Call)及参数,来调用相应的业务逻辑接口来处理请求。

一个Server中有多个Handler,对应多个业务接口,本篇不讨论具体业务逻辑。

handler的逻辑基本如下(略去异常和其它次要信息):

public void run() {
SERVER.set(Server.this);
ByteArrayOutputStream buf =
new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE);
while (running) {
try {
final Call call = callQueue.take(); // pop the queue; maybe blocked here
CurCall.set(call);
try {
if (call.connection.user == null) {
value = call(call.rpcKind, call.connection.protocolName, call.rpcRequest,
call.timestamp);
} else {
value =
call.connection.user.doAs(...);
}
} catch (Throwable e) {
//略 ...
}
CurCall.set(null);
synchronized (call.connection.responseQueue) {
responder.doRespond(call);
}
}

可见,Handler从callQueue中取出一个Call,然后调用这个Server.call方法,最后调用Responder的doResponde方法将结果发送给客户端。

Server.call方法:

public Writable call(RPC.RpcKind rpcKind, String protocol,
Writable rpcRequest, long receiveTime) throws Exception {
return getRpcInvoker(rpcKind).call(this, protocol, rpcRequest,
receiveTime);
}

四、Responder

一个Server只有1个Responder线程。

此线程不断进行如下几个重要调用以和Handler协调并发送数据:

//这个wait是同步作用,具体见下面分析
waitPending();
...
//开始select,或许会阻塞
writeSelector.select(PURGE_INTERVAL);
...
//如果selectKeys有数据,就依次异步发送数据
for(selectorKeys){
doAsyncWrite(key);
}
...
//当到达丢弃时间,会从selectedKeys构造calls,并依次丢弃
for(Call call : calls) {
doPurge(call, now);
}

当Handler调用doRespond方法后,handler处理的结果被加入responseQueue的队尾,而不是立即发送回客户端:

void doRespond(Call call) throws IOException {
synchronized (call.connection.responseQueue) {
call.connection.responseQueue.addLast(call);
if (call.connection.responseQueue.size() == 1) {
//注意这里isHandler = true,表示可能会向select

注册写事件以在Responder主循环中通过select处理数据发送
processResponse(call.connection.responseQueue, true);
}
}
}

上面的synchronized 可以看出,responseQueue是争用资源,相应的:

Handler是生产者,将结果加入队列;

Responder是消费者,从队列中取出结果并发送。

processResponse将启动Responder进行发送,首先从responseQueue中以非阻塞方式取出一个call,然后以非阻塞方式尽力发送call.rpcResponse,如果发送完毕,则返回。

当还有剩余数据未发送,将call插入队列的第一个位置,由于isHandler参数,在来自Handler的调用中传入为true,所以会唤醒writeSelector,并注册一个写事件,其中incPending()方法,是为了在向selector注册写事件时,阻塞Responder线程,后面有分析。

call.connection.responseQueue.addFirst(call);

if (inHandler) {
// set the serve time when the response has to be sent later
call.timestamp = Time.now();

incPending();
try {
// Wakeup the thread blocked on select, only then can the call
// to channel.register() complete.
writeSelector.wakeup();
channel.register(writeSelector, SelectionKey.OP_WRITE, call);
} catch (ClosedChannelException e) {
//Its ok. channel might be closed else where.
done = true;
} finally {
decPending();
}
}

再回到Responder的主循环,看看如果向select注册了写事件会发生什么:

//执行这句时,如果Handler调用的responder.doResonde()

正在向select注册写事件,这里就会阻塞
//目的很显然,是为了下句的select能获取数据并立即返回,

这就减少了阻塞发生的次数
waitPending(); // If a channel is being registered, wait.

//这里用超时阻塞来select,是为了能够在没有数据发送时,

定期唤醒,以处理长期未得到处理的Call
writeSelector.select(PURGE_INTERVAL);
Iterator<SelectionKey> iter = writeSelector.selectedKeys().iterator();
while (iter.hasNext()) {
SelectionKey key = iter.next();
iter.remove();
try {
if (key.isValid() && key.isWritable()) {
//异步发送
doAsyncWrite(key);
}
} catch (IOException e) {
LOG.info(Thread.currentThread().getName() + ":

doAsyncWrite threw exception " + e);
}
}

重点内容都做了注释,不再赘述。可以看出,既考虑同步,又考虑性能,这是值得学习的地方。

五、总结

本篇着重分析了hadoop的rpc调用中server部分,可以看出,这是一个精良的设计,考虑的很细。

1.关于同步:

Listener生产,Reader消费;Reader生产,Handler消费,Handler生产,Responder消费。

所以它们之间必须同步.在具体的hadoop实现中,既有利用BlockingQueue的put&take操作实现阻塞,以达到同步目的,也对争用资源使用synchronized来实现同步。

2.关于缓冲:

其中几个缓冲队列也值得关注.Server的并发请求会特别多,而Handler在执行call进行业务逻辑时,肯定会慢下来,所以必须建立请求和处理之间的缓冲。

另外,处理和发送之间也同样会出现速率不匹配的现象,同样需要缓冲。

3.关于线程模型:

Listener单线程,Reader多线程,Handler多线程,Responder单线程,为什么会这样设计?Listener采用select模式处理accept事件,一个客户端在一段时间内一般只建立有限次的连接,而且连接的建立是比较快的,所以单线程足够应付,建立后直接丢给Reader,从而自己很从容地应付新连接。Handler多线程,业务逻辑是大头,又很大可能会牵涉I/O密集(HDFS),如果线程少,耗时过长的业务逻辑可能就会让大部分的Handler线程处于阻塞,这样轻快的业务逻辑也必须排队,可能会发生饥饿。如果Reader收集的请求队列长时间处于满的状态,整个通讯必然恶化,所以这是典型的需要降低响应时间、提升吞吐量的高并发时刻,这个时刻的上下文切换是必须的,不纠结,并发为重。Responder是单线程,显然,Responder会比较轻松,因为虽然请求很多,但经过Reader->Handler的缓冲和Handler的处理,上一批能发送完的结果已经发送了。Responder更多的是搜集并处理那些长结果,并通过高效select模式来获取结果并发送。

这里,Handler在业务逻辑调用完毕直接调用了responder.doRespond发送,是因为这是个立即返回的调用,这个调用的耗时是很少的,所以不必让Handler因为发送而阻塞,进一步充分发挥了Handler多线程的能力,减少了线程切换的机会,强调了其多线程并发的优势,同时又为responder减负,以增强Responder单线程作战的信心。

4.关于锁

对Hadoop来讲,因为同步需求,所以加锁是必不可少的。性能是需要考虑,但是从工程的角度上来看,通讯层的稳定性、代码可维护性、保持代码结构的相对简单性(其代码因历史原因已非常复杂),大部分采用了synchronized这种悲观得、重型的加锁方式,这样,可以显著减少对象之间同步的复杂性,减少错误的发生。

六、(补充)RpcServer 线程模型

NameNode启动过程:

线程模型

Listener 1个:

1.监听并接受来自客户端的连接.将新建连接放入pendingConnections.

2.清理空闲连接.

3.唤醒Reader.

Reader N个 : 从pendingConnections中获取连接,读取数据,从RpcRequest构造Call,并放入callQueue.

Handler N 个:

1.从callQueue获取客户端调用call,并执行.

2.调用Responder,将结果加入responseQueue的尾部.这里会调用一次发送.如果数据未发送完,注册WRITE事件到selector.并唤醒Responder.

Responder 1个:

1.从responseQueue中按照FIFO顺序发送数据.

2.处理selector select出的数据.

3.扫描callQueue,并丢弃过期的Call.

 

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训