您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 
 订阅
Hudi数据湖-基于Flink、Spark湖仓一体、实时入湖保姆级教学
 
作者:笑一笑
   次浏览      
 2023-5-19
 
编辑推荐:
本文主要介绍了Hudi数据湖-基于Flink、Spark湖仓一体、实时入湖相关知识。希望对你的学习有帮助。
本文来自于CSDN,由Linda编辑、推荐。

Hudi源码编译

第一步:下载Maven并安装且配置Maven镜像

第二步:下载Hudi源码包(要求对应Hadoop版本、Spark版本、Flink版本、Hive版本)

第三步:执行编译命令,完成之后运行hudi-cli脚本,如果可以运行,则说明编译成功

Hudi大数据环境准备

安装HDFS

安装Spark

安装Flink

Hudi扫盲

表数据结构

Hudi表的数据文件,分为两类,一类是.hoodie文件,一类是实际的数据文件

.hoodie文件:由于CRUD的零散性,每一次的操作都会生成一个文件,这些小文件越来越多以后,会严重影响HDFS的性能,Hudi因此设计了一套文件合并机制,.hoodie文件夹中存放了对应的文件合并操作相关的日志文件。

Hudi把随着时间流逝,对表的一系列CRUD操作叫做TimeLine,TimeLine中某一次的操作,叫做Instant。

Instant Action:记录本次操作是一次数据提交commit,还是文件合并compaction,或者是文件清理cleans

Instant Time:本次操作的时间

Instant State:操作的状态,发起requested、进行中inflight、已完成commit

数据文件:Hudi真实的数据文件使用Parquet文件格式存储,其中包含了一个metadata元数据文件和数据文件parquet列式存储。

Hudi为了实现数据的CURD,需要能够唯一标识一条记录,Hudi将把数据集中的唯一字段(record key)+数据所在分区(partitionPath)联合起来当作数据的唯一主键。

基于Spark-shell集成Hudi

目的:使用spark-shell命令行,以本地模式方式运行,模拟产生trip乘车交易数据,将其保存至Hudi表中,并且从Hudi表加载数据查询分析,其中Hudi表数据最后存储在HDFS分布式文件系统中。

启动spark-shell

以下命令需要联网,--packages会基于ivy下载相关jar包到本地,然后加载到CLASSPATH中

spark-shell \
  --packages org.apache.hudi:hudi-spark3.2-bundle_2.12:0.11.0 \
  --conf 'spark.serializer=org.apachepark.serializer.KryoSerializer' \
  --conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \
  --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

通过--jars指定本地依赖(需要把jar包放入Spark的lib目录下,或者指定jar包的全局路径

bin/spark-shell \
-- jars hudi-spark3.2-bundle_2.12-0.11.0.jar \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

导入相关依赖,构建DataGenerator模拟生成乘车数据

# 导入Spark和Hudi的相关依赖包
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._

# 定义表的名称和数据的存储路径
val tableName = "hudi_trips_cow"
val basePath = "hdfs://bigdata:8020/datas/hudi-warehouse/hudi_trips_cow"
val dataGen = new DataGenerator

# 模拟生成10条数据
val inserts = convertToStringList(dataGen.generateInserts(10))

# 将模拟数据转化为DataFrame数据集
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))

插入数据

将模拟产生的数据保存到Hudi表中,直接通过format指定数据源source,设置相关属性保存即可

df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

getQuickstartWriteConfigs:设置写入/更新数据至Hudi时,Shuffle时分区数目,可以在源码中看到

PRECOMBINE_FIELD_OPT_KEY:数据合并时,依据主键字段·

RECORDKEY_FIELD_OPT_KEY:每条记录的唯一id,支持多个字段

PARTITIONPATH_FIELD_OPT_KEY:用于存放数据的分区字段

数据保存之后,可以在HDFS上看到,路径为设置的save路径,并且可以看到,数据是以PARQUET列式方式进行存储的

查询数据

从Hudi表中读取数据,通过指定format数据源和相关参数Options即可

val tripsSnapshotDF = spark.
read.
format("hudi").
load(basePath)

# 打印获取Hudi表数据的Schema信息
tripsSnapshotDF.printSchema()

比原先保存到Hudi表中的数据多了5个字段,这些字段属于Hudi管理数据时使用的相关字段

将获取Hudi表数据注册为临时视图,采用SQL方式依据业务查询分析数据

tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")

# 查询乘车费用大于20的信息数据
spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show()

# 选取字段查询数据
spark.sql("select _hoodie_commit_time, _hoodie_record_key, _hoodie_partition_path, rider, driver, fare from hudi_trips_snapshot").show()

基于Spark-Hive集成Hudi手动创建HIVE表

环境准备

在Hive中创建表关联至Hudi表,将集成JAR包hudi-hadoop- mr - bundle-0.11.0.jar,放入HIVE的 lib目录下

创建数据库和表

连接HIVE

# 启动metastore
hive --service metastore
# 启动hiveserver2
hiveserver2
# 启动beeline
bin/beeline -u jdbc:hive2://bigdata:10000 -n root -p root

通过Spark将数据写入Hudi表之后,要想通过Hive访问到这块数据,就需要创建一个Hive外部表,因为Hudi配置了分区,所以为了能读到所有的数据,此时外部表也得分区,分区字段名可随意配置。

# 创建数据库
create database db_hudi;

# 使用数据库
use db_hudi;

# 创建hive外部表
CREATE EXTERNAL TABLE `tbl_hudi_trips`(
`begin_lat` double,
`begin_lon` double,
`driver` string,
`end_lat` double,
`end_lon` double,
`fare` double,
`partitionpath` string,
`rider` string,
`uuid` string,
`ts` bigint
)
PARTITIONED BY (country string,province string,city string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/datas/hudi-warehouse/hudi_trips_cow';

由于Hudi表属于分区表,所以Hive创建的表也是分区表,需要手动添加分区数据

# 分配分区
alter table tbl_hudi_trips add if not exists partition(`country`='americas',`province`='brazil',`city`='sao_paulo') location '/datas/hudi-warehouse/hudi_trips_cow/americas/brazil/sao_paulo';

alter table tbl_hudi_trips add if not exists partition(`country`='americas',`province`='united_states',`city`='san_francisco') location '/datas/hudi-warehouse/hudi_trips_cow/americas/united_states/san_francisco';

alter table tbl_hudi_trips add if not exists partition(`country`='asia',`province`='india',`city`='chennai') location '/datas/hudi-warehouse/hudi_trips_cow/asia/india/chennai';

# 查看分区
SHOW PARTITIONS tbl_hudi_trips;

# 查询表
select * from tbl_hudi_trips;

基于SparkSQL集成Hudi自动创建HIVE表

启动Spark-sql,给个版本启动方式根据官网说明

spark-sql \
--master local[2] \
-- jars /opt/module/spark-3.2.1-bin-hadoop3.2/jars/hudi-spark3.2-bundle_2.12-0.11.0.jar \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension' \
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog'

设置参数,Hudi的默认并发度是1500

set hoodie.upsert.shuffle.parallelism=1;
set hoodie.insert.shuffle.parallelism=1;
set hoodie.delete.shuffle.parallelism=1;

设置不同步Hudi表元数据(默认为true,会自动根据SparkSQL设置的进行分区,置为false,需要手动建立分区)

set hoodie.datasource.meta.sync.enable=false;

创建表,表的类型为COW,主键为uuid,分区字段为partitionpath,合并字段默认为ts

# 创建表时,指定location存储路径,表就是外部表
CREATE TABLE test_hudi_hive(
`begin_lat` double,
`begin_lon` double,
`driver` string,
`end_lat` double,
`end_lon` double,
`fare` double,
`partitionpath` string,
`rider` string,
`uuid` string,
`ts` bigint
) using hudi
PARTITIONED BY (partitionpath)
options (
primarykey='uuid',
type='cow'
)
location 'hdfs://bigdata:8020/datas/hudi-warehouse/hudi_spark_sql/';

# 查看创建后的表
show create table test_hudi_hive;

# 插入数据,会建立一个china分区
insert into test_hudi_hive select 0.1 as begin_lat, 0.2 as begin_lon, 'driver-1' as driver, 0.3 as end_lat, 0.4 as end_lon, 35 as fare, 'china' as partitionpath, 'rider-1' as rider, 'uuid-1' as uuid, 1654447758530 as ts;

# 插入数据,会建立一个america分区
insert into test_hudi_hive select 0.1 as begin_lat, 0.2 as begin_lon, 'driver-2' as driver, 0.3 as end_lat, 0.4 as end_lon, 35 as fare, 'america' as partitionpath, 'rider-2' as rider, 'uuid-2' as uuid, 1654447758531 as ts;

基于FlinkSQL集成Hudi

Flink集成Hudi时,需要把hudi-flink1.13-bundle_2.11 - 0.11.0.jar,放到 FLINK_HOME 的lib目录下

根据官网的说明,修改conf下的配置为文件 flink-conf . yaml。给TaskManager分配Slots>=4

配置之后启动FLINK集群 bin/start-cluster.sh,如果在后续操作中报错类似找不到hadoop的类,则需要暴露一下hadoop的环境变量

export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`

启动FLINK SQL CLI

bin/sql-client.sh --embedded

创建表table

将数据存储到Hudi表中,底层HDFS存储,表的类型为MOR

# 更方便的展示数据
set execution.result-mode=tableau;

CREATE TABLE t1(
uuid VARCHAR(20),
name VARCHAR(10),
age INT,
ts TIMESTAMP(3),
`partition` VARCHAR(20)
)
PARTITIONED BY (`partition`)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://bigdata:8020/hudi-warehouse/hudi-t1',
'write.tasks' = '1',
'compaction.tasks' = '1',
'table.type' = 'MERGE_ON_READ'
);

插入数据

INSERT INTO t1 VALUES
('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');

在Flink集群上验证任务的执行状态,和Hadoop落盘的数据,已经验证SQL查询

基于FlinkSQL-HIVE集成Hudi手动创建HIVE表

# 一定要设置checkpointing的时间,要么命令行,要么配置文件中
set execution.checkpointing.interval=3sec;

创建输出表,MERGE_ON_READ类型的会生成log文件,不会生成parquet文件。COPY ON WRITE类型的会生成parquet文件,不会生成log文件。

CREATE TABLE flink_hudi_sink (
uuid STRING PRIMARY KEY NOT ENFORCED,
name STRING,
age INT,
ts STRING,
`partition` STRING
)
PARTITIONED BY (`partition`)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://bigdata:8020/hudi-warehouse/flink_hudi_sink',
'table.type' = 'COPY_ON_WRITE',
'write.operation' = 'upsert',
'hoodie.datasource.write.recordkey.field'= 'uuid',
'write.precombine.field' = 'ts',
'write.tasks'= '1',
'compaction.tasks' = '1',
'compaction.async.enabled' = 'true',
'compaction.trigger.strategy' = 'num_commits',
'compaction.delta_commits' = '1'
);

INSERT INTO flink_hudi_sink VALUES
('id2','Stephen',33,'1970-01-01 00:00:02','par1'),
('id3','Julian',53,'1970-01-01 00:00:03','par2'),
('id4','Fabian',31,'1970-01-01 00:00:04','par2'),
('id5','Sophia',18,'1970-01-01 00:00:05','par3'),
('id6','Emma',20,'1970-01-01 00:00:06','par3'),
('id7','Bob',44,'1970-01-01 00:00:07','par4'),
('id8','Han',56,'1970-01-01 00:00:08','par4');

由于Hive的读取,需要有生成的parquet文件,因此 'table.type' = 'COPY ON WRITE'是必须的。如果看到Hadoop中生成了parquet文件说明成功,则只需要手动创建Hive外部表和指定分区关联Hudi表即可。

# 创建hive外部表
CREATE EXTERNAL TABLE `flink_hudi_sink`(
`uuid` string,
`name` string,
`age` int,
`ts` string,
`partition` string
)
PARTITIONED BY (part string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/hudi-warehouse/flink_hudi_sink';

# 分配分区
alter table tbl_hudi_trips add if not exists partition(`part`='pat1') location '/hudi-warehouse/flink_hudi_sink/par1';

基于FlinkSQL集成Hudi-自动创建Hive表

Hudi集成Flink和Hive编译依赖版本配置,查看源码包hudi-0.11.0/packa
ging / hudi-flink-bundle下的pom.xml文件,Hive2的打包和Hive3的打包不一样,根据自身的HIVE类型选择,打包命令如下,具体的版本根据官网模仿

set execution.checkpointing.interval=3sec;

set sql-client.execution.result-mode=tableau;

CREATE TABLE czs_hudi_hive (
uuid STRING PRIMARY KEY NOT ENFORCED,
name STRING,
age INT,
ts STRING,
`partition` STRING
)
PARTITIONED BY (`partition`)
WITH (
'connector'='hudi',
'path'= 'hdfs://bigdata:8020/czs_hudi_hive',
'table.type'= 'COPY_ON_WRITE',
'hoodie.datasource.write.recordkey.field'= 'uuid',
'write.precombine.field'= 'ts',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true',
'read.streaming.enabled'= 'true',
'read.streaming.check-interval'= '3',
'hive_sync.enable'= 'true',
'hive_sync.mode'= 'hms',
'hive_sync.metastore.uris'= 'thrift://bigdata:9083',
'hive_sync.jdbc_url'= 'jdbc:hive2://bigdata:10000',
'hive_sync.table'= 'czs_hive',
'hive_sync.db'= 'default',
'hive_sync.username'= 'root',
'hive_sync.password'= 'root',
'hive_sync.support_timestamp'= 'true'
);

INSERT INTO czs_hudi_hive VALUES
('id2','Stephen',33,'1970-01-01 00:00:02','par1'),
('id3','Julian',53,'1970-01-01 00:00:03','par2'),
('id4','Fabian',31,'1970-01-01 00:00:04','par2'),
('id5','Sophia',18,'1970-01-01 00:00:05','par3'),
('id6','Emma',20,'1970-01-01 00:00:06','par3'),
('id7','Bob',44,'1970-01-01 00:00:07','par4'),
('id8','Han',56,'1970-01-01 00:00:08','par4');

编译之后将hudi-flink1.13-bundle_2.11-0.11.0.jar拷贝到FLINK的lib目录下和 hudi-hadoop-
mr - bundle-0.11.0.jar拷贝到HIVE的lib目录下(具体根据版本而定)

以COPY ON WRITE方式创建表自动同步HIVE分区表

export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`

基于FlinkCDC采集MySQL写入Hudi

添加FlinkCDC依赖

添加Hadoop依赖

export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`

创建MERGE_ON_READ类型的Hudi表

set execution.checkpointing.interval=3sec;

set sql-client.execution.result-mode=tableau;

CREATE TABLE users_source_mysql (
id BIGINT PRIMARY KEY NOT ENFORCED,
name STRING,
birthday TIMESTAMP(3),
ts TIMESTAMP(3)
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'bigdata',
'port' = '3306',
'username' = 'root',
'password' = 'root',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'hudi',
'table-name' = 'tbl_users'
);

create view view_users_cdc
AS
SELECT *, DATE_FORMAT(birthday, 'yyyyMMdd') as part FROM users_source_mysql;

CREATE TABLE users_sink_hudi_hive(
id bigint ,
name string,
birthday TIMESTAMP(3),
ts TIMESTAMP(3),
part VARCHAR(20),
primary key(id) not enforced
)
PARTITIONED BY (part)
with(
'connector'='hudi',
'path'= 'hdfs://bigdata:8020/czs_hudi_hive_test',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'ts',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true',
'read.streaming.enabled'= 'true',
'read.streaming.check-interval'= '3',
'hive_sync.enable'= 'true',
'hive_sync.mode'= 'hms',
'hive_sync.metastore.uris'= 'thrift://bigdata:9083',
'hive_sync.jdbc_url'= 'jdbc:hive2://bigdata:10000',
'hive_sync.table'= 'czs_hive',
'hive_sync.db'= 'default',
'hive_sync.username'= 'root',
'hive_sync.password'= 'root',
'hive_sync.support_timestamp'= 'true'
);

INSERT INTO users_sink_hudi_hive SELECT id, name, birthday, ts, part FROM view_users_cdc ;

自动生成Hudi MOR模式的两张表

xxx _ro:ro表全称为read oprimized table对于MOR表同步的xxx_ro表,只暴露压缩后的parquet。

xxx_rt:rt表示增量视图,主要针对增量查询的rt表,

ro表只能查询parquet文件数据,rt表parquet文件数据和log文件数据都可查

基于FlinkCDC采集PostgreSQL写入Hudi

设置PG的日志级别

修改wal_level = logical,重启数据库,使配置生效

vim /var/lib/pgsql/14/data/postgresql.conf

添加FlinkCDC依赖

添加Hadoop依赖

export HADOOP_CLASSPATH=`$HADOOP_
HOME/bin/hadoop classpath`

 

创建MERGE_ON_READ类型的Hudi表

set execution.checkpointing.interval=3sec;

set sql-client.execution.result-mode=tableau;

CREATE TABLE pg_source(
id INT,
username STRING,
PRIMARY KEY (id) NOT ENFORCED
) WITH (
'connector' = 'postgres-cdc',
'hostname' = 'bigdata',
'port' = '5432',
'username' = 'postgres',
'password' = 'postgres',
'database-name' = 'mydb',
'schema-name' = 'public',
'decoding.plugin.name' = 'pgoutput',
'table-name' = 'test'
);

CREATE TABLE pg_hudi_hive(
id bigint ,
name string,
primary key(id) not enforced
)
PARTITIONED BY (name)
with(
'connector'='hudi',
'path'= 'hdfs://bigdata:8020/pg_hive_test',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'name',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true',
'read.streaming.enabled'= 'true',
'read.streaming.check-interval'= '3',
'hive_sync.enable'= 'true',
'hive_sync.mode'= 'hms',
'hive_sync.metastore.uris'= 'thrift://bigdata:9083',
'hive_sync.jdbc_url'= 'jdbc:hive2://bigdata:10000',
'hive_sync.table'= 'hudi_hive',
'hive_sync.db'= 'default',
'hive_sync.username'= 'root',
'hive_sync.password'= 'root',
'hive_sync.support_timestamp'= 'true'
);

INSERT INTO pg_hudi_hive SELECT id,username FROM pg_source ;

 

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训

最新活动计划
C++高级编程 12-25 [线上]
白盒测试技术与工具实践 12-24[线上]
LLM大模型应用与项目构建 12-26[特惠]
需求分析最佳实践与沙盘演练 1-6[线上]
SysML建模专家 1-16[北京]
UAF架构体系与实践 1-22[北京]
 
 
最新文章
大数据平台下的数据治理
如何设计实时数据平台(技术篇)
大数据资产管理总体框架概述
Kafka架构和原理
ELK多种架构及优劣
最新课程
大数据平台搭建与高性能计算
大数据平台架构与应用实战
大数据系统运维
大数据分析与管理
Python及数据分析
更多...   
成功案例
某通信设备企业 Python数据分析与挖掘
某银行 人工智能+Python+大数据
北京 Python及数据分析
神龙汽车 大数据技术平台-Hadoop
中国电信 大数据时代与现代企业的数据化运营实践
更多...