您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 
 订阅
嵌入式C高级编程之软件分层框架设计
 
 
   次浏览      
 2024-6-21
 
编辑推荐:
本文主要介绍了嵌入式C高级编程之软件分层框架设计相关知识。 希望能为大家提供一些参考或帮助。
文章来自于微信公众号ADAS与ECU之吾见,由火龙果Linda编辑推荐。

前言

为了能够使得产品得到更好的开发速度与以后更好的迭代和移植,框架分层是很有必要的。但如对于中小型项目严格遵循这些原则,势必会消耗过多精力去思考怎么设计系统,这是一个抉择的过程。

一、框架分层是什么?

在嵌入式架构中:一般分为硬件架构与软件架构。这里是嵌入式软件设计,也是大多数人接触的设计。

所谓的分层,也可以理解为模块化的设计,但是框架分层的设计一般会遵循以下几点原则

每个模块提供的接口要统一,只能增加,不能改。在设计的时候得考虑好兼容性,使用起来麻烦不麻烦等等。

同一级模块与模块之间相互独立,互不影响,不能相互调用,只能调用它下一层的接口。

不同模块构成不同的层,层与层之间不能跨级调用。

模块中又可以继续分层,可以增减分层,这个需要根据自己的项目需求来进行设置。

一般可以分为:硬件驱动层–>功能模块层–>应用接口层–>业务逻辑层–>应用层

让我们看看这个经典的图,简单了解一下框架分层。

从图中不难观察出,设计都是遵循设计的原则的,层与层之间不能相互调用。

二、框架分层的优劣势

1.优势

单一职责:每一层只负责一个职责,职责边界清晰,不会造成跨级调用,在大型项目中,每个人负责的部分不一样,加快整个项目的开发进度。

高内聚:分层是把相同的职责放在同一个层中,所有业务逻辑内聚在领域层。在测试的时候,只需要测试该领域的层即可,一般不需要考虑其他层的问题。

低耦合:依赖关系非常简单,上层只能依赖于下层,没有循环依赖。

易维护:面对变更容易修改。在平台更改后,如果只是改了驱动,其他层都不需要动,只需要把驱动层给更改,其他层的功能不需要更改。

易复用:如果功能模块变动了,只需升级相应的功能模块,其他的模块不受影响,应用层也不受影响。

如果想要更好地利用这些优势,那得严格遵循设计的原则。

2.劣势

开发成本高:因为多层分别承担各自的职责,增加功能需要在多个层增加代码,这样难免会增加开发成本。但是合理的抽象,根据自己的项目设置合理的层级是能降低开发成本的。

性能略低:业务流需要经过多层代码的处理,性能会有所消耗。

可扩展性低:因为上下层之间存在耦合度,有些功能变化可能涉及到多层的修改。

有优势也有劣势,需要根据自己的项目需要,进行部分的取舍,如果是中小型项目,可以不需要分层(如果不考虑到以后会迭代的话),或者部分分层就够了,既能利用框架分层的部分优势,也能降低开发成本。

三、一个简单的例子

由于主要讨论的是软件框架的分层设计,这里使用STM32cubemx来进行硬件的初始化,尽可能少考虑到硬件驱动的部分。

以一个智能小灯的作为例子:

功能

按键控制小灯的亮度,等级为:0,1,2,3

串口可以观察当前小灯亮度等级

OLED也可以观察当前小灯亮度等级

下面就是这个例子的一个简单的图示。

这和例子比较简单,业务逻辑层完全可以去除,直接从应用层调用功能模块层,加快开发进度。

最后附上一点点代码,就是关于LED如何进行在不同层进行封装

硬件层

首先看HAL库生成提供的代码,这个就是LED硬件层,也就是GPIO层,cubemx已经生成了,在stm32f4xx_hal_gpio.c(我用的是F4),以及有相应的GPIO的驱动了,这里不需要我们进行处理。

硬件层驱动层

看LED部分的驱动,也就是下面的这两个函数

void MX_TIM1_Init(void);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle);
12
/* TIM1 init function */
void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 168-1;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 10000;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */
  HAL_TIM_MspPostInit(&htim1);

}

void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(timHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspPostInit 0 */

  /* USER CODE END TIM1_MspPostInit 0 */

    __HAL_RCC_GPIOE_CLK_ENABLE();
    /**TIM1 GPIO Configuration
    PE11     ------> TIM1_CH2
    */

    GPIO_InitStruct.Pin = GPIO_PIN_11;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
    HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  /* USER CODE BEGIN TIM1_MspPostInit 1 */

  /* USER CODE END TIM1_MspPostInit 1 */
  }

}
1234567891011121314151617181920212223242526272829303132
3334353637383940414243444546474849505152535455565758596
06162636465666768697071727374757677787980818283848586878889909192939495969798

 

对其进行封装,就是我们想要的Led小灯的驱动了,到时候如果需要,改驱动直接改底层就行了。

void Led_init()
{
 MX_TIM1_Init();
 HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_2);//启动PWM
}
12345

 

功能模块层

根据上面的需求要求划分为四个不同等级,同时也需要对LED驱动进行进一步封装,以便满足层与层之间不能跨级调用的原则(到这里是不是发现很麻烦!小项目就不要用啦!)

//ARR计数器设置值为0~10000
#define LED_GRADE_0  0
#define LED_GRADE_1  3000
#define LED_GRADE_2  6000
#define LED_GRADE_3  10000
//设置LED亮度功能
void Led_Set_brightness(int Grade)
{
 if(Grade==LED_GRADE_0)
 {
     __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, Grade);
  HAL_TIM_PWM_Stop(&htim1,TIM_CHANNEL_2);//关闭PWM输出
 }
 else
 {
  HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2, Grade);
  __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, Grade);
 }
}

//启动LED功能
void Led_Start()
{
 Led_init();
}
12345678910111213141516171819202122232425

业务逻辑层

这里仅仅以启动层为例:

void Start_app()
{
 Led_Start();
}
1234

 

应用层

基本流程是:启动业务逻辑->读取业务逻辑->处理业务逻辑->显示业务逻辑。

四、总结

到这里,一个简单的例子也解释完毕了,通过LED这个简单的例子,已经大概了解到这个设计的复杂了,如果是大型项目,运用起来会很爽,小型的话完全没必要这样分层,太麻烦了,严重减慢开发效率,时间都用在思考如何进行分层才能符合框架分层的原则。

   
次浏览       
相关文章

深度解析:清理烂代码
如何编写出拥抱变化的代码
重构-使代码更简洁优美
团队项目开发"编码规范"系列文章
相关文档

重构-改善既有代码的设计
软件重构v2
代码整洁之道
高质量编程规范
相关课程

基于HTML5客户端、Web端的应用开发
HTML 5+CSS 开发
嵌入式C高质量编程
C++高级编程

最新活动计划
数据建模方法与工具 12-3[北京]
基于模型系统仿真与验证 12-14 [讲座]
白盒测试技术与工具实践 12-24[线上]
LLM大模型应用与项目构建 12-26[特惠]
UML和EA进行系统分析设计 12-20[线上]
SysML建模专家 1-16[北京]
 
 
最新文章
.NET Core 3.0 正式公布:新特性详细解读
.NET Core部署中你不了解的框架依赖与独立部署
C# event线程安全
简析 .NET Core 构成体系
C#技术漫谈之垃圾回收机制(GC)
最新课程
.Net应用开发
C#高级开发技术
.NET 架构设计与调试优化
ASP.NET Core Web 开发
ASP.Net MVC框架原理与应用开发
成功案例
航天科工集团子公司 DotNet企业级应用设计与开发
日照港集 .NET Framewor
神华信 .NET单元测试
台达电子 .NET程序设计与开发
神华信息 .NET单元测试