编辑推荐: |
本文主要介绍了底盘域控之制动功能相关内容。希望对你的学习有帮助。
本文来自于微信公众号谦益行,由火龙果软件Linda编辑,推荐。 |
|
1 底盘域控基础
1.1 底盘域控的概念
随着汽车行业的快速发展,最初用于发动机控制的ECU逐渐扩展到车身,底盘,智能座舱和智能驾驶。这样使得整车电子电器架构变得越来越复杂,也越来越难以维护和升级。
Source: EEA_BBMInnoChinese20160929.pptx
因此,在这样的需求背景下,传统的分布式架构朝着域集中式架构快速发展,新一代架构采用了适当的集成化,平台的可扩展性变得更好。考虑到车身与底盘等部分的少数ECU对安全性和可靠性要求较高,全部集成的难度较高,因此目前各OEM家会根据自身的设计理念差异而划分成几个不同的域,通常划分为5个域:动力域、底盘域、车身域、座舱域和ADAS域,如下所示:
Source: Microsoft PowerPoint - EEA_BBMInnoChinese20160929.pptx
以底盘域为例,一方面,底盘域控制器具备网关的协议转换功能,通常利用CAN网络接收驾驶员的操纵指令或智能驾驶指令,以及同汽车动态特征有关的所有传感器的信息;另一方面,底盘域控制器同本域内所有的执行ECU通过CAN网络连接起来,底盘域控制器运行底盘最高层的控制策略和控制逻辑,包括驾驶员意图识别,XYZ控制,故障诊断与降级处理等。总之,底盘域控制器会进行综合平衡和全面协调,会对汽车底盘各子执行控制系统进行合理分工,会用最佳的方法来完成汽车的动态控制和稳定。底盘域控的另一趋势是正在向线控底盘发展。
1.2 线控底盘技术
线控底盘技术是指利用传感器感知驾驶员驾驶意图(方向,油门和制动),并将其通过硬线输送给底盘域控制器,然后底盘域控制器计算或决策出线控驱动、线控转向、线控制动和线控悬挂的控制指令,然后响应的执行控制器根据控制指令来实现汽车的转向、制动、驱动等功能,从而取代传统汽车靠机械或液压来传递操纵信号的控制方式。线控底盘最核心的是线控制动和线控转向系统。
1)线控制动系统
线控制动系统,即Brake-By-Wire,是线控底盘技术中是难度最高的,但也是最关键的技术。线控制动系统掌控着自动驾驶的底盘安全性和稳定控制,只有拥有足够好的制动性能(包括响应速度快、平顺性好等),才能为我们的安全提供良好保障。
线控制动系统根据车轮制动压力系统的不同可分为电控液压制动系统EHB和电控机械制动系统EMB两大类。
EHB由电子制动踏板模块、电控单元 (ECU)、液控单元(HCU)、传感器和CAN网络等部分组成。各车轮的制动力矩仍然靠轮缸里的液压产生,轮缸与EHB的HCU相连通,HCU的能量来源不再是驾驶员,而是由电动液压泵所产生的高压油。当驾驶员踩制动踏板时,制动踏板力和行程由传感元件所测量,将其结果传递给ECU,然后ECU对HCU
中不同的电磁阀门进行相应的控制来调节各轮缸的压力。
source: What is electro-hydraulic braking? PH Explains
同EHB系统相比, EMB的执行机构也发生了质的变化。它的车轮制动压力不再由液压产生,而是来源机电一体式制动器,4个独立的高性能机电一体式制动器在每个车轮上产生制动力。EMB系统由电子制动踏板模块、主电子控制单元(ECU)、4个包含电控模块(WCU)的机电一体式制动器、多种传感器和CAN网络等部分组成。刹车时,电子制动踏板模块感知驾驶员的指令,通过CAN同时向主ECU发出信号,主ECU计算出各个车轮期望制动力,并将执行指令传递给4个WCU。WCU对控制机电一体式制动器作相应的控制和调节,来完成必要的制动力矩响应。
source: Brembo details its Brake-by-Wire system -
Professional Motor Mechanic
2)线控转向系统
线控转向系统,即Steer-By-Wire,能够无束缚地得到无人驾驶进行转弯的指令目标输入和汽车转向轮的变化之间的关系,可以控制转向机构和行驶需要之间的关系,这样就能够对车辆进行调节。线控转向系统直接关系到自动驾驶路径与方向的精确控制。
source: Steer by wire toyota (automotorpad.com)
线控转向系统一般由转向盘和转向盘力矩模拟电机、转向盘转角传感器、控制器单元(ECU)以及车轮转向执行机构等部分组成。当驾驶员操纵转向盘转向时,一方面执行电机要根据驾驶员的意向对前轮的转角进行相应的调节和控制;另一方面转向盘力矩模拟电机要根据汽车的运动状况计算出转向盘的回正力矩,为驾驶员模拟相应的路感。
除此之外,线控底盘技术还包括线控驱动和线控悬架,总的来说线控底盘技术是一个很宏大的话题,本文接下来将只对线控制动技术进行介绍。
2 制动系统功能
线控制动是底盘域控的重要内容,其功能主要包括行车制动和驻车制动。为了深入了解线控制动,本文先从行车制动系统为切入点,梳理该制动系统的基础内容,包括基本概念,发展过程,组成与工作原理等内容,再对驻车制动系统进行介绍。
为了建立对制动系统的最初步认识,先了解制动系统原理以及制动系统的发展历史。
2.1 制动系统原理
关于制动系统原理,本质上各种类型制动系统都一样,这里以典型的真空助力制动系统为例子来说明。如下图所示,真空助力制动系统组成包括制动踏板,真空助力器,制动液,制动油管,制动主缸,制动轮缸和车轮制动器(盘式/鼓式制动器)等。
source: What You Need to Know About Brakes - R&L
Automotive
其具体工作原理是:
首先,驾驶员踩制动踏板,施加到踏板的力经过杠杆机构第一级放大传递到真空助力器;
然后,真空助力器经过第二级放大将制动力传递到制动主缸,同时在蓄能器作用下进一步加压,将制动主缸的制动液推入到制动轮缸;
最后,制动轮缸的制动液推动轮端制动器加紧刹车盘,阻碍刹车盘转动,以此实现制动。
source:vehicle brake system
2.2 制动系统的发展历史
制动系统的发展过程大致分为5个阶段,即:
1)人力机械式到真空助力液压式
最初的汽车制动系统是人力机械式,即驾驶员操纵一组简单的机械装置向制动器直接施加作用力。那时汽车小,重量轻,速度低,人力机械制动能够满足汽车制动的要求。随着汽车的不断发展,汽车变得越来越大,也越来越重,人力机械制动系统不再好使了,同时伴随着科技的不断进步,一些新技术被引入到汽车制动系统,真空助力液压制动系统被设计出来。
source:148-001-Brakes101-BrakeDiagram.jpg
2)ABS+TCS+VDC-->ESP
随着汽车的速度越来越快,对汽车的操作稳定性能要求也越来越高。因此,最先是应用ABS功能来解决车轮抱死问题,然后是应用TCS功能来解决牵引力驱动问题,再是应用VDC功能来解决车辆动态控制问题。这三个功能集成在一个控制器,也就是前面所提到的ESP,这样,汽车制动系统进化成真空助力液压制动+ESP组合形式。
source: 汽车线控制动系统ibooster详解_ibooster工作原理
3)电动助力代替真空助力
面对日益紧张的能源问题,对于汽车,一方面,需要发动机的燃烧效率不断提升,这时需要采取将更多的空气通入气缸的方法来提升燃烧效率,而这种方法会导致真空度降低,对制动助力产生不利影响。另一方面,发展新能源汽车,用电机代替发动机,而发动机产生真空源,没了发动机,真空助力器就使用受限。另外,新能源汽车为了更加节能,有再生制动和能量回收的需求。为了解决这些问题,电动助力就被推出,比如博世最先推出了iBooster:
source: 博世Bosch iBooster工作原理,ESP HEV Tesla model3
采用电动助力后,制动系统不需要真空源,取代了传统的真空泵和真空软管,使得整个系统体积更小,重量也更轻;又可以再生制动和能量回收,整体系统更加节能;另外相较于真空助力,电动助力响应速度更快,控制压力也更精准。
4)线控制动系统
最近几年,随着智能驾驶的更高智能化需求,也考虑到未来自动驾驶的发展,对线控制动系统的需求也越来越强烈。各大供应商积极响应市场需求,陆续量产了相应的产品。
source: 线控制动之BOX之争_搜狐汽车
比如博世的IPB(Integrated Power Brake),本质上是将iBooster和ESP合二为一。但IPB缩小了制动系统的体积,减轻了重量,降低了成本;同时,IPB解耦了踏板系统,更能满足智能驾驶的制动需求。
source: 博世Bosch 智能制动系统 IPB
5)线控制动系统: EHB & EMB
上面的iBooster+ESP和IPB都被划分为线控制动系统的一种-电子液压制动系统即EHB(Electro-hydraulic
brake system),而EMB(Electro-mechanical brake system)属于另一种-电控机械制动系统。EMB是一种电控纯机械制动,采用电子机械系统取代了传统制动系统中的液压系统,四轮的制动执行机构分别由独立的电机来驱动,如下简图:
source: FlexRay_E: Brake-by-wire
可以说,EMB 是真正意义上的线控制动系统,但一些EMB的核心技术问题仍未解决,所以目前的EMB方案都没有量产。现在市场主流的线控制动系统都是EHB。
source: Bosch video & Braking 101: The System,
Physics and Science of the Motion Management
以上就简单介绍了制动系统发展的过程与趋势,接下来继续介绍主流的线控制动系统--EHB,不过先得从ESP说起。
2.3 电子稳定系统ESP
在了解了制动系统的原理及其发展历史后,接下来我们来了解行车制动的主要功能,这个得从电子稳定系统ESP开始。汽车虽然具备基本的制动系统,但随着汽车速度越来越快,并不能完全保证行驶的安全稳定。比如紧急刹车,踏板踩到底,这时车辆可能会出现转向困难或侧滑;或在光滑路面有时会出现驱动轮打滑而失控,或者有时出现转向不足或过度而失控等问题。
为了解决这些问题,一代代工程师不断努力,迭代出了基于制动系统的电子控制系统(ESP, Electronic
Stability Program)。ESP的核心功能主要包含3块:ABS(Anti-lock Brake
System,防抱死系统)、TCS(Traction Control System,牵引力控制系统)、VDC(Vehicle
Dynamics Controller,车辆动态控制器)。
source:Login Page
1)ABS
紧急刹车会使轮胎抱死(车轮不能转动),前轮抱死会失去转向能力,后轮抱死易侧滑。这时有了ABS功能,就会采用类似于点刹的操作,让车轮处于“边滚边滑”的状态,使得车轮不抱死,车辆就不会失控,从而避免撞上障碍物。
source:Is it Possible to Upgrade a Car's Braking System
into ABS?
2)TCS
车辆起步时驱动轮打滑,无法起步,同时可能会方向失控。这时启用TCS,比如车辆在冰面起步,通过TCS调节驱动力,使得车辆正常起步;或车辆在分离路面(一侧高附,另一侧低附),通过TCS调节驱动力的同时,对低附侧车轮施加制动力,使得车辆正常起步。
source: Fahami fungsi butang Traction Control System(TCS)
3)VDC
ABS/TCS解决了车辆纵向方向的控制问题,比如制动和起步,但是车辆横向方向的控制问题,比如转向不足或转向过度。这时需要使用VDC来解决,针对车辆出现转向不足时,VDC将对车辆内侧后轮进行额外的制动,以增加车辆横摆,让车头向弯内方向摆动;针对车辆出现转向过度时,VDC将对车辆外侧前轮进行额外的制动,以减少车辆横摆,让车头向弯外方向摆动。
source: Subaru Canada
随着技术的不断优化与迭代,除了上述三大功能,ESP还增加了更多的功能,比如电子制动力分配功能(EBD),其取代了通过机械部件分配前后轴的制动力。EBD不仅降低了成本,而且使制动力的分配极其灵活。另外,ESP系统也逐渐在集成其他附加功能,包括
液压制动辅助功能(Hydraulic Brake Assist, HBA): HBA检测紧急制动情况,通过将制动压力提高到车轮抱死的极限值来缩短制动距离。
驻车制动的减速控制功能(Controlled Deceleration for Parking Brake,
CDP): 当驾驶员请求时,CDP制动车辆直至静止。
坡道辅助控制功能(Hill Hold Control, HHC): 当车辆驶离坡道时,HHC干预制动系统,防止溜坡。
陡坡缓降控制功能(Hill Descent Control, HDC): HDC通过自动刹车帮助驾驶员下陡坡。
液压衰退补偿功能(Hydraulic Fading Compensation, HFC): 如果即使驾驶员用力踩下制动踏板,也无法达到最大可能的车辆减速,HFC会进行干预。
液压后轮增压功能(Hydraulic Rear Wheel Boost, HRB): 在ABS制动应用期间,HRB还能增加后轮的制动压力达到车轮抱死的极限值。
制动盘擦拭功能(Brake Disk Wiping, BDW): BDW通过短暂的制动去除制动盘上的飞溅水,这个制动不会被驾驶员感知到。
以上仅仅列举几种典型的附加功能,其实还有更多的附加功能,这里就不再列举。
2.4 线控制动系统--EHB
聊起线控制动系统,就常听到two box和one box,它们是什么?
这两词其实指从集成度角度划分的两种EHB技术方案。two box是指制动系统主体包括电子助力器和电子稳定控制模块,比如博世的iBooster+ESP。而one
box是指将制动系统将电子助力器和ESP模块集成为一体,比如博世的IPB。
下面借助博世这两个产品,说明它们的组成和基本工作原理,以此来加深two box 和 one box的概念。
1)Two box - iBooster+ESP
source: 博世Bosch iBooster工作原理,ESP HEV Tesla model3
先了解iBooster。iBooster这项制动技术是博世2013推出,目前博世 iBooster
已经更新到第二代产品。iBooster的组成如下图所示:
source: 博世IBooster系统解析
iBooster的工作原理是:驾驶员踩下制动踏板,踏板移动输入推杆;踏板行程差传感器检测到输入推杆的位移,提供位移信号给电控单元;电控单元计算并控制电机产生的目标助力扭矩;传动装置将该扭矩转化为相应的制动力,与踏板的输入产生的输入推杆力一起作用在制动主缸,共同转化为制动器轮缸液压力,以此来实现制动。
source: 博世iBooster系统解析
另外,iBooster的电机助力特性可充分考虑驾驶员的驾驶喜好和风格,可提供不同类型的踏板感,可以偏舒适类型,也可以偏运动类型。
再了解ESP。ESP是以车轮滑动调节系统为基础,它不仅集成了ABS,TCS和VDC三大核心功能,还包括EBD(电子制动力分配系统),HDC(陡坡缓降控制),HAS(坡道起步辅助),DTV(动态扭矩哦控制)等多项功能。
source: 博世Bosch iBooster工作原理,ESP HEV Tesla model3
ESP的组成包括传感器(信号输入装置)、电子控制单元,制动液压系统和执行器等部件,如下所示:
source:图解汽车ESP电子稳定系统结构与功能_搜狐汽车
ESP的工作原理是:轮速传感器、加速度传感器 制动压力传感器、转向传感器等检测相应的信号,提供给控制器;控制器根据这些信号和其他控制器提供的信息对车辆状态进行判断和计算,决策如何去控制相应的执行器;执行器接收到实际的激励而动作,以此实现ESP里相应的功能,确保车辆的操作稳定性能。
通过上述对iBooster与ESP的基本说明,不难理解,使用两者构成two box的方案,一方面既可实现制动功能又可确保操作稳定性能;另一方面两者可互为冗余,一旦
iBooster 失效,ESP 系统将接管并提供制动助力,即使两者都失效,仍然可依靠纯液压制动系统制动,这样双冗余备份方法将对智能驾驶功能的实现极具价值。
source:【杂谈】——博世iBooster探秘
2)One box -IPB
IPB是博世着手针对未来更高智能化需求的L3和L4而推出,IPB可理解是将电子助力器和ESP集成为一体,
它具有最高的动力性能,有助于提高混合动力车和电动车的效率,由于采用了一体化设计,重量和复杂性都降到了最低。
source: 博世Bosch 智能制动系统 IPB
对于IPB工作原理,与iBooster+EPS方案一样,也就是:当驾驶员踩下制动踏板时,控制单元通过集成传感器计算驾驶员的制动要求;IPB使两个制动回路与制动踏板解耦,并与踏板感模拟器建立连接。与此同时,控制单元会计算电机的驱动信号,电机通过一个齿轮装置产生液压活塞移动,由此产生的液压力通过制动液传递到车轮制动器,以此实现制动。
source: Integrated Power Brake – modular set extension
for highly automated driving
关于失效处理,IPB会比较复杂,不同的失效类型会对应不同的降级模式。比如因断电造成助力失效时,IPB会进入机械备份模式,通往踏板感模拟器的电磁阀关闭,电机通往轮端的电磁阀也关闭,主缸主、副腔通往轮端的电磁阀打开,驾驶员踩踏板建立的压力直接传递到制动轮缸,以此实现车辆制动。
而对于更高级别自动驾驶制动系统,在任何情况下,制动都由制动系统自动完成,不在由驾驶员操作,因此失效处理就更为棘手。博世提出了一个冗余制动单元(RBU,Redundant
Brake Unit)作为IPB的补充,具体可参考:Integrated Power Brake –
modular set extension for highly automated driving。
source: Integrated Power Brake – modular set extension
for highly automated driving
这样,IPB作为主要的制动系统来执行绝大多数情况下的制动请求,RBU作为IPB失效情况下的冗余制动,代替驾驶员操作,以此进一步提高系统的可靠性。
以上就是基于博世的两款产品对EHB的two box和 one box介绍。
3 驻车制动系统
上面介绍完了行车制动系统内容,接下来将介绍驻车制动系统内容。
3.1 驻车制动系统基础
驻车制动系统是指通过锁住传动轴或者后轮来达到控制停车制动的系统,主要包括机械手刹和电子手刹。
Source:你能hold住吗?详解四大驻车制动装置
关于机械手刹,即传统的手刹或脚刹,由制动杆、拉线、制动机构以及回位弹簧组成。制动杆通过杠杆原理,使得驾驶员用很小的拉力就能将其拉到固定位置,然后通过锁止牙锁止驻车。
Source: What Is Electric Parking Brake (EPB)? How
Does It Work?
关于电子手刹,分为拉索式与卡钳式两种。拉索式电子手刹与传统手刹差别不大,同为制动蹄式,只是把手动的拉索改为电动形式。对于线控制动,关注的是卡钳式电子手刹,即电子驻车系统,即EPB(Electrical
Park Brake)。
Source: What Is Electric Parking Brake (EPB)? How
Does It Work?
EPB主要由EPB开关,电控单元ECU,卡钳和卡钳电机组成,其工作原理是驾驶员按下EPB开关,电控单元ECU检测到驻车功能激活,就会计算和发出控制指令来驱动执行电机,进而执行电机会使卡钳卡紧刹车片,从而控制停车制动。
3.2 EPB的功能
EPB的功能要求包括下面3个方面:
产生稳定的驻车制动力;
可以根据检测到的车况自动调节车辆的制动力;
将车辆驻车制动状态显示给驾驶员。
Source: Teemo天尚元 EPB电子驻车系统 刹车冗余 防溜坡功能
下面列举了几项EPB的具体功能:
静态控制:在汽车处于静止状态下,驾驶员能够经由EPB开关实现提供或者释放驻车制动力,便于汽车的驻车和被驱动。
溜车预防:通过对驻车制动力的获取和识别,实现在制动器处在非正常状态下的安全顺利实施驻车制动,如制动系统在长时间实施制动后制动器过热或者由于制动器使用脚久而导致的制动器摩擦力的产生不足,因而保证了车辆不发生溜车现象。
坡道驶离辅助:驾驶员需要从坡道上起步时,EPB需要根据传统驻车制动系统的专家经验,结合驾驶员踩下离合器和加速踏板的实际情况逐步的释放驻车制动力,直至最后得以实现车辆平稳起步。
自动斜坡辅助驻车:驾驶员需要将车辆停在坡道上时,驾驶员通过踩下制动踏板,使车辆停止下来,而此时,只要驾驶员释放制动踏板,EPB系统则自行启动驻车制动。
动态控制:车辆行驶时,EPB系统参与紧急制动,结合ESP系统,实现车辆的稳定控制。
紧急制动:车辆行驶的过程中,EPB系统通过监测轮速来判别车辆全4轮是否处于锁死状态,此时,EPB系统可以和ABS
系统联合作用,实现汽车制动的最优控制,保障汽车行驶安全。
当然这些功能的实现需要EPB与其他ECU进行信息交互,也要充分考虑车辆的状态等信息,其控制逻辑比较复杂,如下示意其系统原理图:
Source: 电子驻车制动系统(EPB)的组成和工作原理
3.3 EPB的实现方案
随着汽车的电动化和智能化的快速发展,EPB的实现方案也在不断更新。
出于安全冗余等方面的考虑,正呈现出行车制动和驻车制动“合二为一”的趋势。比如one box+EPB方案,即one
box和EPB分别控制一个后轮端驻车执行机构;或比如one box+底盘域控制器(CDC)方案,这时直接取消了EPB,即one
box和CDC分别控制一个后轮端驻车执行机构。
当然,如果电控机械制动系统EMB方案(即四个液压轮缸被四个电机和卡钳取代,制动指令传输到轮端电机,电机控制卡钳直接在轮端作用制动力)最终能成熟落地,那么将实现完全线控,这时就能正真将行车制动和驻车制动合二为一。
4 小结
到此本文就介绍了底盘域控的制动功能,即行车制动系统和驻车制动系统。
|