一:前言
Tty这个名称源于电传打字节的简称。在linux表示各种终端。终端通常都跟硬件相对应。比如对应于输入设备键盘鼠标。输出设备显示器的控制
终端和串口终端.也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,linux是怎么将它们统一建模的呢?这就是我们今天要讨论的问题
二:tty驱动概貌
Tty架构如下所示:
如上图所示,用户空间主要是通过设备文件同tty_core交互.tty_core根据用空间操作的类型再选择跟line
discipline和tty_driver交互.例如设置硬件的ioctl指令就直接交给tty_driver处理。Read和write操作就会交给
line discipline处理.
Line discipline是线路规程的意思。正如它的名字一样,它表示的是这条终端”线程”的输入与输出规范设置.主要用来进行输入/输出数据的预处理。处理之后。就会将数据交给tty_driver
Tty_driver就是终端对应的驱动了。它将字符转换成终端可以理解的字串.将其传给终端设备。
值得注意的是,这个架构没有为tty_drivero提供read操作。也就是说tty_core
和line discipline都没有办法从tty_driver里直接读终端信息。这是因为tty_driver对就的hardware并不一定是输入数据和输出
数据的共同负载者。例如控制终端,输出设备是显示器。输入设备是键盘。基于这样的原理。在line discipline中有一个输入缓存区。并提供了一个名叫receive_buf()的接口函数。对应的终端设备只要调用line
discipine的receiver_buf函数,将数据写入到输入缓存区就可以了。
如果一个设备同时是输入设备又是输出设备。那在设备的中断处理中调用receive_buf()将数据写入即可.
三:tty驱动接口分析
具体的tty驱动设计可以参考LDD3。这里只对它的接口实现做一个分析.tty
driver的所有操作都包含在tty_driver中。内核即供了一个名叫alloc_tty_driver()来分配这个tty_driver。当然
我们也可以在自己的驱动中将它定义成一个静态的结构。对tty_driver进行一些必要的初始化之后,调用tty_register_driver()
将其注册.
alloc_tty_driver()接口代码如下所示:
01.struct tty_driver *alloc_tty_driver(int lines)
02.{
03. struct tty_driver *driver;
04. driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
05. if (driver) {
06. driver->magic = TTY_DRIVER_MAGIC;
07. driver->num = lines;
08. /* later we'll move allocation of tables here */
09. }
10. return driver;
11.} |
这个函数只有一个参数。这个参数的含义为line的个数。也即次设备号的个数。注意每个设备文件都会对应一个line.
在这个接口里为tty_driver分配内存,然后将driver->mage.driver->num初始化之后就返回了.
tty_register_driver()用来注册一个tty_driver。代码如下:
01.int tty_register_driver(struct tty_driver *driver)
02.{
03. int error;
04. int i;
05. dev_t dev;
06. void **p = NULL;
07. //TTY_DRIVER_INSTALLED:已安装的
08. if (driver->flags & TTY_DRIVER_INSTALLED)
09. return 0;
10. //TTY_DRIVER_DEVPTS_MEM:使用devpts进行动态内存映射
11. if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
12. p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
13. if (!p)
14. return -ENOMEM;
15. }
16. //注册字符设备号
17. //如果没有指定driver->major
18. if (!driver->major) {
19. error = alloc_chrdev_region(&dev, driver->minor_start,
20. driver->num, driver->name);
21. if (!error) {
22. driver->major = MAJOR(dev);
23. driver->minor_start = MINOR(dev);
24. }
25. } else {
26. dev = MKDEV(driver->major, driver->minor_start);
27. error = register_chrdev_region(dev, driver->num, driver->name);
28. }
29. if (error
30. kfree(p);
31. return error;
32. }
33. if (p) {
34. driver->ttys = (struct tty_struct **)p;
35. driver->termios = (struct ktermios **)(p + driver->num);
36. driver->termios_locked = (struct ktermios **)
37. (p + driver->num * 2);
38. } else {
39. driver->ttys = NULL;
40. driver->termios = NULL;
41. driver->termios_locked = NULL;
42. }
43. //注册字符设备
44. cdev_init(&driver->cdev, &tty_fops);
45. driver->cdev.owner = driver->owner;
46. error = cdev_add(&driver->cdev, dev, driver->num);
47. if (error) {
48. unregister_chrdev_region(dev, driver->num);
49. driver->ttys = NULL;
50. driver->termios = driver->termios_locked = NULL;
51. kfree(p);
52. return error;
53. }
54. //指定默认的put_char
55. if (!driver->put_char)
56. driver->put_char = tty_default_put_char;
57. mutex_lock(&tty_mutex);
58. list_add(&driver->tty_drivers, &tty_drivers);
59. mutex_unlock(&tty_mutex);
60. //如果没有指定TTY_DRIVER_DYNAMIC_DEV.即动态设备管理
61. if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
62. for (i = 0; i num; i++)
63. tty_register_device(driver, i, NULL);
64. }
65. proc_tty_register_driver(driver);
66. return 0;
67.} |
这个函数操作比较简单。就是为tty_driver创建字符设备。然后将字符设备的操作集指定为tty_fops.并且将tty_driver
挂载到tty_drivers链表中.其实这个链表的作用跟我们之前分析的input子系统中的input_dev[
]数组类似。都是以设备号为关键字找到对应的driver.
特别的。如果没有定义TTY_DRIVER_DYNAMIC_DEV.还会在sysfs中创建一个类设备.这样主要是为了udev管理设备.
以流程图的方式将上述操作表示如下:
四:设备文件的操作
设备文件的操作是本节分析的重点。它的主要操作是将各项操作对应到ldsic或者是tty_driver.
4.1:打开tty设备的操作
从注册的过程可以看到,所有的操作都会对应到tty_fops中。Open操作对应的操作接口是tty_open()。代码如下:
01.static int tty_open(struct inode *inode, struct file *filp)
02.{
03. struct tty_struct *tty;
04. int noctty, retval;
05. struct tty_driver *driver;
06. int index;
07. dev_t device = inode->i_rdev;
08. unsigned short saved_flags = filp->f_flags;
09. nonseekable_open(inode, filp);
10.retry_open:
11. //O_NOCTTY 如果路径名指向终端设备,不要把这个设备用作控制终端
12. //noctty:需不需要更改当前进程的控制终端
13. noctty = filp->f_flags & O_NOCTTY;
14. index = -1;
15. retval = 0;
16. mutex_lock(&tty_mutex);
17. //设备号(5,0) 即/dev/tty.表示当前进程的控制终端
18. if (device == MKDEV(TTYAUX_MAJOR, 0)) {
19. tty = get_current_tty();
20. //如果当前进程的控制终端不存在,退出
21. if (!tty) {
22. mutex_unlock(&tty_mutex);
23. return -ENXIO;
24. }
25. //取得当前进程的tty_driver
26. driver = tty->driver;
27. index = tty->index;
28. filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
29. /* noctty = 1; */
30. goto got_driver;
31. }
32.#ifdef CONFIG_VT
33. //设备号(4,0).即/dev/tty0:表示当前的控制台
34. if (device == MKDEV(TTY_MAJOR, 0)) {
35. extern struct tty_driver *console_driver;
36. driver = console_driver;
37. //fg_console: 表示当前的控制台
38. index = fg_console;
39. noctty = 1;
40. goto got_driver;
41. }
42.#endif
43. //设备号(5,1).即/dev/console.表示外接的控制台. 通过regesit_console()
44. if (device == MKDEV(TTYAUX_MAJOR, 1)) {
45. driver = console_device(&index);
46. if (driver) {
47. /* Don't let /dev/console block */
48. filp->f_flags |= O_NONBLOCK;
49. noctty = 1;
50. goto got_driver;
51. }
52. mutex_unlock(&tty_mutex);
53. return -ENODEV;
54. }
55. //以文件的设备号为关键字,到tty_drivers中搜索所注册的driver
56. driver = get_tty_driver(device, &index);
57. if (!driver) {
58. mutex_unlock(&tty_mutex);
59. return -ENODEV;
60. }
61.got_driver:
62. //index表示它的次设备号
63. retval = init_dev(driver, index, &tty);
64. mutex_unlock(&tty_mutex);
65. if (retval)
66. return retval;
67. filp->private_data = tty;
68. file_move(filp, &tty->tty_files);
69. check_tty_count(tty, "tty_open");
70. if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
71. tty->driver->subtype == PTY_TYPE_MASTER)
72. noctty = 1;
73.#ifdef TTY_DEBUG_HANGUP
74. printk(KERN_DEBUG "opening %s...", tty->name);
75.#endif
76. if (!retval) {
77. if (tty->driver->open)
78. retval = tty->driver->open(tty, filp);
79. else
80. retval = -ENODEV;
81. }
82. filp->f_flags = saved_flags;
83. if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
84. !capable(CAP_SYS_ADMIN))
85. retval = -EBUSY;
86. if (retval) {
87.#ifdef TTY_DEBUG_HANGUP
88. printk(KERN_DEBUG "error %d in opening %s...", retval,
89. tty->name);
90.#endif
91. release_dev(filp);
92. if (retval != -ERESTARTSYS)
93. return retval;
94. if (signal_pending(current))
95. return retval;
96. schedule();
97. /*
98. * Need to reset f_op in case a hangup happened.
99. */
100. if (filp->f_op == &hung_up_tty_fops)
101. filp->f_op = &tty_fops;
102. goto retry_open;
103. }
104. mutex_lock(&tty_mutex);
105. spin_lock_irq(¤t->sighand->siglock);
106. //设置当前进程的终端
107. if (!noctty &&
108. current->signal->leader &&
109. !current->signal->tty &&
110. tty->session == NULL)
111. __proc_set_tty(current, tty);
112. spin_unlock_irq(¤t->sighand->siglock);
113. mutex_unlock(&tty_mutex);
114. tty_audit_opening();
115. return 0; 116.} |
注意在这里有个容易忽略的操作:init_dev()。
Init_dev() -à initialize_tty_struct()
à tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
看一下tty_ldisc_assign(tty, tty_ldisc_get(N_TTY))的操作:
01.Tty_ldisc_get():
02.struct tty_ldisc *tty_ldisc_get(int disc)
03.{
04. unsigned long flags;
05. struct tty_ldisc *ld;
06. if (disc = NR_LDISCS)
07. return NULL;
08. spin_lock_irqsave(&tty_ldisc_lock, flags);
09. ld = &tty_ldiscs[disc];
10. /* Check the entry is defined */
11. if (ld->flags & LDISC_FLAG_DEFINED) {
12. /* If the module is being unloaded we can't use it */
13. if (!try_module_get(ld->owner))
14. ld = NULL;
15. else /* lock it */
16. ld->refcount++;
17. } else
18. ld = NULL;
19. spin_unlock_irqrestore(&tty_ldisc_lock, flags);
20. return ld;
21.} |
这个函数的操作为到tty_ldiscs[ ]找到对应项.这个数组中的成员是调用tty_register_ldisc()将其设置进去的.
tty_ldisc_assign操作如下:
01.static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
02.{
03. tty->ldisc = *ld;
04. tty->ldisc.refcount = 0;
05.} |
即将取出来的idisc作为tty->ldisc字段.
在这段代码中涉及到了tty_driver,tty_struct, struct
tty_ldisc.这三者之间的关系用下图表示如下:
在这里,为tty_struct的ldisc是默认指定为tty_ldiscs[N_TTY].该ldisc对应的是控制终端的线路规范。可以在用空间用带TIOCSETD的ioctl调用进行更改.
将上述open用流程图的方式表示如下:
4.2:设备文件的write操作
设备文件的write操作对应tty_fops->write即tty_write().代码如下:
01.static ssize_t tty_write(struct file *file, const char __user *buf,
02. size_t count, loff_t *ppos)
03.{
04. struct tty_struct *tty;
05. struct inode *inode = file->f_path.dentry->d_inode;
06. ssize_t ret;
07. struct tty_ldisc *ld;
08. tty = (struct tty_struct *)file->private_data;
09. if (tty_paranoia_check(tty, inode, "tty_write"))
10. return -EIO;
11. if (!tty || !tty->driver->write ||
12. (test_bit(TTY_IO_ERROR, &tty->flags)))
13. return -EIO;
14. ld = tty_ldisc_ref_wait(tty);
15. if (!ld->write)
16. ret = -EIO;
17. else
18. ret = do_tty_write(ld->write, tty, file, buf, count);
19. tty_ldisc_deref(ld);
20. return ret;
21.} |
在open的过程中,将tty_struct存放在file的私有区。在write中,从file的私有区中就可以取到要操作的tty_struct.
如果tty_driver中没有write.如果tty有错误都会有效性判断失败返回。如果一切正常,递增ldsic的引用计数。将用do_tty_wirte()再行写操作。写完之后,再递减ldsic的引用计数.
Do_tty_write代码分段分析如下:
01.static inline ssize_t do_tty_write(
02. ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
03. struct tty_struct *tty,
04. struct file *file,
05. const char __user *buf,
06. size_t count)
07.{
08. ssize_t ret, written = 0;
09. unsigned int chunk;
10. ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
11. if (ret
12. return ret;
13. /*
14. * We chunk up writes into a temporary buffer. This
15. * simplifies low-level drivers immensely, since they
16. * don't have locking issues and user mode accesses.
17. *
18. * But if TTY_NO_WRITE_SPLIT is set, we should use a
19. * big chunk-size..
20. *
21. * The default chunk-size is 2kB, because the NTTY
22. * layer has problems with bigger chunks. It will
23. * claim to be able to handle more characters than
24. * it actually does.
25. *
26. * FIXME: This can probably go away now except that 64K chunks
27. * are too likely to fail unless switched to vmalloc...
28. */
29. chunk = 2048;
30. if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
31. chunk = 65536;
32. if (count
33. chunk = count;
34. /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
35. if (tty->write_cnt
36. unsigned char *buf;
37. if (chunk
38. chunk = 1024;
39. buf = kmalloc(chunk, GFP_KERNEL);
40. if (!buf) {
41. ret = -ENOMEM;
42. goto out;
43. }
44. kfree(tty->write_buf);
45. tty->write_cnt = chunk;
46. tty->write_buf = buf;
47. } |
默认一次写数据的大小为2K.如果设置了TTY_NO_WRITE_SPLIT.则将一次写的数据量扩大为65536.
Tty->write_buf是写操作的临时缓存区。即将用户空的数据暂时存放到这里
Tty->write_cnt是临时缓存区的大小。
在这里,必须要根据一次写的数据量对这个临时缓存区做调整
01. /* Do the write .. */
02. for (;;) {
03. size_t size = count;
04. if (size > chunk)
05. size = chunk;
06. ret = -EFAULT;
07. if (copy_from_user(tty->write_buf, buf, size))
08. break;
09. lock_kernel();
10. ret = write(tty, file, tty->write_buf, size);
11. unlock_kernel();
12. if (ret
13. break;
14. written += ret;
15. buf += ret;
16. count -= ret;
17. if (!count)
18. break;
19. ret = -ERESTARTSYS;
20. if (signal_pending(current))
21. break;
22. cond_resched();
23. }
24. if (written) {
25. struct inode *inode = file->f_path.dentry->d_inode;
26. inode->i_mtime = current_fs_time(inode->i_sb);
27. ret = written;
28. }
29.out:
30. tty_write_unlock(tty);
31. return ret;
32.} |
后面的操作就比较简单了。先将用户空间的数据copy到临时缓存区,然后再调用ldisc->write()完成这次写操作.最后再更新设备结点的时间戳.
Write操作的流程图如下示:
在这里,我们只看到将数据写放到了ldisc->write().没有看到与tty_driver相关的部份。实际上在ldisc中对写入的数据做预处理过后,还是会调用tty_driver->write()将其写入硬件.
4.3:设备文件的read操作
01.static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
02. loff_t *ppos)
03.{
04. int i;
05. struct tty_struct *tty;
06. struct inode *inode;
07. struct tty_ldisc *ld;
08. tty = (struct tty_struct *)file->private_data;
09. inode = file->f_path.dentry->d_inode;
10. if (tty_paranoia_check(tty, inode, "tty_read"))
11. return -EIO;
12. if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
13. return -EIO;
14. /* We want to wait for the line discipline to sort out in this
15. situation */
16. ld = tty_ldisc_ref_wait(tty);
17. lock_kernel();
18. if (ld->read)
19. i = (ld->read)(tty, file, buf, count);
20. else
21. i = -EIO;
22. tty_ldisc_deref(ld);
23. unlock_kernel();
24. if (i > 0)
25. inode->i_atime = current_fs_time(inode->i_sb);
26. return i;
27.} |
这个read操作就更简单。直接调用ldsic->read()完成工作
流程图如下:
五:小结
在tty设备文件的操作中。Open操作会进行一系统初始化。然后调用ldsic->open
tty_driver->open。在write和read调用中只tty_core只会用到ldisc->wirte/ldisc-
>read.除了上面分析的几个操作之外,还有一个ioctl操作,以及它封装的几个termios。这些ioctl类的操作会直接和
tty_driver相关联.
在这一节里,只对tty的构造做一个分析,具体ldisc的操作我们之后以控制终端为例进行分析.
|