编辑推荐: |
本文主要讲解了Intel的VT-x:包含CPU、内存和I/O三方面的虚拟化技术和AMD的AMD-V:AMD-V从代码的角度分别称为
AMD和 SVM,AMD开发这项虚拟化技术时的内部项目代码为Pacifica,是AMD推出的一种硬件辅助虚拟化技术。
本文来自于今日头条,由火龙果软件Anna编辑、推荐。 |
|
目前主要有Intel的VT-x和AMD的AMD-V这两种技术。其核心思想都是通过引入新的指令和运行模式,使VMM和Guest
OS分别运行在不同模式(ROOT模式和非ROOT模式)下,且Guest OS运行在Ring 0下。通常情况下,Guest
OS的核心指令可以直接下达到计算机系统硬件执行,而不需要经过VMM。当Guest OS执行到特殊指令的时候,系统会切换到VMM,让VMM来处理特殊指令。
1、Intel VT-x技术
为弥补x86处理器的虚拟化缺陷,市场的驱动催生了VT-x,Intel推出了基于x86架构的硬件辅助虚拟化技术Intel
VT(Intel Virtualization Technology)。
目前,Intel VT技术包含CPU、内存和I/O三方面的虚拟化技术。CPU硬件辅助虚拟化技术,分为对应安腾架构的VT-i(Intel
Virtualization Technology for ltanium)和对应x86架构的VT-x(Intel
Virtualization Technologyfor x86)两个版本。内存硬件辅助虚拟化技术包括EPT(Extended
Page Table)技术。I/0硬件辅助虚拟化技术的代表hatelVY-d(Intel Virtualization
Technology for Directed I/0)。
IntelVT-x技术解决了早期x86架构在虚拟化方面存在的缺陷,可使未经修改的GuestOS运行在特权级0,同时减少VMM对Guest
OS的干预。Intel VT-d技术通过使VMM将特定I/O设备直接分配给特定的Guest OS,减少VMM对I/O处理的管理,不但加速数据传输,且消除了大部分性能开销。如下图所示。CPU硬件辅助虚拟化技术简要说明流程图:
效法IBM 大型机,VT-x提供了2 个运行环境:根(Root)环境和非根(Non-root)环境。根环境专门为VMM准备,很像原来没有VT-x
的x86,只是多了对VT-x 支持的几条指令。非根环境作为一个受限环境用来运行多个虚拟机。
如上图所示,根操作模式与非根操作模式都有相应的特权级0至特权级3。VMM运行在根模式的特权级0,GuestOS的内核运行在非根模式的特权级0,GuestOS的应用程序运行在非根模式的特权级3。运行环境之间相互转化,从根环境到非根环境叫VMEntry;从非根环境到根环境叫VMExit。VT-x定义了VMEntry操作,使CPU由根模式切换到非根模式,运行客户机操作系统指令。若在非根模式执行了敏感指令或发生了中断等,会执行VMExit操作,切换回根模式运行VMM。
根模式与非根模式之问的相互转换是通过VMX操作实现的。VMM 可以通过VMXON 和VMXOFF打开或关闭VT-x。如下图所示:
VMX操作模式流程:
1)、VMM执行VMXON指令进入VMX操作模式。
2)、VMM可执行VMLAUNCH指令或VMRESUME指令产生VM Entry操作,进入到Guest
OS,此时CPU处于非根模式。
3)、Guest 0S执行特权指令等情况导致VMExit的发生,此时将陷入VMM,CPU切换为根模式。VMM根据VMExit的原因作出相应处理,处理完成后将转到2),继续运行GuestOS。
4)、VMM可决定是否退出VMX操作模式,通过执行VMXOFF指令来完成。
为更好地支持CPU虚拟化,VMX新定义了虚拟机控制结构VMCS(Virtual Machine ControlStructure)。VMCS是保存在内存中的数据结构,其包括虚拟CPU的相关寄存器的内容及相关的控制信息。CPU在发生VM
Entry或VMExit时,都会查询和更新VMCS。VMM也可通过指令来配置VMCS,达到对虚拟处理器的管理。VMCS架构图如下图所示:
每个虚拟处理器都需将VMCS与内存中的一块区域联合起来,此区域称为VMCS区域。对VMCS区域的操纵是通过VMCS指针来实现的,这个指针是一个指向VMCS的64位的地址值。VMCS区域是一个最大不超过4KB的内存块,且需4KB对齐。
VMCS区域分为三个部分:偏移0起是VMCS版本标识,通过不同的版本号,CPU可维护不同的VMCS数据格式;偏移4起是VMX中止指示器,在VMX中止发生时,CPU会在此处存入中止的原因;偏移8起是VMCS数据区,这一部分控制VMX非根操作及VMX切换。
VMCS 的数据区包含了VMX配置信息:VMM在启动虚拟机前配置其哪些操作会触发VMExit。VMExit
产生后,处理器把执行权交给VMM 以完成控制,然后VMM 通过指令触发VMEntry 返回原来的虚拟机或调度到另一个虚拟机。
VMCS 的数据结构中,每个虚拟机一个,加上虚拟机的各种状态信息,共由3个部分组成,如之前的VMCS架构图所示:
1)、Gueststate:该区域保存了虚拟机运行时的状态,在VMEntry 时由处理器装载;在VMExit时由处理器保存。它又由两部分组成:
Guest OS寄存器状态。它包括控制寄存器、调试寄存器、段寄存器等各类寄存器的值。
Guest OS非寄存器状态。用它可以记录当前处理器所处状态,是活跃、停机(HLT)、关机(Shutdown)还是等待启动处理器间中断(Startup-IPI)。
2)、Hoststate:该区域保存了VMM 运行时的状态,主要是一些寄存器值,在VMExit 时由处理器装载。
3)、Control data:该区域包含几部分数据信息,分别是:
虚拟机执行控制域(VM-Execution control fields)。VMM 主要通过配置该区域来控制虚拟机在非根环境中的执行行为。基于针脚的虚拟机执行控制。它决定在发生外部中断或不可屏蔽中断(NMI)要不要发生VMExit。基于处理器的虚拟机执行控制。它决定虚拟机执行RDTSC、HLT、INVLPG
等指令时要不要发生VMExit。
VMExit 控制域(VMExit control fields)。该区域控制VMExit 时的行为。当VMExit
发生后处理器是否处于64 位模式;当因为外部中断发生VMExit 时,处理器是否响应中断控制器并且获得中断向量号。VMM
可以用它来定制当VMExit 发生时要保存哪些MSR 并且装载哪些MSR。MSR是CPU的模式寄存器,设置CPU的工作环境和标识cpu的工作状态。
VMEntry 控制域(VMEntry control fields)。该区域控制VMEntry 时的行为。它决定处理器VMEntry
后是否处于IA-32e 模式。与VMExit 的MSR控制类似,VMM 用它来定制当VMEntry
发生时要装载哪些MSR。VMM 可以配置VMEntry 时通过虚拟机的IDT向其发送一个事件。在此可以配置将使用IDT
的向量、中断类型(硬件或软件中断)、错误码等。
VMExit 信息域(VMExit information fields)。该只读区域包括最近一次发生的VMExit
信息。试图对该区域执行写操作将产生错误。。此处存放VMExit 的原因以及针对不同原因的更多描述信息、中断或异常向量号、中断类型和错误码、通过
IDT 发送事件时产生的VMExit 信息、指令执行时产生的 VMExit 信息。
有了VMCS结构后,对虚拟机的控制就是读写VMCS结构。后面对vCPU设置中断,检查状态实际上都是在读写VMCS数据结构。
2、AMD-V技术
我们在上面小节介绍了 Intel 的硬件辅助虚拟化技术,那么 AMD 的硬件辅助虚拟化技术又有什么特点呢?AMD
从 2006 年便开始致力于硬件辅助虚拟化技术的研究,AMD-V全称是AMD Virtualization,AMD-V从代码的角度分别称为
AMD和 SVM,AMD开发这项虚拟化技术时的内部项目代码为Pacifica,是AMD推出的一种硬件辅助虚拟化技术。
Intel VT-x 和 AMD-V 提供的特征大多功能类似,但名称可能不一样,如 Intel VT-x
将用于存放虚拟机状态和控制信息的数据结构称为 VMCS, 而 AMD-V 称之为VMCB;Intel
VT-x 将 TLB 记录中用于标记 VM 地址空间的字段为 VPID, 而AMD-V 称之为 ASID;Intel
VT-x 将二级地址翻译称之为 EPT, AMD 则称为 NPT,等等一些区别。尽管其相似性,Intel
VT-x 和 AMD-V 在实现上对 VMM 而言是不兼容的。
AMD-V 在 AMD 传统的x86-64 基础上引入了“guest”操作模式。“guest”操作模式就是
CPU 在进入客操作系统运行时所处的模式。“guest”操作模式为客操作系统设定了一个不同于 VMM
的运行环境而不需要改变客操作系统已有的 4 个特权级机制,也就是说在“guest”模式下,客操作系统的内核仍然运行在
Ring 0, 用户程序仍然在 Ring 3。裸机上的操作系统和 VMM 所在的操作模式依然和传统的
x86 中一样,且称之为“host”操作模式。VMM 通过执行 VMRUN 指令使CPU 进入“guest”操作模式而执行客操作系统的代码;客操作系统在运行时,遇到敏感指令或事件,硬件就执行
VMEXIT 行为,使 CPU 回到“host”模式而执行 VMM 的代码。VMRUN 指令运行的参数是一个物理地址指针,其指向一个
Virtual Machine Control Block (VMCB) 的内存数据结构, 该数据结构包含了启动和控制一个虚拟机的全部信息。
“guest”模式的意义在于其让客操作系统处于完全不同的运行环境,而不需要改变客操作系统的代码。“guest”模式的设立在系统中建立了一个比
Ring 0 更强的特权控制,即客操作系统的 Ring 0 特权必须让位于 VMM 的 Ring 0
特权。客操作系统上运行的那些特权指令,即便是在 Ring 0 上也变的可以被 VMM 截取的了,“Ring
Deprivileging”由硬件自动搞定。此外,VMM 还可以通过 VMCB 中的各种截取控制字段选择性的对指令和事情进行截取,或设置有条件的截取,所有的敏感的特权或非特权指令都在其控制之中。
VMCB 数据结构主要包含如下内容 :
1. 用于描述需要截取的指令或事件的字段列表。其中 :
2 个 16 位的字段用于控制对 CR 类控制寄存器读写的截取
2 个 16 位的字段用于控制对 DR 类调试寄存器的读写的截取
一个 32 位的字段用于控制 exceptions 的截取
一个 64 位的字段用于控制各种引起系统状态变化的事件或指令的截取,如 INTR, NMI, SMI
等事 件, HLT, CPUID,INVD/WBINVD,INVLPG/INVLPGA,MWAIT
等指令, 还包括两位分别标志是否对 IO 指令和 MSR 寄存器的读写进行控制
指向IO端口访问控制位图和MSR读写控制位图的物理地址指针字段。该位图用于差别性地控制虚拟机对不同的
IO 端口和 MSR 寄存器进行读写访问。
描述虚拟机CPU状态的信息。包含除通用寄存器外的大部分控制寄存器,段寄存器,描述符表寄存器,代码指针等。RAX
寄存器也在其中,因为 RAX 在 VMM 执行 VMRUN 时是用来存放VMCB 物理地址的。对于段寄存器,该信息中还包含段寄存器对应的段描述符,也就那些传统
x86 上对软件隐藏的信息。
对虚拟机的执行进行控制的字段。主要是控制虚拟机中断和 NPT 的字段。
指示虚拟机进入“guest”模式后要执行的行动的字段。包括用来描述 VMM 向虚拟机注入的中断或异常的信息的字段。注入的中断或异常在
VMRUN 进入“guest”模式后立即执行,就象完全发生在虚拟机内一样。
提供VMEXIT信息的字段。包括导致 VMEXIT 的事件的代码,异常或中断的号码,page fault
的线性地址,被截获的指令的编码等。
VMCB 以及其涉及的控制位图,完全通过物理地址进行指向,这就避免了“guest”和“host”模式切换的过程依赖于“guest”空间的线性地址
( 传统操作系统内用户空间到内核的切换确实依赖于 IDT 中提供的目标的线性地址 ),使得 VMM
可以采用和客操作系统完全不同的地址空间。
VMCB 的内容在物理上被分成了俩部分,其中用于保存虚拟机 CPU 状态的信息占据 2048 字节的后半部分,我们可称之为
VMCB.SAVE;其他信息,占据前 1024 字节范围,我们可称之为 VMCB.CONTROL。
VMRUN 命令以 VMCB 为参数,使CPU 进入“guest”状态, 按 VMCB.SAVE
的内容恢复虚拟机的 CPU 寄存器状态,并按 VMCB.SAVE 中 CS:RIP 字段指示的地址开始执行虚拟机
的代码, 并将之前 VMM 的 CPU 状态保存在MSR_VM_HSAVE_PA 寄存器所指向的物理内存区域中。VMRUN
所保存的 VMM 的 CPU状态的 CS:RIP 实际上就是 VMM 的代码中 VMCB 的下一个指令,当虚拟机因某种原因而导致
#VMEXIT 时,VMM 会从 VMRUN 后的一条指令开始执行。CPU 执行 #VMEXIT 行为时,会自动将虚拟机的状态保存到
VMCB.SAVE 区,并从 MSR_VM_HSAVE_PA 指定的区域加载 VMM 的 CPU 状态。
VMLOAD 和 VMSAVE 指令是对 VMRUN 的补充,他们用来加载和恢复一些并不需要经常使用的
CPU 状态,如 FS, GS, TR, LDTR 寄存器以及其相关的隐含的描述符寄存器的内容,VMLOAD
和 VMSAVE 可以让 VMM 的实现对“guest”进入和退出的过程进行优化,让多数情况下只使用
VMRUN 进行最少的状态保存和恢复。
VMMCALL 指令是 AMD-V 为客操作系统内核提供的明确的功能调用接口,类似于 syscall
指令 ( 从 Ring3 到 Ring 0), VMMCALL 让客操作系统直接执行 #VMEXIT
而进入 VMM,请求VMM 的服务。
3、总结
回顾一下CPU虚拟化技术的实现,纯软件的CPU虚拟化使用了陷入-模拟的模式来模拟特权指令,而在x86架构中由于只能模拟特权指令,无法模拟某些敏感指令而无法实现完全的虚拟化。(在x86架构中,特权指令一定是敏感指令,但是敏感指令比特权指令多,造成某系敏感指令不是特权指令而无法模拟,使得CPU虚拟化异常),而硬件辅助虚拟化引入了根模式(root
operation)和非根模式(none-root operation),每种模式都有ring0-3的四级特权级别。所以,在硬件辅助虚拟化中,陷入的概念实际上被VM-EXIT操作取代了,它代表从非根模式退出到根模式,而从根模式切换到非根模式是VM-Entry操作。 |