您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 
 订阅
怎么理解linux内核栈?
 
作者:云物互联
   次浏览      
 2023-5-4 
 
编辑推荐:
本文主要介绍了linux内核栈等相关内容。希望对你的学习有帮助。
本文来自于知乎,由Linda编辑、推荐。

Linux 内核协议栈分层架构

驱动程序层(Physical device hardware):提供连接硬件设备的各种软件接口。

设备接口层(Device agnostic interface):提供驱动程序的各种抽象接口。作为驱动层和协议层之间的中间层,提供无关具体设备的统一接口定义。

网络协议层(Network protocols):提供 L3-4 TCP/IP 网络协议的具体实现。例如:ARP、IP、ICMP、TCP 等。

协议接口层(Protocol agnostic interface):也称为 BSD Socket API 层,本质是 SCI(系统调用接口)的一部分,向上层应用程序提供各种网络编程接口。作为协议层和应用层之间的中间层,提供无关具体协议的统一 Socket 接口定义。

报文处理流程概览

跨主机收发报文概览

本地收发报文概览

协议栈实现概览

内核协议栈关键技术

DMA

DMA(Direct Memory Access,直接内存访问)是一种硬件实现的外设 I/O 技术。在 DMA 技术出现之前,NIC 和 CPU 之间的 Frames(二层数据帧)收发依赖 CPU 先从 NIC Rx/Tx queue 逐个 Copy 到 Kernel space,然后再从 Kernel space 中 Copy 到 User space,单向两次 CPU Copy 的方式,非常消耗资源。DMA 技术出现后,NIC 增加了 DMA Control 功能,并将 NIC Rx/Tx queue 与 Main Memory 中的 ZONE_DMA 建立直接映射关系。当 Frames 进入 NIC Rx/Tx queue 之后,就会直接被 DMA Controller Copy 到 ZONE_DMA,这一次 Copy 完全不需要 CPU 的参与。并且由于 ZONE_DMA 是一块物理映射区,所以 Kernel space 也可以直接访问。DMA 技术在单向的外设 I/O 的流程中,减少了一次 CPU Copy 的工作,也以此减轻了 CPU 的工作负载。在 32bit Linux 中,ZONE_DMA 默认只有 16MB;而在 64bit Linux 中,ZONE_DMA 默认可以有 4GB,得到了非常大的提升。

DMA Controller 的功能:

向 CPU 发出 HOLD(保持)信号,提出 Bus(总线)接管请求。

当 CPU 发出允许接管信号后,负责对 Bus 的控制,进入 DMA I/O 模式。

通过对 Main Memory 进行寻址以及修改地址指针,实现对 Memory 的读写操作。

向 CPU 发出 DMA 结束信号,CPU 恢复正常工作模式。

DMA 信号类型:

DREQ(外设请求信号):I/O 外设向 DMA Controller 发起请求。

DACK(DMA 响应信号):DMA Controller 向 I/O 外设的响应信号

HRQ/HOLD(DMA 请求信号):DMA Controller 向 CPU 发出,要求接管 Bus。

HLDA(CPU 响应信号):CPU 响应允许 DMA Controller 接管 Bus。

sk_buff 结构体

sk_buff 结构体是 Kernel 定义的一个用于描述 Frame 的数据结构。Net driver 的初始化流程中包括对 DMA 空间进行初始化,主要的工作就是在 ZONE_DMA 中分配好用于存储sk_buff的内存空间。当 Frame 到达 NIC 后,DMA Controller 就会将 Frame 的数据 Copy 到 sk_buff 结构体中,以此来完成 Frame => sk_buff 数据格式的封装。在后续的流程中,sk_buff 还会从 ZONE_DMA Copy 到 Kernel Socket Receive Buffer 中,等待 Application 接收。

struct igb_ring {
...
 union {
...
  /* RX */
  struct {
   struct sk_buff *skb;
   struct igb_rx_queue_stats rx_stats;
   struct u64_stats_sync rx_syncp;
  };
...
}

sk_buff 的结构体定义如下图所示,它包含了一个 Frame 的 Interface(网络接口)、Protocol(协议类型)、Headers(协议头)指针、Data(业务数据)指针等信息。

值得留意的是,在 Kernel 中,一个 Frame 的 Headers 和 Payload 可能是分开存放到不同内存块种的。有以下几点原因:

两者具有不同的特征和用途:Headers 包含了网络协议的元数据信息,而 Payload 包含了 Application 的业务信息。

两者具有不同的大小和格式:Headers 的格式通常是标准的,而且数据量比 Payload 小的多。

两者具有不同的处理逻辑:Headers 需要被快速识别、分析和校验,而 Payload 则需要被快速的传输和存储。

分开存储和处理的方式,可以有效提高网络传输的效率和可靠性。同时,sk_buff 是一个双向链表数据结构,支持链表操作。

Net driver Rx/Tx Ring Buffer

Netdriver实现了 2 个 Ring Buffer 用于数据报文的收发处理。Ring queue 是高性能数据包处理场景中常见的数据结构,它将 Buffer 内存空间设计成一个首尾相连的环。当 Buffer 空间溢满后,新来的 Frames 会从头开始存放,而不是为其分配新的内存空间。相较于传统的 FIFO queue 数据结构,Ring queue 可以避免频繁的内存分配和数据复制,从而提高传输效率。此外还具有缓存友好、易于并行处理等优势。值得注意的是,Rx/Tx Ring Buffer 中存储的是 sk_buff 的 Descriptor,而不是 sk_buff 本身,本质是一个指针,也称为 Packet Descriptor。

Packet Descriptor 有 Ready 和 Used 这 2 种状态。初始时 Descriptor 指向一个预先分配好且是空的 sk_buff 空间,处在 Ready 状态。当有 Frame 到达时,DMA Controller 从 Rx Ring Buffer 中按顺序找到下一个 Ready 的 Descriptor,将 Frame 的数据 Copy 到该 Descriptor 指向的 sk_buff 空间中,最后标记为 Used 状态。这样设计的原因是 Rx/Tx Ring Buffer 作为 I/O 控制单元,不应该持有太多数据量。数据传输由 DMA 实现会非常快,而 Ring Buffer 也只需要记录相应的指针即可。

Buffer Descriptor Table

Rx/Tx Ring Buffer 的具体实现为一张 Buffer Descriptor Table(BDT)。BDT 是一个 Table 数据结构,拥有多个 Entries,每条 Entry 都对应了 Ring Buffer 中的一个 Rx/Tx Desc,它们记录了存放 sk_buff 的入口地址、长度以及状态标志位。

收包时:DMA Controller 搜索 Rx BDT,取出空闲的 DB Entry,将 Frame 存放到 Entry 指向的 sk_buff,修改 Entry 为 Ready。然后 DBT 指针下移一项。

发包时:DMA Controller 搜索 Tx BDT,取出状态为 Ready 的 DB Entry 所指向的 sk_buff 并转化为 Frame 发送出去。然后 DBT 指针下移一项。

NAPI 收包机制

NAPI(New API)是一种 “中断 + 轮训” 收包机制,相较于传统的单一中断(硬中断 + 软中断)收包的方式效率更高。

NAPI 的工作流程如下:

Net driver 初始化流程中,注册 NAPI 收包机制所必须的 poll() 函数到 ksoftirqd(软中断处理)内核线程。

Frame 到达 NIC;

DMA Controller 写入 sk_buff;

NIC Controller 发起硬中断,进入 Net driver 的 napi_schedule() 硬中断处理函数,然后将一个 napi_struct 结构体加入到 poll_queue(NAPI 软中断队列)中。此时 NIC Controller 立即禁用了硬中断,开始切换到 NAPI “轮训“ 收包工作模式。

再进入 raise_softirq_irqoff(NET_RX_SOFTIRQ) 软中断处理程序,唤醒 NAPI 子系统,新建ksoftirqd内核线程。

ksoftirqd 线程调用 Net driver 注册的 poll() 函数。

poll() 调用 netif_receive_skb() 开始从 sk_buff 空间中收包,并将它传递给网络协议栈进行处理。

直到一段时间内没有 Frame 到达为止,关闭 ksoftirqd 内核线程,NIC Controller 重新切换到 NAPI “中断” 收包工作模式。

在具体的实现中,poll() 会轮训检查 BDT Entries 的状态,如果发现当前 BDT 指针指向的 Entry Ready,则将该 Entry 对应的 sk_buff 取出来,并恢复该 Entry 的空闲状态。可见,和传统方式相比,NAPI 一次中断就可以接收多个包,因此可以减少硬件中断的数量。

网卡多队列

在以往,一张 NIC 只会提供一组 HW Rx/Tx Ring queue,对应一个 CPU 来进行处理。在多核时代,NIC 也相应的提供了 Multi-Queue 功能,可以将多个 Queue 通过硬中断绑定到不同的 CPU Cores 上处理。以Intel 82575为例。

在硬件层面:它拥有 4 组硬件队列,它们的硬中断分别绑定到 4 个 Core 上,并通过 RSS(Receive Side Scaling)技术实现负载均衡。RSS 技术通过 HASH Packet Header IP 4-tuple(srcIP、srcPort、dstIP、dstPort),将同一条 Flow 总是送到相同的队列,从而避免了报文乱序问题。

在软件层面:Linux Kernel v2.6.21 开始支持网卡多队列特性。在 Net driver 初始化流程中,Kernel 获悉 Net device 所支持的硬件队列数量。然后结合 CPU Cores 的数量,通过 Sum=Min(NIC queue, CPU core) 公式计算得出应该被激活 Sum 个硬件队列,并申请 Sum 个中断号,分配给激活的每个队列。

如上图所示,当某个硬件队列收到 Frames 时,就触发相应的硬中断,收到中断的 CPU Core 就中断处理任务下发给该 Core 的 NET_RX_SOFTIRQ 实例处理(每个 Core 都有一个 NET_RX_SOFTIRQ 实例)。在 NET_RX_SOFTIRQ 中调用 NAPI 的收包接口,将 Frames 收到具有多个 netdev_queue 的 net_device 结构体中。

内核协议栈收包/发包流程概览

收包流程:

发包流程:

内核协议栈收包流程详

解驱动程序层(数据链路层)

NIC Controller 接收到高低电信号,表示 Frame 到达。PHY 芯片首先将电信号转换为比特流,然后 MAC 芯片再将比特流转换为 Frame 格式。

DMA Controller 将 Frame Copy 到 Rx Ring Buffer 中的一个 Rx Desc 指向的 sk_buff 空间。

DMA Controller 更新相应的 BD Entry 状态为 Ready,并将 BDT 指针下移一项。

NIC Controller 给 CPU 的相关引脚上触发一个电压变化,硬中断 CPU。每个硬中断都对应一个中断号,CPU 开始收包硬中断处理程序。硬中断处理程序由 Kernel 回调 Net driver 具体实现的注册函数,根据是否开启了 NAPI 有两条不同的执行路径。

以 NAPI 模式为例,Net driver 执行 napi_schedule() 硬中断处理函数,然后将一个 napi 结构体加入到 poll_queue(NAPI 软中断队列)中。此时 NIC Controller 立即禁用了硬中断,开始切换到 “NAPI 轮训“ 收包工作模式。

再进入 raise_softirq_irqoff() 软中断处理程序,唤醒 NAPI 子系统,新建 ksoftirqd 内核线程。

ksoftirqd 线程调用 Net driver 注册的 poll() 函数。

// linux/drivers/net/ethernet
/intel/igb/igb_main.c /** * igb_poll - NAPI Rx polling callback * @napi: napi polling structure * @budget: count of how many
packets we should handle **/ static int igb_poll(struct
napi_struct *napi, int budget) { ... if (q_vector->tx.ring) clean_complete = igb_clean_
tx_irq(q_vector, budget); if (q_vector->rx.ring) { int cleaned = igb_clean_rx
_irq(q_vector, budget); ... }

 

poll() 调用 netif_receive_skb() 开始从 sk_buff 空间中收包,并将它传递给 TCP/IP 网络协议栈进行处理。

// linux/net/core/dev.c

int netif_receive_skb(struct sk_buff *skb)
{
 int ret;

 trace_netif_receive_skb_entry(skb);

 ret = netif_receive_skb_internal(skb);
 trace_netif_receive_skb_exit(ret);

 return ret;
}

 

直到一段时间内没有 Frame 到达为止,关闭 ksoftirqd 内核线程,NIC Controller 重新切换到硬中断收包工作模式。

VLAN 协议族

Linux Bridge 子系统

网络协议层(L3 子系统)

Net driver 调用 netif_receive_skb() 将 sk_buff 从 ZONE_DMA Ring Buffer 中取出并交给 TCP/IP 协议栈处理的过程中,首先会根据 sk_buff 内层 Header 的 Protocol Type 选择相应的处理函数,如果是 IP 协议,则调用 ip_rcv() 进行处理。

ip_rcv() 首先会解析 IP Header,根据 srcIP 和 dstIP 进入路由子系统处理流程。如果 dstIP 是本机地址,则根据内层 Header 的 Protocol Type 选择相应的传输层处理函数。UDP 对应 udp_rcv()、TCP 对应 tcp_rcv()、ICMP 对应 icmp_rcv()、IGMP 对应 igmp_rcv()。

ARP 子系统

IP 子系统

网络协议层(L4 子系统)

在使用 socket() 创建一个 TCP Socket 之后,Socket 对应的 Sock 结构体会被注册到一个 tcp_prot 全局变量中,并以 tcp_port 作为 Index。

当 tcp_rcv() 收到 sk_buff 之后,根据 TCP Header 中的 dstPort 字段索引到相应的 Sock。

然后将 sk_buff 加入到该 Sock 的 receive_queue 成员所指向的 Socket Receive Buffer 缓冲队列中,等待 Application 通过 read() 等 SCI 来进行读取。

TCP 子系统

协议接口层(BSD Socket 层)

当 Application 调用 read() 来进行读取时:

首先会根据 socket fd 查询 file inode,并从中得到相应的 Sock 结构体;

然后从 Sock 结构体成员 recieve_queue 指向的 Socket Receive Buffer 发起一次 CPU Copy;

CPU 从用户模式转为内核模式,将数据包从 Kernel space Copy 到 User space。

内核协议栈发包流程详解

以 UDP 数据报为例:

协议接口层:BSD socket 层的 sock_write() 会调用 INET socket 层的 inet_wirte()。INET socket 层会调用具体传输层协议的 write 函数,该函数是通过调用本层的 inet_send() 来实现的,inet_send() 的 UDP 协议对应的函数为 udp_write()。

L4 子系统:udp_write() 调用本层的 udp_sendto() 完成功能。udp_sendto() 完成 sk_buff 结构体相应的设置和 Header 的填写后会调用 udp_send() 来发送数据。而在 udp_send() 中,最后会调用 ip_queue_xmit() 将数据包下放的网络层。

L3 子系统:函数 ip_queue_xmit() 的功能是将数据包进行一系列复杂的操作,比如是检查数据包是否需要分片,是否是多播等一系列检查,最后调用 dev_queue_xmit() 发送数据。

驱动程序层:函数调用会调用具体设备提供的发送函数来发送数据包,e.g. hard_start_xmit(skb, dev)。具体设备的发送函数在协议栈初始化的时候已经设置了。

   
次浏览       
相关文章

一文了解汽车嵌入式AUTOSAR架构
嵌入式Linux系统移植的四大步骤
嵌入式中设计模式的艺术
嵌入式软件架构设计 模块化 & 分层设计
相关文档

企点嵌入式PHP的探索实践
ARM与STM简介
ARM架构详解
华为鸿蒙深度研究
相关课程

嵌入式C高质量编程
嵌入式操作系统组件及BSP裁剪与测试
基于VxWorks的嵌入式开发、调试与测试
嵌入式单元测试最佳实践

最新活动计划
C++高级编程 12-25 [线上]
白盒测试技术与工具实践 12-24[线上]
LLM大模型应用与项目构建 12-26[特惠]
需求分析最佳实践与沙盘演练 1-6[线上]
SysML建模专家 1-16[北京]
UAF架构体系与实践 1-22[北京]
 
 
最新文章
基于FPGA的异构计算在多媒体中的应用
深入Linux内核架构——简介与概述
Linux内核系统架构介绍
浅析嵌入式C优化技巧
进程间通信(IPC)介绍
最新课程
嵌入式Linux驱动开发
代码整洁之道-态度、技艺与习惯
嵌入式软件测试
嵌入式C高质量编程
嵌入式软件可靠性设计
成功案例
某军工所 嵌入式软件架构
中航工业某研究所 嵌入式软件开发指南
某轨道交通 嵌入式软件高级设计实践
深圳 嵌入式软件架构设计—高级实践
某企业 基于IPD的嵌入式软件开发
更多...