
Submission to RSP‘2000

Title: Embedded System Architecture Design Based on
Real-Time Emulation

Key Words Methodologies for Hardware Prototyping and Software Prototyping, System Emula-
tion, Prototyping of Real-Time Systems, The Role of FPGAs in System Prototyping,
System Verification / Validation

Authors: Carsten Nitsch (principal author)
Karlheinz Weiss
Thorsten Steckstor

FZI Embedded System Design Group

Prof. Dr. Wolfgang Rosenstiel

Address: Forschungszentrum Informatik (FZI)
at the University of Karlsruhe
Haid-und-Neu-Str. 10-14
76131 Karlsruhe
Germany

Phone: ++49-721-9654-464
Fax: ++49-721-9654-409
E-mail: nitsch@fzi.de, weiss@fzi.de,
stecki@fzi.de

FZI and University of Tübingen
Lehrstuhl für Technische Informatik
Am Sand 13
72076 Tübingen
Germany

Phone: ++49-7071-29-75482
Fax: ++49-7071-29-5062
E-mail:
rosen@informatik.uni-tuebingen.de

Embedded System Architecture Design Based on Real-Time Emulation

Abstract
This paper presents a new approach to the

design of embedded systems. Due to restrictions that state-of-
the-art methodologies contain for hardware/software partition-
ing, we have developed an emulation based method using the
facilities of reconfigurable hardware components, like Field
Programmable Gate Arrays (FPGA). Our own emulation envi-
ronment called the SPYDER tool set was used; it is best suited for
the emulation of hardware designs for embedded systems.

1 Introduction
Most of today‘s existing technical applications are con-

trolled by so-called embedded systems1. Many different appli-
cation areas which demands their own specific embedded sys-
tem architecture exist. Therefore, a common definition of
embedded systems cannot find wide acceptance.[1]

In this domain, an embedded system architecture consists
of an application-specific hardware part, which interacts with
the environment. At the same time, an application specific soft-
ware part runs on a microcontroller. In the last few years, rapid
progress in microelectronic technology has reduced component
costs, while simultaneously increasing the complexity of micro-
controllers and application specific hardware.

Nevertheless, developers of embedded systems have to
design low cost, high performance systems and reduce the time-
to-market to a minimum. The most important taste a specifica-
tion must complete is the partitioning of the system into 2
parts.The first part is the software which runs on a microcon-
troller. Powerful on-chip features, like data and instruction
caches, programmable bus interfaces and higher clock frequen-
cies, speed up performance significantly and simplify system
design. These hardware fundamentals allow Real-time Operat-
ing Systems (RTOS) to be implemented, which leads to the
rapid increase of total system performance and functional com-
plexity. Nevertheless, if fast reaction times must be guaranteed,
the software overhead due to task switching becomes a limiting
performance factor and application-specific hardware must be
implemented. This can be done by developing ASICs. Due to
the decreasing life cycles of many high-end electronic products,
there is a gap between the enormous development costs and
limited reuse of an ASIC. In the last few years, so-called IP-
Core components became more and more popular. They offer
the possibility of reusing hardware components in the same way
as software libraries. In order to create such IP-Core compo-
nents, the system designer uses Field Programmable Gate
Arrays instead of ASICs. The designer still must partition the
system design into a hardware specific part and a microcontrol-
ler based part.

2 State of the Art
Basically two major design methodologies for embedded

systems exist.

2.1 Hardware First Approach
The most commonly applied methodology in industry is

based on a sequential design flow. This design-oriented
approach is shown Figure 1:

Figure 1. Design-Oriented Sequential Design Flow

The first step (milestone 1) of this approach is the specifi-
cation of the embedded system, regarding functionality, power
consumption, costs, etc. After completing this specification, a
step called „partitioning“ follows. The design will be separated
into two parts:
• A hardware part, that deals with the functionality imple-

mented in hardware add-on components like ASICs or IP
cores.

• A software part, that deals with code running on a micro-
controller, running alone or together with an real-time-oper-
ating system (RTOS)
The second step is mostly based on the experience and

intuition of the system designer. After completing this step, the
complete hardware architecture will be designed and imple-
mented (milestones 3 and 4). After the target hardware is avail-
able, the software partitioning can be implemented.

The last step of this sequential methodology is the testing
of the complete system, that means the evaluation of the behav-
ior of all the hardware and software components.

Unfortunately developers can only verify the correctness
of their hardware/software partitioning in this late development
phase. If there are any uncorrectable errors, the design flow
must restart from the beginning, which can result in enormous
costs. For this reason, developers often use „well-known“ com-
ponents rather then new available circuits. They want to reduce
the risk of design faults and to reuse existing know-how. This is
especially important for the design of systems consisting of
few, but highly complex components.

Another disadvantage of this approach is that it is not pos-

1 This work was supported in part with funds from the Deutsche For-
schungsgemeinschaft under reference number 3221040 within the
priority program “Design and Design Methodology of Embedded
Systems”.

specificationspecification

partitioning into HW and SWpartitioning into HW and SW

design time

mile
stones

1

2

start

integration & testintegration & test end 7

implementationimplementation

SW-architectureSW-architecture
5

6

HW-architecture HW-architecture

implementationimplementation
3

4

design delay

sible to start software development before the design and test of
the hardware architecture has finished. Software developers
have to wait until a bug-free hardware architecture is available.
This time (and cost) intensive delay is graphically displayed in
Figure 1 between milestone two and four.

Once again, the disadvantages of this methodology are:
complete redesign in case of design faults, reduced degrees of
freedom in selection of components (due to reuse of knowledge
and experiences) and time delays. Nonetheless, the hardware-
first approach is still a valueable approach to system design
with low or medium complexity, because the initial step of par-
titioning is less time-consuming than in other approaches. For
high-end embedded systems new methods are needed to recog-
nize errors during an early phase of the design process.

2.2 Hardware / Software Co-Design
The first step in this approach focuses on a formal specifi-

cation of a system design as shown in Figure 2. This specifica-
tion does not focus on concrete hardware or software
architectures, like special microcontrollers or IP-cores. Using
several of the methods from mathematics and computer sci-
ences, like petri-nets, data flow graphs, state machines and par-
allel programming languages; this methodology tries to build a
complete description of the system’s behavior. The result is a
decomposition of the system’s functional behavior, it takes the
form of a set of components which implements parts of the glo-
bal functionality. Due to the use of formal description methods,
it is possible to find different alternatives to the implementation
of these components.

Figure 2. Hardware / Software Co-Design

The next step is a process called hardware/software parti-
tioning. The functional components found in step one can be
implemented either in hardware or in software. The goal of the
partitioning process is an evaluation of these hardware/software
alternatives. Depending on the properties of the functional
parts, like time complexity of algorithms, the partitioning pro-
cess tries to find the best of these alternatives. This evaluation
process is based on different conditions, such as metric func-
tions like complexity or the costs of implementation.

After a set of best alternatives is found, the next step is the
implementation of the components. In Figure 2, these imple-
mentations are shown as hardware sythesis, software synthesis
and interface synthesis. Hardware components can be imple-
mented in languages like VHDL, software is coded using pro-
gramming languages like Java, C or C++.

The last step is system integration. System integration puts

all hardware and software components together and evaluates if
this composition complies with the system specification, done
in step one. If not, the hardware/software partitioning process
starts again.

An essential goal of today’s research is to find and opti-
mize algorithms for the evaluation of a partitioning. Using these
algorithms, it is theoretically possible to implement hardware /
software co-design as an automated process.

Due to the algorithm-based concept of hardware/software
co-design there are many advantages to this approach. The sys-
tem design can be verified and modified at an early stage in the
design flow process. Nevertheless, there are some basic restric-
tions which apply to the use of this methodology:
• Insufficient knowledge: As described in this section, hard-

ware/software codesign is based on the formal description
of the system and a decomposition of its functionality. In
order to commit to real applications, the system developer
has to use available components, like IP-cores. Using this
approach, it is necessary to describe the behavior and the
attributes of these components completely. Due to the
blackbox nature of IP-cores, this is not possible in all cases.

• Degrees of freedom: Another of the building blocks of
hardware/software codesign is the unrestricted substitution
of hardware components by software components and vice
versa. For real applications, there are only a few degrees of
freedom in regards to the microcontroller, but for ASIC or
IP-core components, there is a much greater degree of free-
dom.This is due to the fact that there are many more IP-
cores than microcontrollers which can be used for dedicated
applications, available.

Due to the limitations that have been men-
tioned, the hardware-software co-design approach is not suit-
able for some design projects, like very complex systems used
in automotive, aeroplane or space technologies.

2.3 Conclusion about these state of the art
approaches

Both methods have their disadvantages. The hardware first
approach does not allow verification of the system design at an
early stage in the design flow process, the hardware/software
co-design methodology is limited by insufficient knowledge
about the internal behavior of hardware- or software IP-Cores
and the restricted degrees of freedom in the choice of microcon-
troller components.

Both methodologies are unsuitable for developing embed-
ded systems consisting of only a few, but nonetheless highly
complex components.

Due to these analyses, we have developed another method-
ology which combines the advantages of the hardware-first-
approach and the hardware/software co-design approach.

3 Emulation Based Methodology
Analyzing the hardware-first approach we have docu-

mented major advantage to this method. Developers using this
design method focus on developing a prototype as soon as pos-
sible. This strategy complies with the major time-to-market
constraints of today’s high tech industry. To reduce the risk of
design faults and cost intensive redesigns, system designers
often use well known components instead of newly available

HW/SW-
Partitioning
HW/SW-

Partitioning

Software
Synthesis
Software
Synthesis

Interface
Synthesis
Interface
Synthesis

Hardware
Synthesis
Hardware
Synthesis

System
Integration
System

Integration

Change of
Partitioning

Formal System
Specification

Formal System
Specification

technologies.
Our design methodology tries to benefit from the advan-

tages of rapid system design, without the disadvantages of the
restrictions described in the previous section. The methodology
can be described as a two-stage process:
• Stage One - System design by evaluation: The basic goal of

this stage is the evaluation of components that can be used
in the system design. In contrast to the classical hardware-
first approach, this procedure is not restricted to known or
already used hardware or software components. All poten-
tially available components will be analyzed using criteria
like functionality, technological complexity, or testability.
The source of the criteria used can be data sheets, manuals,
etc. The result of this stage is a set of components for poten-
tial use, together with a ranking of them.

• Stage Two: Validation by Emulation: Although stage one is
based on functional and non-functional criteria, the knowl-
edge and experience of the system designer still exerts a
large influence on decisions. In order to avoid fatal design
errors, stage two validates the decisions made in stage one.
The basic methodology for this validation is system emula-
tion. In contrast to other approaches like computer simula-
tion, emulation can check „serious“ problems, like real time
behavior. It is highly essential to verify the criteria used in
stage one, for example, the correctness of data sheet specifi-
cations.

Figure 3. Emulation Based Methodology

Figure 3 gives an more detailed overview of our methodol-
ogy. After the specification of the system design, the developer
makes an initial hardware/software partitioning. The outcome is
a set of hardware and software IP-Cores, the potential candi-
dates that can be used to construct the system. The candidates
can be selected from a library or another data base of informa-

tion. After these introductory steps, the first stage of our meth-
odology follows. The evaluation and selection process focuses
on a set of criteria, like testability. The output is a set of compo-
nents which satisfy such special criteria in the best possible
manner. Refer to [6] for a detailed description of this process.

After establishing the criteria, the already
described „validation“ stage follows. Only if a component
passes this „test phase“, it will be used in the final system
design.

3.1 Stage One: Decision-making Criteria
and Ranking

The previous chapter gave a short overview of the princi-
ples of our approach. The evaluation stage which was described
is based on a process that puts together a ranking for compo-
nents by focussing on special criteria. This chapter will explain
how to define these criterias and which ranking will be used for
selecting or throwing out components.

The most important component of an embedded system is
the microcontroller. That is why there are only a few types of
controllers available, but the choice of the microcontroller
determines basics like the system bus, power supply voltages,
etc. The first stage of our emulation-based design approach is
aware of such choices, as Figure 4 shows.

The features of the microcontroller, especially perfor-
mance determine what will be implemented as software. A sys-
tem which is equipped with a high performance microprocessor
can implement time-consuming functions, like MPEG-decod-
ing software. If the microcontroller fails to complete this task,
additional hardware must be added. Due to the high costs of
ASIC design, the only possibility is to select the right compo-
nents from a pool of available chips or IP-Cores.

Figure 4. Decision Criteria

The next set of criteria for the selection of suitable compo-
nents is the bus interface of the microcontroller. This criteria is
more important than the other criteria shown in Figure 4, such
as the initialization of a component. That is why the connection
of a component to the microcontroller is essential for estimating
the final costs and performance of an embedded system:

The best case is complete compatibility of the busses of
the microcontroller and the component which are connected
each other. Another possibility is that both bus interfaces are
completely incompatible. To connect this type of hardware
component to the microcontroller, highly complex bridges are
necessary. The apparent disadvantages would be increased
costs and significant communication delays between the micro-

functional specification

initial partitioning and preselection

Stage One:
Evaluation

library

Stage Two:
Emulation

Stage Two:
Emulation

H
ar

dw
ar

e
Pa

rt
iti

on

Softw
are Partitionpass ? pass ?

yes yes

System Integration

nono

System Test

functionality

bus interface technology

testabilityinitializing

ASIC integration number of pins

driver availibility ASIC integrationfinal ranking

controller an the newly added component. In regards to the con-
tents of this chapter, it is possible to construct a ranking system
to choose the most suitable component using the criteria bus-
interface. The evaluation of the other criteria, like initialization,
testability, the complexity of adding a component to a printed
circuit board, etc., follows a analogical way. For detailed infor-
mation refer to [6].

3.2 Stage Two: Validation by Emulation
For the emulation of hardware and software components,

we have developed the SPYDER System. The basic idea of the
SPYDER-System is to get a detailed view of the internal system
behavior of complex embedded systems based on real-time
emulation. In the past, these tools were used in different rese-
arch projects published in [3][4][5]. The SPYDER System cur-
rently consists of two components:
• The SPYDER-VIRTEX-X2 Board for emulating application-

specific hardware or testing IP-cores.This board covers the
validation of the hardware partitioning of an embedded sys-
tem design, (see Figure 3).

• The SPYDER-CORE-P2 Board is designed for emulating
software components in a real-time environment. We have
developed a Board Support Package for the VxWorks1

RTOS. Due to the availability of this BSP, a variety of state
of the art software IP-cores can be tested and benchmarked.
By referring back to figure 3, you can see that the hard-

ware and the software partitioning be emulated and verified at
the same time. This avoids time and cost-intensive delays
between the phases of hardware design and software implemen-
tation in classical methodologies, like the hardware-first
approach.

The next generation of boards that is currently being
developed will combine these two platforms with additional
internet based configuration features. This new platform will
offer developers the chance to work together in a world wide
distributed environment. Refer to section 4 for detailed infor-
mation.

3.3 Emulation Platform SPYDER-VIRTEX-X2

Figure 5. Architecture of SPYDER-VIRTEX-X2

The basic component of the board is a Virtex2 FPGA with

the package type BG432. Therefore, FPGA chips with a range
of XCV300 up to XCV800 can be implemented. The architecture
of SPYDER-VIRTEX-X2 is depicted in Figure 5.

The Virtex FPGA is closely coupled via a dedicated PCI-
Interface-chip (PLX9080) to a PC. This feature enables both
simple downloading bit images onto the Virtex chip and com-
munication between the PC and the application operating on the
Virtex FPGA via the PCI-bus, which provides a high perfor-
mance bandwidth. The communication makes it possible to
evaluate a running application, e.g., a dedicated IP-Core, before
its integration into an embedded system. Using the PC with its
entire periphery, (e.g. , display, hard disk, keyboard) instead of
a specialized micro controller makes the evaluation process
much easier.

Two powerful extension headers make it possible to con-
nect the Virtex FPGA with further application specific hardware
units, e.g., a micro controller and its core environment, as well
as to assemble a complete embedded system architecture for
emulation purposes. These ports are compatible with the other
tools of the SPYDER-System mentioned above via backplane,
which provides different micro-controller types. A further sig-
nificant feature is the ability to connect all on-board signals via
up to nine high density connectors to a logic analyzer. These
connectors provide a powerful support during the debugging
process. A power supply unit provides the Virtex FPGA with
the necessary voltages: VCore = 2.5V with a current of up to 10
A and VIO with a current of up to 4 A. Two current measure-
ment instruments can be connected inside the different current
path systems for ICore and IIO to measure the power consump-
tion. An arbiter controls the local side of the PCI-bus between
PLX9080 and three different download modes, which can be
summarized as follows:
• download via PCI-bus, set Virtex in slave mode
• download via external master, e.g. a micro controller-unit,

set Virtex in slave mode
• download via serial EEPROMs, set Virtex in master mode,

used for stand-alone mode
Additionally, two on board 128kx32 SSRAM-devices

enable the emulation of applications, which need a large exten-
sion memory for, such things as graphic or large filter applica-
tions. For more information, refer to the corresponding user
manual and data sheet in [2].

3.4 Emulation Platform SPYDER-CORE-P2

Figure 6. Spyder Core P2

1 VxWorks is a trademark of WindRiver systems

serial EEROMs 6 x 1MBit (stand-alone mode)

ARBITER

CPLD

XC95144

PCI-Interface

PLX9080

PC
I-

SL
O

T Xilinx Virtex-FPGA

XCV300..XCV800

BG432

SSRAM

128kx32

1

2
32

30

86

86

extension-
header 1 and 2

logic analyzer
(high density

configuration

connectors)

power
supply

3,3V/4A
2,5V/10A

clock-unit

SSRAM

128kx32

external
download

VIO

 configuration EEPROM

 ICore

VCore

 IIO

2 Virtex is a trademark of Xilinx Inc.

The new high performance SPYDER-CORE-P2 board has
been created for rapid, cost-effective development of software
and hardware of the embedded system, mainly in the spheres of
industrial automation, communication and automotive indus-
tries. The board is designed to run, test and evaluate applica-
tion-specific software components, as well as software
developed by the systems designer company itself or third party
IP-cores. Referring to our design methodology shown in Figure
3, SPYDER-CORE-P2 covers the software portion of the design
flow process.

Figure 6 shows the basic system architecture of the board.
The core part is based on a novel 32-bit Hitachi-SH3 RISC
micro controller with an optional on-chip Digital Signal Pro-
cessing (DSP) module. Together with 1 MB of EPROM
bootspace, 4 MB SDRAM and 1 MB of flash memory, the sys-
tem offers all features to run state-of-the-art software compo-
nents. Due to the availability of a VxWorks board support
package, a wide range of RTOS based software can be tested.

SPYDER-CORE-P2 offers the most important interfaces to
communicate with the surrounding environment. A standard
serial interface, a CAN compliant controller and an ethernet
10Base2 / 10BaseT interface are available. This ethernet feature
allows the integration of the board in a fast ethernet-based
development environment, for example the Tornado Toolkit.1

Two VG96 extension headers can be used to integrate
additional hardware components. This feature allows the addi-
tion of application specific hardware, like additional memory,
graphic controllers or other I/O facilities. All bus signals can be
put through logic analyzer measurement by connectors of mic-
tor type.

Together with SPYDER-VIRTEX or separately, SPYDER-
CORE-P2 can be efficiently used in increasingly wider applica-
tion areas. The board has been carefully optimized for high per-
formance and low power consumption. It contains universal
communication facilities which enable its usage in great variety
of operational and development configurations. Supporting
innovative design approaches and tools, SPYDER-CORE-P2
allows development, modification and the testing of new
designs in shorter time frames, achieving high-quality charac-
teristics.

4 Distributed Developing Environment:
SPYDER-VIRTEX-X3

The next generation of boards called SPYDER-VIRTEX-X3
is currently under development. This system enhances the fea-
tures of the SPYDER series. The most important new feature of
the architecture is its scalability and the possibility to integrate
the emulation system in a world-wide, internet-based, distrib-
uted environment.

4.1 Scaleability
In order to emulate an embedded system design, it is nec-

essary to test several components and their communication with
each other at the same time. Although the SPYDER System is
highly qualified for validating hardware or IP-core components,
there is a limitation given by the complexity of the FPGA chip
used. In principle there are three ways to remove this barrier:

1. Use FPGAs with a higher gate density: This solution
can be used for special designs needing a fixed number
of gates for emulation. Due to increasing cost and tech-

nological and testing problems for ballgrid chips with
hundreds of pins, this approach is not suitable as emula-
tion environment, which could be put into common use.

2. Increase the ‚virtual‘ gate capacity of the FPGA by
using an approach called „run-time-reconfiguration“
(RTC). Run-time reconfiguration is a methodology
focusing to a temporal partitioning of a hardware
design. The result of this process is a set of time-exclu-
sive functional components. Only one of these compo-
nents will be active at the time t0. The goal of RTC is to
load design parts on demand. Using RTC allows the
implementation of designs larger than the physical gate
capacity of the FPGA, because not all parts are active at
the same time. One important restriction of RTC is the
necessity of the existence of time exclusive design com-
ponents.

3. design a scalable emulation system
The new generation of our emulation system uses the third

variant. Although the existing SPYDER-VIRTEX System can be
scaled by connecting up to five boards by a backplane, there are
some limitations regarding the configuration of the FPGAs. To
make the FPGAs in-system-programmable, it is necessary to
connect the boards with the PCI bus of a host PC. Due to the
use of a PC there are restrictions in scalability (number of PCI
slots). When dealing with automotive environments, aircraft
etc., developers often have to test an embedded system without
any additional equipment such as host PCs. They need a scal-
able and powerful emulation environment that also works in
stand alone mode.

Considering this we have decided to develop a scalable
emulation platform with a TCP/IP based interface for configu-
ration and communication.

Figure 7. Basic Architecture of SPYDER-VIRTEX-X3

The SPYDER-VIRTEX-X3 acts as a master of a scalable
environment as shown in Figure 7. Together with SPYDER-
CORE or SPYDER-VIRTEX boards, the developer can use a pow-
erful and flexible emulation environment for testing embedded
system designs without a prototype. The configuration interface
of SPYDER-VIRTEX-X3 is based on a Hitachi SH3 CPU running
the real time operating system VxWorks. Due to the availability
of a TCP/IP stack, this interface can use all TCP/IP based proto-
cols, for example HTTP, FTP or proprietary protocols.

Figure 9 shows our FTP-based interface. The major parts1 Tornado is a trademark of WindRiver Systems

 I

 II

6 III

 IV Xilinx Virtex FPGA
(provide up to 3.2 mio. gates)

XCV2000E up to
XCV3200E

BGA560
I

 II

 III

IV Xilinx Virtex FPGA
(provide up to 3.2 mio. gates)

XCV2000E up to
XCV3200E
BGA560

86
86

86

86

86

86

86

86

backplanesscalable in size

configuration
SH3-7703A

core

8 MB Flash
10/100BaseT

ethernet

Internet
(TCP/IP)

power supply

SSRAM 128k x 32
or

SDRAM 4M x 32

high density
logic analyzer
connectors
extension
header I to IV

are a ftp server running on the real-time operating system
VxWorks and a flash based DOS file system. Both the server
and the flash drivers were developed by us to offer an easy-to-
use reconfiguration environment. The software architecture is
shown in Figure 8.

Figure 8. Software Architecture of SPYDER-VIRTEX-X3

This architecture supplies a set of hardware designs or IP-
cores. These IP-cores are available as bit images, generated by
software tools from VHDL-libraries or other file formats. These
images can be selected and loaded onto the Virtex FPGA
device. In Figure 8, there are basically two sources for tapping
into the design files. The first one is the local file system, based
on a persistent flash memory file system or a volatile, but quick,
RAM disk. The second source is a world-wide network of
external servers, available via the ethernet interface of the board
and the TCP/IP stack of VxWorks. The modified FTP server is
a frontend for managing all the sources and for integrating it in
the environment of the developers host PC. Figure 9 shows the
way this user interface works. Using a standard ftp client pro-
gram, the developer can access the local file system (back-
ground window) of the emulation board as well as the design
files stored on his developing host PC or on an external server
(highlighted window). The most important feature of our ftp
server is the so-called „special directory“. These directories
appear to the user as normal folders, but they are associated
with device drivers.

Figure 9. FTP based interface

By uploading a fpga image file in such a direc-
tory (i.e. , Spyder_I), the files are not stored on the target’s flash
file system, but will be redirected via a driver to the Virtex

FPGA device. This feature offers the ability to reconfigure
FPGAs simply by using drag and drop. Due to the use of the
FTP protocol, the developer can work with any host architec-
ture he wants, such as windows based PCs as well as Unix
workstations or Macintosh computers.

4.2 Distributed Emulation Environment
Due to the TCP/IP facilities of VxWorks, the emulation

environment is not limited to a simple target/host development
environment. Although the ftp interface still offers a comfort-
able and flexible working environment, there are much more
powerful ways to benefit from the internet capabilities of SPY-
DER-VIRTEX-X3.

Due to the global structure of todays business, classical
working environments become more and more obsolete. Imag-
ine a virtual company developing and producing high-end elec-
tronic products. There are software developing offices in the
United States, the hardware developers are Europeans and the
production labs are located in Asia. The developer teams can
work in different locations, some of them develop parts of the
system like ASICs, other engineers have to integreate all parts
of an embedded system.

The challange is to enable a „distributed office“, that
means offering the ability to work together in a simple fashion.
Classical communication paths like email or the world-wide
web are powerful, but sometimes restricted. These restrictions
are based on the different know-how of the parties working
together. Software developers have very good skills in debug-
ging code of any kind, but they are not able to understand a
complex hardware design in detail. Developing very complex
systems, like an airplane or spacecraft, each developer only
knows a part of the whole design in detail. Imagine the follow-
ing situation as an illustration of this point. A hardware devel-
oper team designs a high-end ASIC with millions of transistors.
Due to the complexity of the chip, there are more than one
team, each developing a part of the chip. The system designers
have to integrate the ASIC in an embedded system. Due to the
complexity of the chip, it appears as a black box for these peo-
ple. To fix a bug in the IP-Core design, normally the responsi-
ble ASIC team would have to change their design and to
upgrade the ASIC. Of course they have to guarantee the con-
sitence of the design. Due to the complexity of such an upgrade
process, only the ASIC developers can do it. In pratice they
design a new image file for a FPGA emulating the chip and the
system designers have to load it onto a special FPGA to make it
available on their system. Unfortunately, this process needs a
lot of effort in the area of communication between the teams, so
it is very time consuming.

A solution which avoids such problems is provided by the
internet capabilities of the SYPDER-VIRTEX-X3 system. Using
an configuration interface like the FTP server or maybe a
JAVA-based software frontend, it is possible to upgrade the
entire hardware of the system or parts of it via the internet. The
IP-Core developers take care of the parts of the hardware they
have developed, they can exchange it on the emulation system
without any help from the system integrators. The system
developers can focus their work on the whole embedded sys-
tem.

5 Results
After the introduction of an emulation-based design meth-

odology and the SPYDER tool set, which was developed by our

Flash Memory SDRAM Ethernet

Flash Driver,
DOS file system

RAM Driver,
DOS file system

Ethernet Driver,
TCP/IP stack

Application

FPGA Driver

FPGA

team, it is necessary to document our results and record our
experiences with the system. The past three years were marked
by the development of innovative embedded systems in the area
of industrial automation, communication and automotive. This
was done in cooperation with several companies in which these
embedded systems were used for industrial applications.

5.1 Industrial Automation
A major project was done in cooperation with different

industrial companies and led to the development of an Actuator
Sensor Interface (ASI), a so-called ASI-Master. ASI is a new
system which allows for the connection of up to 128 binary
actuator and sensor devices with an appropriate control unit via
a single bifilar cabel. An additional key feature of this work is
the global access to the ASI-Master via the Internet, which
leads to value-added services as described in [7]. Currently that
project uses the RTOS VxWorks.

During the initial hw/sw partitioning, four tasks run on the
RTOS; two are hard real-time tasks and two tasks have no real-
time constraints.

1. The Int_Service task is a hard real-time constraint task
and is responsible for the data exchange with the slaves.
It generates the current process data image.

2. The Control task is also a hard real-time constraint task
and uses the current process data image to calculate the
control commands.

3. The server task has no real-time requirements and is
responsible for data and command exchange via the
Internet.

4. The embedded C_Server task also has no real-time
requirements and transfers commands between a JAVA
applet running on the calling client computer and the
ASI-Master.

The basic idea of the SPYDER-System is to get a
detailed view of the internal system behavior of complex
embedded systems. In contrast to other approaches like com-
puter simulation, emulation can check „serious“ problems, like
real time behavior. The emulation using the SPYDER System
shows that an RTOS consumes a major part of the total execut-
ion resources, if the reaction times decreases down to the same
delay as the task-switching times. In order to solve that bottlen-
eck, the initial hw/sw partitioning based on an Int_Service rou-
tine in software must be changed and moved to hardware. For
detailed information refer to [4].

5.2 Automotive Industries
In the last months, we worked closely with an automotive

company developing different applications running a real-time
operating System (RTOS). The company had used the hardware
first method. After developing a complex prototype, the soft-
ware developers started to code their applications.

While the automotive team was still developing their hard-
ware, we had started to port the VxWorks RTOS using our SPY-
DER-CORE-P2 emulations system. This was possible and not
difficult even without the availability of the customers own
hardware. Benefiting from the debugging facilities of SPYDER-
CORE-P2, VxWorks was ready to run within two weeks, before
the hardware of our partner company was available.

Using the SPYDER emulation system, the behavior of the
target’s microcontroller architecture could be analyzed in detail

by connecting it to a standard logic analyzer. It was possible to
detect some tricky bugs and to fix them. Because the emulation
system itself was tested, developers can focus on debugging
their own applications, without regard for the problems of
newly available prototypes.

To gain from the benefits of an emulation-based design
methodology, our partner company has decieded to use this
approach in the future by using the SPYDER tool set.

6 Summary
We started with the introduction of state-of-the-art meth-

odologies for designing embedded systems, focussing on hard-
ware-software partitioning. We have shown the basic
restrictions of these classical approaches. Our solution to over-
come these restriction is a new design methodology, which con-
sists of two stages:
• preselection of available components
• validation by emulation

The major advantages of our methodology is a
parallel design flow for hardware and software, rapid prototyp-
ing and the avoidance of dangerous design risks. We have
developed an emulation system called SPYDER to use our
approach with real system designs. The methodology and the
SPYDER tool set are successfully applied in industrial OEM
development projects. Our future work will focus on the inter-
net integration of our emulation environment. The basic goal of
our research activities is a world wide distributed development
environment as introduced in section 4.2.

References
[1] W. Wolf: Hardware-Software Co-Design of Embedded

Systems Proceedings of the IEEE, Vol. 82, No.7, July
1994

[2] I. Katchan, C. Oetker, T. Steckstor, K. Weiß: SPYDER-
VIRTEX-X2 user manual, version 1.0, http://www.fzi.de/
sim/spyder.html, september 1999.

[3] K. Weiß, T. Steckstor, C. Nitsch, W. Rosenstiel:
Performance Analysis of Real-Time-Operation Systems
by Emulation of an Embedded System. 10th IEEE
International Workshop on Rapid System Prototyping
(RSP), Clearwater, Florida, USA, 1999.

[4] K. Weiss, T. Steckstor, W. Rosenstiel: Exploiting FPGA-
Features during the Emulation of a Fast Reactive
Embedded System. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays
(FPGA), Monterey, CA, USA, 1999

[5] K. Weiss, C. Oetker, I. Katchan, T. Steckstor, W.
Rosenstiel: Power Estimation Approach for SRAM-based
FPGAs. International Symposium on Field
Programmable Gate Arrays (FPGA), USA 2000

[6] K. Weiß: Architekturentwurf und Emulation
eingebetteter Systeme. Ph-D. Thesis, University of
Tübingen 15.Oktober 1999

[7] A. Hergenhan, C. Weiler, K. Weiß, W. Rosenstiel:
Value-Added Services in the Industrial Automation.
ACoS’98, Lisabon Portugal, April 1998

