求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
  
 
 
     
   
分享到
如果你是数盲不要紧,补课大数据管理指南
 
作者 雪姬 火龙果软件  发布于 2014-10-17
 



身处大数据时代,无论是金融服务、消费品、旅游交通,还是工业产品领域,企业若想在行业内争得一席之地,必须借助数据分析的力量。企业需要更全面的管理者与“宽客”(quant,定量分析师或金融工程师——译者注)搭档,有效利用他们的分析,达成高质量决策。

如果你通晓宽客的语言,一切好说(例如凯撒娱乐(CaesarsEntertainment)的加里·洛夫曼(GaryLoveman),麻省理工学院博士;亚马逊的杰夫·贝索斯,普林斯顿大学电气工程、计算机专业学士;谷歌的谢尔盖·布林和拉里·佩奇,斯坦福大学计算机专业博士肄业);但一般高管的数学和统计学知识还停留在大学本科水平。或许你能熟练使用电子表格,看懂条形图和饼状图,但如果碰上复杂的数据分析,你的数学恐怕不够用。

如今大数据已全面介入决策制定,这场革命中的你,如何自我定位?如何避免失败的命运,带领企业力争上游,至少不落伍?本文根据大量高管采访写就,结合了笔者的教学与咨询经验,可为数盲管理者提供基本参考。

首先要记住,作为数据分析的实际使用者,你的任务是判断模型与现实的相符程度。承担这一重要职责,需要管理者进行自身调整,转变心态和思路,并适当补充专业知识。具体来说,可以从下列五方面着手:

一、开始补课

要想听懂宽客在说什么,最好记得大学统计学的基本内容,否则需要去补补回归分析、统计推断和实验设计的课。你应该理解推出结论的过程,并适时质疑模型假设是否站得住脚。(参见边栏“从数据分析到决策制定——六大关键步骤”。)

二、找到合适的宽客

卡尔·肯普夫(KarlKempf)是英特尔工程决策团队的负责人之一,人称“超级宽客”。他常常说,高质量的定量决策“无关数学”,而全在于“关系”。分析师和决策者需要深层次的相互信任,能够自由地交换信息,沟通想法。

不过众所周知,沟通往往不是技术人员的强项。有人曾打趣说,“你跟宽客说话的时候,十个有九个盯着自己的鞋,剩下那一个盯着你的鞋”。话虽如此,能正常沟通的分析师大有人在:宽客不都是数学狂人,也愿意在商界大显身手。

三、抓好首尾环节

正确提出问题是大数据决策最重要的一环,最考验你的经验和直觉。但假设终归只是假设。严谨的分析方法能检验,你提出的假设是否如实描述了世界的运转。

此外,还需关注大数据管理流程中的最后一步:向其他高管呈现分析结果。很多分析师不注重沟通,有时你必须亲自出马。数据分析实际就是“用数据讲故事”。

四、多提问

美国前财政部长劳伦斯·萨默斯曾在一家量化对冲基金担任顾问。他告诉我,那份工作的主要职责就是“找茬”:向智力过人的分析师提出有挑战性的问题,促使他们重新审视自己的假设和模型。经受这样的考验,会使分析团队反省和改进他们的工作。

比如几个基本问题供参考:

1)你的数据来源是什么?

2)样本在多大程度上精确反映总体?

3)样本是否包含异常值?对结果有何影响?

4)你的分析依据哪些假设?在哪些情况下假设可能不成立?

5)为什么你选择了这种分析方法?有没有可能使用其他方法?

6)是否有可能错把非独立变量当成了独立变量?其他分析模型有可能更清楚地揭示因果关系吗?

五、鼓励质疑

我们都知道,数字会说谎,骗子最喜欢用数字骗人。永远不要指挥分析师:“看看能不能用数据支持我的想法。”相反,应树立尊重事实的风气。如默克集团分析团队负责人所说:“管理层希望我们以中立、客观的精神,只为股东利益服务。”

很多资深管理者乐于看到分析师在决策过程中唱反调,期望形成鼓励质疑的企业文化,让预测模型越来越精确。加里·洛夫曼也是质疑文化的倡导者:“在所有人都拼命讨好上司的地方,更有必要树立实事求是的风气。”

 
分享到
 
 
 
 



利用Gitlab和Jenkins做CI
CPU深度学习推理部署优化
九种跨域方式实现原理
 
 讲座 设计模式C语言
 讲师:薛卫国
 时间:2019-4-20
 
 
每天2个文档/视频
扫描微信二维码订阅
订阅技术月刊
获得每月300个技术资源
 
希望我们的资料可以帮助你学习,也欢迎投稿&提建议给我
频道编辑:winner
邮       件:winner@uml.net.cn

关于我们 | 联系我们 | 京ICP备10020922号 京公海网安备110108001071号