UML软件工程组织

Java中的Sizeof(二)
作者:Vladimir Roubtsov,顾恺(译) 来 源: 赛迪网
接上一篇Java中的Sizeof(一)。在做了所有这些准备之后,下面就是这种图形遍历的标准实现:
public static IObjectProfileNode profile (Object obj)
    {
        final IdentityHashMap visited = new IdentityHashMap (); 
        
        final ObjectProfileNode root = createProfileTree (obj, visited,
                                                          CLASS_METADATA_CACHE);
        finishProfileTree (root);
        
        return root;  
    }
    
    private static ObjectProfileNode createProfileTree (Object obj,
                                                        IdentityHashMap visited,
                                                        Map metadataMap)
    {
        final ObjectProfileNode root = new ObjectProfileNode (null, obj, null);
        
        final LinkedList queue = new LinkedList ();
        
        queue.addFirst (root);
        visited.put (obj, root);
        
        final ClassAccessPrivilegedAction caAction =
            new ClassAccessPrivilegedAction ();
        final FieldAccessPrivilegedAction faAction =
            new FieldAccessPrivilegedAction ();
        
        while (! queue.isEmpty ())
        {
            final ObjectProfileNode node = (ObjectProfileNode) queue.removeFirst ();
            
            obj = node.m_obj;
            final Class objClass = obj.getClass ();
            
            if (objClass.isArray ())
            {           
                final int arrayLength = Array.getLength (obj);
                final Class componentType = objClass.getComponentType ();
                
                // Add shell pseudo-node:
                final AbstractShellProfileNode shell =
                    new ArrayShellProfileNode (node, objClass, arrayLength);
                shell.m_size = sizeofArrayShell (arrayLength, componentType);
                
                node.m_shell = shell;
                node.addFieldRef (shell);
                
                if (! componentType.isPrimitive ())
                {
                    // Traverse each array slot:
                    for (int i = 0; i < arrayLength; ++ i)
                    {
                        final Object ref = Array.get (obj, i);
                        
                        if (ref != null)
                        {
                            ObjectProfileNode child =
                                (ObjectProfileNode) visited.get (ref);
                            if (child != null)
                                ++ child.m_refcount;
                            else
                            {
                                child = new ObjectProfileNode (node, ref,
                                    new ArrayIndexLink (node.m_link, i));
                                node.addFieldRef (child);
                                
                                queue.addLast (child);
                                visited.put (ref, child);
                            }
                        }
                    }
                }
            }
            else // the object is of a non-array type
            {
                final ClassMetadata metadata =
                    getClassMetadata (objClass, metadataMap, caAction, faAction);
                final Field [] fields = metadata.m_refFields;
                
                // Add shell pseudo-node:
                final AbstractShellProfileNode shell =
                    new ObjectShellProfileNode (node,
                                                metadata.m_primitiveFieldCount,
                                                metadata.m_refFields.length);
                shell.m_size = metadata.m_shellSize;
                
                node.m_shell = shell;  
                node.addFieldRef (shell);
                
                // Traverse all non-null ref fields:
                for (int f = 0, fLimit = fields.length; f < fLimit; ++ f)
                {
                    final Field field = fields [f];
                    
                    final Object ref;
                    try // to get the field value: 
                    {
                        ref = field.get (obj);
                    }
                    catch (Exception e)
                    {
                        throw new RuntimeException ("cannot get field [" +
                            field.getName () + "] of class [" +
                            field.getDeclaringClass ().getName () +
                            "]: " + e.toString ());
                    }
                    
                    if (ref != null)
                    {
                        ObjectProfileNode child =
                            (ObjectProfileNode) visited.get (ref);
                        if (child != null)
                            ++ child.m_refcount;
                        else
                        {
                            child = new ObjectProfileNode (node, ref,
                                new ClassFieldLink (field));
                            node.addFieldRef (child);
                            
                            queue.addLast (child);
                            visited.put (ref, child);
                        }
                    }
                }
            }
        }
        
        return root;
    }

    private static void finishProfileTree (ObjectProfileNode node)
    {
        final LinkedList queue = new LinkedList ();
        IObjectProfileNode lastFinished = null;

        while (node != null)
        {
            // Note that an unfinished nonshell node has its child count
            // in m_size and m_children[0] is its shell node:
             
            if ((node.m_size == 1) || (lastFinished == node.m_children [1]))
            {
                node.finish ();
                lastFinished = node;
            }
            else
            {
                queue.addFirst (node);
                for (int i = 1; i < node.m_size; ++ i)
                {
                    final IObjectProfileNode child = node.m_children [i];
                    queue.addFirst (child);
                }
            }
            
            if (queue.isEmpty ())
                return;
            else              
                node = (ObjectProfileNode) queue.removeFirst ();
        }
    }


    该代码是上一篇Java Q&A, "Attack of the Clones."使用的"通过反射克隆"实现的远亲。如前所述,它缓存了反射元数据来提高性能,并且使用了一个标识散列映射来标记访问过的对象。profile()方法从宽度优先遍历中的具有IObjectProfileNode的生成树的原始对象图形开始,以合计和分配所有节点尺寸的快速后序遍历结束。profile()返回一个 IObjectProfileNode,即产生的生成树的根,它的尺寸就是整个图形的尺寸。
    当然, profile()的输出只有当我有一个很好的方法扩展它时才有用。为了这个目的,每个IObjectProfileNode 必须支持由节点访问者和节点过滤器一起进行的测试:


interface IObjectProfileNode
{
    interface INodeFilter
    {
        boolean accept (IObjectProfileNode node);
        
    } // End of nested interface

    interface INodeVisitor
    {
        /**
         * Pre-order visit.
         */
        void previsit (IObjectProfileNode node);
        
        /**
         * Post-order visit.
         */
        void postvisit (IObjectProfileNode node);
        
    } // End of nested interface

    boolean traverse (INodeFilter filter, INodeVisitor visitor);

    ...
    
} // End of interface


    节点访问者只有当伴随的过滤器为null或者过滤器接收该节点时才对树节点进行操作。为了简便,节点的子节点只有当节点本身已经测试时才进行测试。前序遍历和后序遍历访问都支持。来自java.lang.Object处理程序的尺寸提供以及所有初级数据都集中放在一个伪码内,这个伪码附属于代表对象实例的每个"真实"节点。这种处理程序节点可通过IObjectProfileNode.shell()访问,也可在IObjectProfileNode.children()列表中显示出来:目的就是能够编写数据过滤器和访问者,使它们可在实例化的数据类型的同一起点上考虑初级数据。
    如何实现过滤器和访问者就是你的事了。作为一个起点,类ObjectProfileFilters (见本文的download)提供几种有用的堆栈过滤器,它们可帮助你在节点尺寸、与父节点的尺寸相关的节点尺寸、与根对象相关的节点尺寸等等的基础上剪除大对象树。
    ObjectProfilerVisitors类包含IObjectProfileNode.dump()使用的默认访问者,也包含能够为更高级的对象浏览创建XML转储的访问者。将配置文件转换为SwingTreeModel也是很容易的。
    为了便于理解,我们创建了一个上文提及的两个字符串排列对象的完整转储:


public class Main
{
    public static void main (String [] args)
    {
        Object obj = new String [] {new String ("JavaWorld"),
                                    new String ("JavaWorld")};
        
        IObjectProfileNode profile = ObjectProfiler.profile (obj);
        
        System.out.println ("obj size = " + profile.size () + " bytes");
        System.out.println (profile.dump ());
    }
    
} // End of class


    该代码结果如下:


obj size = 106 bytes
  106 -> <INPUT> : String[]
    58 (54.7%) -> <INPUT>[0] : String
      34 (32.1%) -> String#value : char[], refcount=2
        34 (32.1%) -> <shell: char[], length=9>
      24 (22.6%) -> <shell: 3 prim/1 ref fields>
    24 (22.6%) -> <shell: String[], length=2>
    24 (22.6%) -> <INPUT>[1] : String
      24 (22.6%) -> <shell: 3 prim/1 ref fields>


    实际上,如前所述,内部的字符排列(被java.lang.String#value访问) 可被两个字符串共享。即使ObjectProfiler.profile()将该排列的从属关系指向第一个发现的字符串,它还是通知说,该排列共享(如它的下一句代码refcount=2所示)。


简单的sizeof()
    ObjectProfiler.profile()创建了一个节点图形,它的尺寸一般来说是原始对象图形的几倍。如果你只需要根对象尺寸,你可以使用更快更有效的方法ObjectProfiler.sizeof(),它可通过非递归的深度优先遍历来实现。


更多范例
    我们将profile()和sizeof()函数应用到一对范例中。
JavaString是声名狼藉的存储浪费者,因为它们太普遍了,而且普通字符串的使用模式的效率相当低。我相信你明白,普通的字符串串联操作器通常产生不紧凑的String。下列代码:
String obj = "Java" + new String ("World");
    产生以下配置文件:


obj size = 80 bytes
  80 -> <INPUT> : String
    56 (70%) -> String#value : char[]
      56 (70%) -> <shell: char[], length=20>
    24 (30%) -> <shell: 3 prim/1 ref fields>


    值字符排列拥有20个char,尽管它只需要9个。将它与"Java".concat ("World") or String obj = new String ("Java" + new String ("World"))的结果对比:


obj = new String ("Java" + new String ("World"))的结果对比: 
obj size = 58 bytes
  58 -> <INPUT> : String
    34 (58.6%) -> String#value : char[]
      34 (58.6%) -> <shell: char[], length=9>
    24 (41.4%) -> <shell: 3 prim/1 ref fields>


    很明显,如果你分配通过串联操作器或者StringBuffer.toString()函数构造的字符串属性给许多对象(这两种情况实际上是非常相关的),并且如果你改为使用concat()或者String 复制构造器的话,你就能改善内存消耗。
    为了更加深入的讨论这个问题,我给出了一个稍微深奥的例子,下面这个访问者/过滤器检查对象,并报告其里面所有不紧凑的String:


class StringInspector implements IObjectProfileNode.INodeFilter,
                                         IObjectProfileNode.INodeVisitor
        {
            public boolean accept (IObjectProfileNode node)
            {
                m_node = null;
                final Object obj = node.object ();
                if ((obj != null) && (node.parent () != null))
                {
                    final Object parentobj = node.parent ().object ();
                    if ((obj.getClass () == char [].class)
                        && (parentobj.getClass () == String.class))
                    {
                        int wasted = ((char []) obj).length -
                                      ((String) parentobj).length (); 
                        if (wasted > 0)
                        {
                            m_node = node.parent ();
                            m_wasted += m_nodeWasted = wasted;
                        }
                    }
                }
                return true;
            }
            
            public void previsit (IObjectProfileNode node)
            {
                if (m_node != null)
                    System.out.println (ObjectProfiler.pathName (m_node.path ())
                     + ": " + m_nodeWasted  + " bytes wasted");
            }
            
            public void postvisit (IObjectProfileNode node)
            {
                // Do nothing
            }
            
            int wasted ()
            {
                return 2 * m_wasted;
            }
            
            private IObjectProfileNode m_node;
            private int m_nodeWasted, m_wasted;
            
        }; // End of local class


        IObjectProfileNode profile = ObjectProfiler.profile (obj);

        StringInspector si = new StringInspector ();
        profile.traverse (si, si);
        System.out.println ("wasted " + si.wasted () + " bytes (out of " +
            profile.size () + ")");


    为了使用sizeof(),我们看看LinkedList() vs ArrayList()。该代码繁殖了拥有1000个空引用的列表:


List obj = new LinkedList (); // or ArrayList
        for (int i = 0; i < 1000; ++ i) obj.add (null);
        
        IObjectProfileNode profile = ObjectProfiler.profile (obj);   
        System.out.println ("obj size = " + profile.size () + " bytes");


    产生的结构的尺寸就是列表实现的存储总和。对于LinkedList 和ArrayList收集实现, sizeof()分别报告20,040和4,112 字节。即使ArrayList在它的尺寸之前增长了内部容量(这样任何时候都会损失几乎50%的容量;这样做是为了分期偿还插入常量的费用),它的基于排列的设计的内存效率远远高于LinkedList()双链接的列表实现,这种列表实现创建了20字节的节点来存储每个值(这并不是说你不应该使用LinkedList:他们保证了未偿还的常量插入的性能,在其他事物之中的这种性能。)


限制
    ObjectProfiler的方法并不完美。除了我们前面解释过的忽略存储队列这个问题之外,另一个严重问题就是Java对象可以共享非静态的数据,例如,当实域指向全局singleton和其他共享内容时,这些内容就可以共享。
    以DecimalFormat.getPercentInstance()为例。尽管他每次返回一个新的NumberFormat ,但是所有这些NumberFormat通常都共享Locale.getDefault() singleton。所以,即使 sizeof(DecimalFormat.getPercentInstance())每次都报告1,111 字节,他还是估计过高。 这实际上只是定义Java对象的尺寸测量过程中的另外一个概念难点的表现而已。在这种情况下,ObjectProfiler.sizedelta(Object base, Object obj) 很容易得到:该方法遍历根于base 的对象图形,然后在第一次遍历的过程中使用访问过的对象配置obj。因此结果可作为看起来好像不属于base的obj拥有的数据的总尺寸而得到有效地计算。换句话说,实例化给定的obj所需的内存量就等于base现有的内存量(共享对象已经有效的删除)。
    sizedelta(DecimalFormat.getPercentInstance()、 DecimalFormat.getPercentInstance())报告:每个子序列格式实例化需要741个字节,对比Java Tip 130的类Sizeof测量的更加精确的752个字节的值来,出现了少数字节的偏离,但是比原来的 sizeof()估测要好的多。
    ObjectProfiler不能看到的另外一种类型的数据就是本地存储分配。java.nio.ByteBuffer.allocate(1000) 的结果是JVM 堆分配的1050个字节的结构,但是ByteBuffer.allocateDirect(1000)看起来只有140 个字节;这是因为真正的存储是在本地存储中分配的。这时你需要放弃纯Java,转为使用基于JVM分析器接口(JVMPI )的分析器。
    同一个问题的另外一个相当含糊的例子就是:在测量Throwable. ObjectProfiler.sizeof(new Throwable())例子的过程中只报告20个字节,这与Java Tip 130的类Sizeof报告的272个字节的结果大相径庭。究其原因,是因为在Throwable中有一个隐藏域:
private transient Object backtrace;
    JVM采用一种特殊的方式来处理这个隐藏域:他不显示在反射的调用中,即使它的定义在JDK源文件中看得到。很明显,JVM利用对象的这个属性来存储支持堆栈回溯的一些250个字节的本地数据。
    最后,如果分析对象的过程中用到了java.lang.ref.* 引用,产生的结果就会让人迷惑 (例如,结果可能会在同一对象的复制的sizeof() 调用之间变动)。这是因为弱引用在应用程序中创建了多余的并行,并且遍历这种图形的绝对事实可能修改了弱引用的可到达性状态。而且,公然的进入java.lang.ref.Reference 内部结构,ObjectProfiler 的这种行事方式并不是纯Java代码应该做的事。增强遍历代码,以避开所有非强引用对象(它也不是很确定这种到根对象的数据属性是否在第一位置),这可能是最好的选择。


总结
    本文深入讨论了如何建立一个纯粹的Java对象分析器。我的经验是:通过简单的方法如ObjectProfiler.profile()来分析大型的数据结构,可以轻而易举地节省百分之几十甚至百分之百的内存消耗。这种方法是商业分析器的补充,商业分析器也是旨在演示JVM堆内部发生的非常浅的(不基于图形的)视图。如果没有其他事,看一看对象图形内部也是大有裨益的。

关于作者

Vladimir Roubtsov从1995年以来具有了14年的使用各种语言编程的经验,包括Java在内。目前,作为一个资深工程师,他为德克萨斯州的Austin的Trilogy 开发企业软件。


版权所有:UML软件工程组织