
UML as a representation for Interaction Design

Panos Markopoulos and Peter Marijnissen
IPO - Center for User-System Interaction

Eindhoven University of Technology
Den Dolech 2, PO Box 513, 5600MB Eindhoven, The Netherlands

P.Markopoulos@tue.nl, P.J.Marijnissen@tue.nl

Abstract

This paper examines the use of the Unified Modeling
Language (UML) as a representation for interaction
design. We discuss the trade-offs related to applying
UML outside its intended application domain and the
suitability of UML components for modeling various
aspects of interaction: representing user requirements,
early envisionment of interaction, task modeling, navi-
gation and detailed interaction specification. Where
appropriate we propose and illustrate the combination
of UML with purpose-specific notations.

Keywords: Unified Modelling Language, User Interface
Specification, Task Modelling, Navigation,
Interaction Design.

1. Introduction
UML [5, 20] is a family of notations which is emerg-

ing as the de facto industry standard for the specification
of object oriented software. The spread of UML among
software practitioners suggests that we consider whether
and how UML can serve as a modeling technique for
human computer interaction (HCI) design. Interaction
design is outside the canonical scope of UML, which is
the specification of a software system. Interaction design
practice can benefit from adopting the industry standard
in object modeling, particularly through potential im-
proved communication among interaction designers and
software developers. This possibility is drawing in-
creasing attention, notably by a series of workshops on
object modeling for interaction design, e.g., [2].

This paper examines how UML can help specify vari-
ous representations employed in interaction design, the
limitations of UML notations for this domain and where
it is beneficial to combine UML with HCI purpose-
specific notations. We constrain this ‘pick and mix’
approach to modeling by the following stipulations:
 Where modeling is served sufficiently by a UML

notation then that notation should be used.
 We expose difficulties and caveats in applying UML

notations outside their intended scope, weighing them
against the use of purpose-specific representations.
The paper does not review HCI-notations extensively.

Rather, it employs a few tried and tested notations which
complement UML. Related work has proposed method-
ologies for combining interaction design and object
modeling [9,19]. Here we take a less prescriptive ap-
proach discussing design representations, independently
of the design process. Without proposing or advocating
a methodology for interactive system design, we distin-
guish the following broad categories of representations
used for interaction design:
 Scenarios for envisioning systems at early stages of

the design process.
 Task and domain models for a more thorough and

complete representation of user requirements.
 Abstract models of interaction, describing the coarse

organisation of interactive elements into groups and
navigation between such groups.

 Detailed interaction models, describing the ‘look and
feel’ and the dynamic aspects of interaction down to
the level of individual interactive objects.
Section 2 discusses scenarios and use cases, illustrat-

ing differences in form and content between their numer-
ous variants. Section 3 discusses task models. Domain
models are a common modeling concern for software

developers and interaction designers alike; they can be
modeled as UML class diagrams and we do not discuss
them further in this paper. Navigation and grouping of
interaction objects is discussed in section 4. Section 5
discusses more detailed interaction specification. Fi-
nally, section 6 discusses the conclusions from this ana-
lytical investigation and future research steps.

2. Scenarios and use cases
There is some confusion concerning the relationship

between scenarios as understood in the field of HCI
(interaction scenarios for short) and use cases, as defined
within UML. Very diverse representations serving dif-
ferent modeling purposes are described by their propo-
nents as scenarios or use cases. While the dominance of
UML makes use cases somewhat a less ambiguous con-
cept, scenarios are not part of a singular family of nota-
tions, and scenario based design is not a single, coherent
design method. Rather, scenarios are a theme common
to very varied design approaches and activities. Two
classic collections of articles in [22] and [6] illustrate
how varied meanings the term scenario may have in the
field of HCI and how varied design approaches are
called scenario-based.

UML [5] defines a use case as a classifier, which de-
scribes a set of sequences of actions that a system per-
forms to yield an observable result of value to an actor.
In UML parlance a scenario is a single such sequence of
actions, which instantiates a use case. UML use cases
are used throughout software development and individual
use cases are instrumental to support traceability between
these models. We note the following major differences
between use cases and interaction scenarios:
 Use cases describe the behaviour of the system under

design not of the user using it. For some authors, an
interaction scenario, captures primarily user rather
than system behaviour. E.g., Carroll suggests that a
scenario identifies the person, their motivations, de-
scribes the actions and the reasons that these actions
were taken and characterises their results in terms of
the users’ motivations and expectations [7]. Even if
system behaviour only is described, an interaction
scenario describes functionality from the viewpoint of
a single user – who may be one of the many actors
related to a use case.

 Use cases are performed by actors who, apart from
human users, can also be systems.

 Use cases specify system functionality. At a semantic
level they can serve as a specification of interactions,
but they normally abstract away from user interface
specifics (see for example [8]). An interaction sce-

nario aims precisely to envision and specify user inter-
face design ideas or decisions [7, 11].
The points above are independent of the representa-

tion style; they concern the essence of use cases and
interaction scenarios. Both use cases and interaction
scenarios can be represented in many forms: narrative,
structured text or they can be associated with story-
boards, notations such as state machines, pre-and post-
conditions associated with interactions, etc. We can
think of use cases and interaction scenarios as different
classes of design representations distinguished by con-
tent, viewpoint and intended use in design.

The overlap between use cases, scenarios as specifi-
cations of an interface and task models (the latter are the
topic of section 3) is discussed in [2] propose a separate
model, which summarises common content and supports
the traceability between these three types of representa-
tions. Although a useful conceptualisation, that model
does not adequately portray the shift in viewpoint be-
tween use cases and scenarios/task models. One way to
distinguish the interactions with each actor, employed
within the WISDOM method [19], is to describe use
cases with activity diagrams, distinguishing the interac-
tions of each actor on a separate ‘swimlane’. The re-
sulting activity diagram is still substantially different to
an interaction scenario.

The example below illustrates the variation in content
and form between use cases described as a structured
narrative, adapting the template of Cockburn [8], as a
user story [3] and as an interaction scenario also written
as a story [11]. User stories are a form of use cases,
described in a very informal text, used within streamlined
software development [3]. A user story contains the
most essential elements of the use case: the actor, the
main event path and the context of execution. Like a use
case it describes the system operation required by an
actor to achieve its goal. Correspondingly, Erickson [11]
describes a form of interaction scenarios, which he calls
‘stories’, which help capture design rationale, involve
users and transfer design knowledge.

2.1. Example
This example is drawn from a collaborative project

with BOVA, a Dutch luxury coach manufacturing com-
pany. The project aims to support their business process
for product improvement, by an intranet-based system
called BOVANET. BOVANET will automate field
reporting and handling warrantee claims, to speed up
detecting and resolving potential problems with operat-
ing coaches. It will be employed in different countries of
Europe and it will interact with existing software sys-
tems, e.g., databases, company intranet, etc.

We will discuss the use case “Dealer Submits Field
Report” which is introduced as a sub-case of “Handle
Field Report”. In the user and the interaction stories we
use the pseudonym ‘Anelka’ for the main actor.
1. Use Case: Handle Field Report
Context: Supports the business level goal of speed-

ing up the product improvement cycle.
Scope: BOVA organisation.
Primary actor: Dealer: An office worker in a company

that sells BOVA coaches in Europe.
Other Actors: BOVA-NL.
Pre-condition:Dealer is notified of a technical problem of

a coach in operation.
Main Event Path:

1.1 Dealer submits field report.
1.2 BOVA-NL manages problem report.
1.3 BOVA-NL publishes service bulletin.

Post Conditions: BOVANET confirms reception of Field
Report and publishes it in a collection of
all field reports.

1.1 Use Case: Dealer submits field report
Context: This use case supports the goal of auto-

mating report handling.
Scope: BOVANET only.
Primary actor Dealer
Other Actors: Client (owner of a BOVA coach).
Pre-condition:Dealer receives complaint or warrantee

claim.
Main Event Path:

1.1.1 Dealer writes a Field Report.
1.1.2 Dealer enters Field Report to BO-
VANET.
1.1.3 BOVANET confirms that BOVA has
received the Field Report.

Post Conditions: BOVANET confirms reception of field
report.

User Story: Dealer submits Field Report
By talking to clients Anelka, a dealer for BOVA, no-

tices a recurring mechanical problem with BOVA buses.
Anelka describes the problem in a “Field Report” and
enters the Field Report into the BOVANET system.
After a while, BOVANET sends a confirmation message
for reception of the field report.
Interaction Story: Dealer submits Field Report

A client from Paris calls Anelka to complain about a
mechanical problem with a coach in operation. Anelka
enters the information to BOVANET while speaking to
this client on the phone. From the entry page of BOVA-
NET, he selects a link Field Report and then opens a new
Field Report. This is an electronic form that looks like
the old paper version. The date, the establishment and
his name are filled in automatically. BOVANET offers
a choice of possible categories of problems: Anelka

selects ‘Engine’. He types in a brief description of the
problem and enters the relevant part numbers with the
help of the BOVANET part-browser. Anelka has a last
look, and pushes the button labeled ‘submit to BOVA-
NL’. After a few seconds, an automatically generated e-
mail arrives in his message box.

We make the following observations on this example:
 The interaction scenario is over-elaborate as a func-

tionality specification and has an implementation bias:
e.g., using links, forms, pushing buttons.

 The use case involves several actors, two of which are
users of the BOVA system without clarifying the
functionality offered to each. The interaction sce-
nario, gives a user-specific view of the same function-
ality describing the interface for this user.

 The user story is the briefest and simplest description.
It contains broadly the same information as the struc-
tured use case description, although the relevant parts
are not explicitly characterised as ‘actors’, ‘pre-
condition’, etc.

 The user story personifies the main actor, but this has
no direct significance for the functional specification.
On the contrary, identifying the user in the interaction
story pertains to a categorisation of users. In our ex-
ample, a user study has prompted a categorisation by
the establishment they work for (rather than a finer
distinction by job-function) and by nationality. Both
are reflected in the interaction scenario.

 There are many more variants of scenarios and use
cases, each with their own proponents and advantages.
The similarity of representation forms involves a dan-
ger of confusing interaction scenarios for functionality
specifications, or of committing use cases to interac-
tion design decisions. While there is an overlap in
content use cases and interaction scenarios have dif-
ferent content, purpose and viewpoint. Ensuring that
these design representations have the right content,
and are used appropriately is not a notational issue
but, rather, a process issue, which should be addressed
by the methodology for designing and developing in-
teractive systems.

3. Task Modeling
HCI research has spawned a number of design ap-

proaches, which share a commitment to base design on
task analysis, e.g., [14, 16, 21, 23]. The theoretical
foundations of task analysis techniques vary, but the
representations used converge in the following ways [4]:
 The decomposition of user tasks to sub-tasks is repre-

sented as a tree structure.
 Task trees are decorated with temporal ordering of

task activity.

 Ele
do
Cl

form
 As

use
(de
sho

 Us
act
rat

 Th
spe
anc
mo
scr
tas
gra
Th

tasks
use ca

3.1.
Th

tomer
curTa
mode
 It

beh
iou
in

 To
cat
W

top le
cloud
tasks,
Figure 1. A ConcurTaskTree [21] representation of the Dealer’s task ‘Handle Complaint’. The
diagram was created using the editor provided by CNUCE [10].
mentary task activity is associated with task-
main representations in terms of objects.
early, a task model can be rendered in the same
as use cases. We note the following caveats:
 with scenarios, a task model describes primarily
r activity and can refer to user interface elements
pending on level of abstraction) while use cases
uld abstract away from these issues.

e cases confound functionality used by multiple
ors of the system, while task models describe sepa-
ely the goal oriented activity of individual users.
e apparent gain of using the same notation for
cifying functionality and tasks must be counterbal-
ed by the possible confusion between use cases
deling system-wide function and use cases de-
ibing single user interaction. On the other hand
k hierarchies are simple representations easily
spable, even to share with users.
e example below compares the specification of
using a purpose-specific task modeling notation,
ses and UML’s activity diagrams.

Example
is example specifies the task of handling a cus-
 complaint. First the task is specified using Con-
skTrees [21]. Out of the many options for task
ling we choose this notation because:
provides powerful operators that capture recurring
aviours for user-system interaction. These behav-
rs would otherwise result in complex specifications

a simpler notation.
ol support is provided by CNUCE as a Java appli-
ion downloadable from [10].
e explain briefly the task model of Figure 1. The
vel task ‘Handle Complaint’ is abstract, shown as a
. This means that it involves a mix of interactive
 user tasks and application tasks. It decomposes to

three sub-tasks. These are performed in sequence with
an information flow between them, denoted by the sym-
bol []>>. Sub-tasks represented by a face-icon, are per-
formed by the user. The icon showing a character oper-
ating a computer denotes a task performed conjointly by
human and machine. The symbol ||| relates tasks which
are performed concurrently in any order.

The task model of Figure 1 does not describe the op-
eration of the system under design, i.e. it specifies the
task as it is performed prior to the introduction of the
system under design. However, we could use the same
notation to represent how the designer envisions the task
performance with the system under design [18]. The tree
describes the task of a single user and a separate ‘coop-
eration tree’ specifies the cooperation between users
[21]. In UML, the involvement of many users is illus-
trated by a use case diagram, as in Figure 2. To specify
user tasks we must constrain the use cases to describe the
functionality used and observed by a single user. Differ-
ent use cases would need to be written to specify the
tasks of the remaining users.

A task model may describe user activities, outside the
scope of the specified system functionality. If interac-
tion-tasks are specified the task model may refer to user
interface-specific elements. This is useful for thinking
about the task and the user interface design, but is a ver-
bose and unclear specification of system functionality
when compared to the standard use case model.

We illustrate this point by specifying the task ‘Handle
Claim’ using use cases. We obtain a succinct textual
representation of the task, but one which has a distinctly
different scope than the use cases of section 2. The
change in name and context reflect the different view-
point: we do not describe the business process of han-
dling field reports but a single user task, embedded in
this process.
Use Case: Dealer Handles Customer Complaint

Context: Complaint handling in current situation.
Scope: BOVA organisation
Primary actor Dealer
Other Actors: Clients, BOVA-NL, Solver (contracted

garages)
Main Event Path:

1. Record Complaint
2. Resolve Complaint
3. Manage Payment

Post Conditions: Complaint has been resolved and paid.
Information about the complaint is ar-
chived for later processing.

1. Use Case: Record Complaint
Context: A client telephones or faxes a complaint.
Scope: Dealer Establishment
Primary Actor: Dealer
Other Actors: Client
Main Event Path:

1.1. Receive Complaint from Client
1.2. Note Complaint Details on Paper
1.3. Type-in Standard Request Form

2. Use Case: Resolve Complaint
Context: Complaint Details have been recorded
Scope: Dealer and Solver Establishment
Primary Actor:Dealer
Other Actors: Client, Solver (contracted repair garage)

Main

3. Us
Conte

Scope
Prima
Other
Main

3.1. BOVA-NL sends judgement con-
cerning warrantee cover
3.2 Negotiate Price with Client

Extensions
1.1.a Submitted Data is incomplete.

1.1.a.1. Call customer
1.1.a.2. Ask info from company central database

2.2.a Solver deals directly with client
3.2.a Client uses invoices to negotiate discount for a new
coach purchase.

The same task is specified in Figure 3 using UML’s
activity diagrams. This notation is most useful during
requirements capture to specify the activity of different
actors and during software specification to specify the
order of execution of object-methods. Activity diagrams
captures sequencing information about the task quite
clearly and succinctly, allowing for the specification of
unordered or concurrent activities. The allocation of
activities to actors can also be shown, by partitioning the
diagram into swimlanes (a construct not used here).
Activity diagrams do not show as clearly (as concur-
TaskTrees) the hierarchical decomposition of tasks, and
tend to bring in excessive detail.

In conclusion, we make the following observations:
 Use cases and activity diagrams are quite intuitive

representations of temporal ordering of tasks.
 Different use cases should specify the task of each

actor using the same system functionality.
 Both use case and activity diagrams do not show

clearly task decomposition structure. The use of an
external to UML notation like ConcurTaskTrees is a
useful but not always necessary addition to UML.

4. Abstract Interaction Model
An abstract interaction model is a high level descrip-

tion of the user interface. Such models have been used
within model based design approaches, e.g., [14,18], or
Record Complaint

Resolve Complaint

Manage Payment

Dealer
Manager

Client

BOVA-NLSolver

Figure 2. Use Case Model for the task
‘Handle Complaint’
Event Path:
2.1. Archive Claim
2.2. Monitor Solver
2.3. Spot Recurring Problem

e Case: Manage Payment
xt: Complaint has been resolved, client sub-

mits a warrantee claim
: BOVA organisation
ry Actor:Dealer
 Actors: BOVA-NL, Client
Event Path:

are thought of as ‘low-fidelity’ prototypes in prototyping
approaches, e.g., [15]. The abstract interaction model
describes:
 The groupings of interactive objects into screens,

windows or dialogues.
 The navigation between theses groups.

The drawing of figure 4 illustrates how interactive
objects are grouped together into the screen Field Report.
The abstract interface model is a rough indication only of
the layout and the presentation of interactive objects.

Figure 5 uses statecharts (the state diagram compo-
nent of UML) to specify the navigation between screens.
In this diagram every state corresponds to a different
page shown on the browser. Events of this diagram
correspond to user input that effect transitions between
pages, e.g., clicking on a link. This model describes high
level navigation between screens, rather than finer issues
such as backtracking, history, concurrent or multi-
threaded behaviours of objects. Note, the composite
state at the left of figure 5. It denotes that the user can
view only one of the enclosed screens at a time, and that
each screen is reachable from any other screen in this
node. The black bullet indicates the starting state within
the Field Reports node.

The WISDOM method [19] uses activity diagrams to
outline storyboards associated with use cases. As a no-
tation, state diagrams are a superset of activity diagrams,
and are better suited to describe the screen transitions
that can occur because of ‘asynchronous’ user input
rather than the completion of an activity. The higher
level constructs of statecharts also add to the economy of
the representation (as for example the composite state of
figure 5).

Modeling screens with the concept of a ‘state’ can
pose some problems. In general, the same screen can
correspond to multiple states of a system. This mismatch
grows as more detail is added to the navigation model,

and it becomes more practical to associate a state dia-
gram with each interactive object. Purpose specific
notations, e.g., Handie [1], overcome this problem by
abstracting away from the actions that effect transitions
between screen. Figure 6, illustrates how this notation
helps specify the navigation from the field reports screen.
Handie uses a form of constraints to specify conditional
transitions between screens. Conditional transitions are
shown as thick arrows, which end at a class node. A
class node represents a collection of nodes, e.g., the field
reports in our example, one of which is accessed ac-
cording to the condition associated with the transition.

5. Detailed Interaction Specification
UML does not provide any special notational support

for specifying the dynamic aspects of user-system inter-
action. State diagrams can serve this role, providing a
framework for the specification and implementation of
user interface software [13]. A state diagram associated
with an interactive object can specify its dynamic be-
haviour. A more user oriented description is afforded by
the User Action Notation (UAN) [12] which provides an
extensible framework for specifying low level interaction
tasks as well as their hierarchical composition. Here we
focus on a user-centred description; [17] discusses the
duality and complementarity between a specification of
Receive a
complaint

Note complaint
details on paper

Type-in standard
request form

Archive claim Monitor solver

Solver deals with
client

Inform BOVA-
NL of recurring

problems

Get judgment
from BOVA-NL

Negotiate
payment with

client

Yes
No

Update field
report

solve complaint
directly

Figure 3. Activity Diagram Specification of
the Task "Handle a Complaint".

links to top level functions

lin
ks

 to
 2

nd
 le

ve
l f

un
ct

io
ns

Field
Reports

Service
Bulletins

Problem
Reports

New FR

Search
FR

GOTO
FR

List of Field Reports

No. CoachClient

Confirm C

Clear

etc..

Service Bulletins

Report and not in
Problem Report

click Service
Bulletin and not in

Service Bulletin

Figure 5. Specifica

1.____
2.____
3.____

Field Report List

Field Report X

To.number =
from.number

(To.number = from.number) or
((To.chassis = From.chassis)and

(To.applicant = From.applicant))
Figure 4. An abstract grouping of objects for
the screen ‘Field Report’.

C

Figure 6. Navigation spec
Field Report ListH

Field Report
Form

New FR

lear Confirm Cancel Acknowledge
Field Report

OK

OK

cancelNo

OK

OK

Field Report XXX

XXX

New FR

Field Reports

Goto XXX
Find (chassis&

applicant)

Problem Reports

Field Reports
click Field Report
and not in Field

Reports

click Problem

tion of navigation with statecharts

1.____
2.____
3.____

List node

Basic node

Class node

Simple trasition
Conditional
transition

New Field
Report

AcknowledgeConfirmlear

Elements of the
Handie Notation [1]

ified with the Handie notation [1].

interaction centred around interactive objects and the
user centric description of UAN.

In UAN, a user interface is specified by a hierarchy of
interaction tasks. The sequencing within each task is
independent of that in the others. An interaction task is
specified by a table with four columns. These columns
specify: user actions, interface feedback, ‘state’ of the
user interface and connection to the computation. These
tables are read left to right, top to bottom (see [12] for a
tutorial text).

5.1. Example
The two tables that follow illustrate the hierarchical

composition of tasks using temporal operators. Here one
subtask is enclosed in brackets, indicating that it is op-
tional. In the first task (Handle a Complaint), subtasks
are performed in sequence. The task ‘Record Com-
plaint’ is decomposed further into subtasks, which are
performed in any order.

Task: Handle Complaint
Record Complaint
Resolve Complaint
Manage Payment

Task: Record Complaint
Open existing Field Report |||
Create New Field Report

So far a UAN specification shows more or less the
same information that is expressed using ConcurTask-
Trees, although, compared to section 3, we focus now on
the task as performed with the envisioned system. The
choice between the diagrammatic form of ConcurTask-
Trees and the textual-tabular form of UAN is largely a
matter of taste and tool support. The lower level task
specifications illustrate the detailed interaction specifica-
tion using the four-column format of UAN. Note that the
third column is empty as we do not add any extra be-
haviour to that of the browser that will be used to access
the intranet application.

Hix and Hartson [12] describe short-hands for mouse
and keyboard based interaction. E.g. clicking on “New“
can be specified as ~[New]Mv^. This results in an even
finer description, which is useful when the ‘look and
feel’ of the interactive components used is also to be
designed. In our case-study, this level of detail is not
necessary because the built-in components of Java will
be used. An example of specifying an alternative ‘look
and feel’ using a variant of UAN can be found in [18].

We note the following:
 UAN can be used as an alternative to ConcurTask-

Trees for the specification of tasks. It covers a wider
range of abstraction levels. ConcurTaskTrees pro-
vides a more succinct overview of the task.

 The UAN specification refers to interaction objects.
It makes little sense without some definition of the
screen content as for example in figure 4.

6. Discussion
The field of HCI is in a similar state of affairs as ob-

ject oriented analysis and design prior to the advent of
UML. Researchers have produced a wealth of design
representations and design approaches with varying
strengths and weaknesses, but this type of knowledge is
not always operationalised for the practitioners and there
is a considerable inconsistency in the use of terminology.
There is no commonly accepted ‘best practice’ either for
specification or in terms of an interaction design method,
although there is a gradually maturing understanding as
to the strengths and weaknesses of different representa-
tions and design techniques.

Selecting the ‘best-fit’ notation and design approach
on a ‘problem by problem’ basis is a flexible approach,
that can make the best use of the range of notations that
HCI and software engineering research have produced.
However, this approach favours the researcher than the
practitioner. In contrast, UML encapsulates a suffi-
ciently rich set of representations with carefully chosen
level of precision/formality, that is enough to attack most
types of software design problems. UML offers an op-
portunity for HCI as a field to enhance its impact on
software development practice, if it can be established as
a common representation scheme for designers and soft-
ware developers.

This paper has shown that even for the purposes of
core interaction design activities, such as task modeling
(discussed in section 3) and detailed interaction specifi-
cation (discussed in section 4) UML provides a range of
representational possibilities. However, we have argued
that these are not always sufficient or as clear as purpose-
specific representations. While the combination of UML
with HCI-notations is feasible on an ad-hoc basis, it is
clear that these limitations must be addressed within the
framework of UML. Future work will examine the ex-
tension of UML to provide the required modelling capa-
bilities.

A recurring issue throughout the paper, has been to
ensure that a design representation has the right content
and is used appropriately. This difficulty is essentially a
methodological issue and this paper has tried to investi-
gate a methodology-independent set of notations. In
practice however, the way notations will be used is a
major concern and methodological guidelines for the use
of such notations are required. Further, the issue of the
design process itself must be treated as part of our future
work.

7. References
[1] Apperley, M.D. and Hunt, R.B. “Design Support for

Hypermedia Documents”, Sutcliffe, A., Ziegler, J. and
Johnson, P. (Eds.) Designing effective and usable multi-
media systems, Kluwer, 1998, pp. 41-56.

[2] Artim, J.; van Harmelen, M.; Butler, K.; Henderson, A.;
kovacevic, S.; Lu, S.; Overmyer, S.; Roberts, D.; Tarby,
J-C and Vander Linden, K. “Incorporating Work, Process
and Task Analysis into Commercial and Industrial Ob-
ject-Oriented Systems Development”, SIGCHI Bulletin,
Vol 30, No.4, 1998, pp.33-36.

[3] Beck, K. Extreme Programming Explained: Embrace
Change, Addison Wesley, 1999.

[4] Bomsdorf, B. and Szwillus, G. “From Task to Dialogue:
Task based interface design”, SIGCHI Bulletin, 30(4),
1998, pp. 40-42.

[5] Booch, G.; Jacobson, I. and Rumbaugh, J. The Unified
Modeling Language User Guide, 1999, Addison Wesley.

[6] Carroll, J. M. Scenario-Based Design, NY: Wiley, 1995.
[7] Carroll, J. M. “Scenario based design”, Helander, M.;

Landauer, T. and Prablu (Eds.) Handbook of Human
computer Interaction, Elsevier, 1997, pp.383-406.

[8] Cockburn, A. “Structuring Use Cases with Goals”, Jour-
nal of Object Oriented Programming, Sep/Oct 1997,
pp.35-40 and Nov/Dec 1997, pp.56-62.

[9] Constantine,L.L., and Lockwood, L.A.D. Software for
Use: A Practical Guide to the Models and Methods of

Usage-Centered Design, Reading, MA: Addison-Wesley,
1999.

[10] CTTE software giove. cnuce.cnr.it/ctte.html
[11] Erickson, T. “Notes on Design Practice: Stories and

Prototypes as Catalysts for Communication”, in [6], 1995
[12] Hix, D. and Hartson, R.H Developing user interfaces,

Wiley, 1993.
[13] Horrocks, I., Constructing the User Interface with State-

charts, Addison-Wesley, 1999.
[14] Johnson P.; Wilson S.; Markopoulos P. and Pycock J.

“ADEPT - Advanced Design Environment for
Prototyping with task models”, INTERCHI'93, ACM
Press, 1993, pp. 56.

[15] Landay, J.A. and Myers,. B.A. “Interactive Sketching for
the early stages of user interface design”, CHI ’95, 1995,
pp.45-50.

[16] Lim, K.Y. and Long, J. The MUSE method for usability
engineering, Cambridge University Press, 1994.

[17] Markopoulos P; Papatzanis, G; Johnson P & Rowson J.
“Validating semi-formal specifications of interactors as
design representations”, Markopoulos P & Johnson P
(Eds) DSV-IS ’98, Springer-Verlag, 1998, pp.102-116.

[18] Markopoulos, P.; Shrubsole, P., and de Vet, J., “Refine-
ment of the PAC-model for the component-based design
and specification of television based user interfaces”,
Duke, D.J. and Puerta, A. (Eds.) DSV-IS ’99, Springer,
1999, pp. 117-132.

[19] Nunes, N.J and Cunha, J-F “A Bridge too Far: The Wis-
dom Approach”, ECOOP’99 Workshop on Interactive
System Design and Object Models, Lisbon, 1999.

[20] “OMG Unified Modeling Language Specification, ver-
sion 1.3”, http://www.rational.com/uml/resources/ docu-
mentation, 1999.

[21] Paternó, F. Model-Based Design and Evaluation of Inter-
active Applications, Springer, 1999.

[22] SIGCHI Bulletin, Vol. 24, No.2.
[23] Wilson, S. and Johnson, P. “Bridging the generation gap:

From work tasks to user interface designs”, Vander-
donckt, J., Ed., CADUI’96, Presses Universitaires de
Namur, 1996, pp. 77-94.
Task: Create New Field Report
User Action Feedback User Interface State Conn. To Computation
Click “Field Reports” Display list of field reports
Click “New” button Display empty field report
Enter Applicant Informa-
tion

Echo entered information

Enter Coach Information Echo entered information
Enter Problem Description Echo entered information
Click “OK” Display list of field reports

Acknowledge new field
report

Add to data base of field reports
Get field report number

Click “Cancel” Display list of field reports
Click “Erase” Display empty field report

Figure 7. Specification of task “Create New Field Report” with UAN [12].

http://giove.cnuce.cnr.it/ctte.html

