
Preprint of a chapter to appear in Object-Oriented User Interface Design, M. van Harmelen,
editor. The authors may be contacted at Constantine & Lockwood, Ltd., 58 Kathleen Circle,
Rowley, MA 01969; tel: 1 (978) 948 5012; fax: 1 (978) 948 5036; email: larry@foruse.com |
lucy@foruse.com © 2000, L. L. Constantine & L. A. D. Lockwood

Structure and Style in Use Cases for
User Interface Design

Larry L. Constantine
University of Technology, Sydney

Lucy A. D. Lockwood

Constantine & Lockwood, Ltd.

Abstract

Although widely employed in both object-oriented software engineering and user
interface design, use cases are not well-defined. Relatively little attention has been
paid to the various styles for writing the narratives that define use cases and their
consequences for user interface design and software usability. Common narrative
styles are presented with examples and discussions of their relative advantages and
disadvantages. Essential use cases, a variant employed within usage -centered
design, are contrasted with conventional use cases and scenarios. For the most
efficient support of user interface design and particularly for large, complex
projects, a highly-structured form of use case has evolved. New narrative elements
and relationships among use cases are introduced. These include means for
expressing partial or flexible ordering of interaction, relationships with business
rules, as well as a clarification of the often misunderstood concept of extension that
recognizes two distinct forms: synchronous and asynchronous extensions.

[Keywords: use cases, essential models, task modeling, user interface design, usage -
centered design]

Learn more about essential uses cases, including training in usage-
centered design, at http://www.forUse.com.

INTRODUCTION

Since their introduction in support of object-oriented software engineering, use cases have
enjoyed a seemingly explosive growth to become ubiquitous in both development methods and
development practice. Part of this ubiquity can be attributed to their utility—use cases have
proved to be versatile conceptual tools for many facets of design and development—but part
may also be a consequence of a certain imprecision in definition. Most developers can say they
are employing use cases because almost anything may be called a use case despite enormous
variability in scope, detail, focus, format, structure, style, and content. Further muddying these
already turbid waters, idiosyncratic terminology has been promulgated that obfuscates
important distinctions, such as that between scenarios and use cases.

Constantine & Lockwood, Ltd.

http://www.forUse.com

Constantine & Lockwood: Structure & Style page 2

As an effective bridge between usability engineering and user interface design on the one hand
and software design and development on the other, part of the promise that use cases offer is
due precisely to their chameleon-like adaptability. For requirements engineering, use cases
provide a concise medium for modeling user requirements; in the hands of user interface
designers, use cases can become a powerful task model for understanding user needs and
guiding user interface design; for software engineers, use cases guide the design of
communicating objects to satisfy functional requirements. Success in all these endeavors rests
on the realization that user interface design is not software design. Models originally developed
to support the design of software components and their interactions are not automatically and
necessarily well-suited for organizing user interface components and the interaction between
users and these components.

Use cases undefined

One of the more remarkable aspects of use cases is that they have achieved such wide currency
despite an almost complete lack of precise definition. Entire books have been devoted
exclusively or primarily to use cases without even so much as offering a definition [Schneider
and Winter, 1998; Texel and Williams , 1997]. Jacobson’s original definition [Jacobson et al.,
1992] is brief, broad, and barely descriptive:

A use case is a specific way of using the system by using some part of the
functionality. [A use case] constitutes a complete course of interaction that takes
place between an actor and the system.

Owing in part to imprecise definition and in part to the confusion and conflation of the various
possible uses and purpose of use cases, many use cases, including published ones, intermingle
analysis and design, business rules and design objectives, internals and interface descriptions,
with gratuitous asides thrown in to cover all bases. So deep is the confusion that even the most
unconstrained mish-mash can be put forward as a use case.

Example 1.

The guest makes a reservation with the hotel. The hotel will take as many
reservations as it has rooms available. When a guest arrives, he or she is
processed by the registration clerk. The clerk will check the details provided by
the guest with those that are already recorded. Sometimes guests do not make a
reservation before they arrive. Some guests want to stay in non-smoking rooms.
[Roberts et al., 1998: 68]

What is the use case here, and what is its purpose? Is it to reserve a room or to obtain a room?
Or is it to check in a guest? Who is the user and in what is role do they act? Is the user a guest
or the clerk or the telephone operator who takes the reservation? What is the interface to be
designed?

To their credit, the developers of UML (the hubristically monikered Unified Modeling Language)
have collectively chimed in along common lines in an attempt to narrow the scope of definition
somewhat. For example. a use case is:

The specification of sequences of actions, including variant sequences and error
sequences, that a system, subsystem, or class can perform by interacting with
outside actors [Rumbaugh et al, 1999: 488].

In other works from the same group [Jacobson, Booch, and Rumbaugh, 1999: 41; Kruchten,
1999: 94], the definition has been qualified by the phrase “that yields an observable result of
value to a particular actor.”

Constantine & Lockwood: Structure & Style page 3

Despite the addition of this slight nod to external significance, the current “official” definitions
have actually moved away from Jacobson’s original emphasis on use and have taken on what
may legitimately be described as a more “system-centric” viewpoint: The focus is on what the
system performs not what the user does or wants. In our opinion, this inside-out perspective,
subtle though it may be, has actually contributed to problems in applying use cases to user
interface design.

A somewhat more user-centric definition is offered by Fowler, in a popular introduction to UML
[Fowler, 1997: 43]:

A use case is a typical interaction between a user and a computer system …
[that] captures some user-visible function … [and] achieves a discrete goal for
the user.

For the most part, however, use cases have been defined not with reference to users but with
reference to “actors”—external agents interacting with a system. For software design, actors
may include other systems that must interact with the system being developed, but for
purposes of user interface design, only the human users are, of course, relevant.

Most designers understand at some level that it is not so much users themselves but the roles
that they play in relation to a system that must be taken into account in user interface design.
The UML-sanctioned use of the term “actor” in this context is particularly unfortunate, because
it leads to such awkward and ultimately nonsensical formulations as:

An actor is a role that a user plays with respect to the system [Fowler, 1997: 46].

In all other areas of discourse, the actor is not the role, but is distinguished from it. The
linguistic legerdemain of calling a role an actor is particularly confusing to users and clients,
but it can also cast an insidious spell on the minds of designers who can, all too easily,
unconsciously confuse the characteristics of an occupant of a role, the role incumbent, with
aspects of the role itself. For this re ason, we prefer to call the thing what it is and use the term
role or user role to refer to a role played by human “actors,” that is, users of a system. To avoid
confusion and outright conflict with UML terminology, we distinguish system actors—other
systems—from users in roles. A role thus constitutes a relationship between a user and a
system and is defined by a set of characteristic needs, interests, expectations, behaviors and
responsibilities [Wirfs-Brock, 1994].

Concrete and essential use cases

As most commonly used, use cases have described the actual interaction between external
users (or system actors) and a system through a particular interface. Because they are
expressed in concrete terms, such use cases are best referred to as concrete use cases. For
example, consider the beginning of the “Returning Item” use case for a recycling machine
[Jacobson et al., 1992: 157]:

Example 2

The course of events starts when the customer presses the ‘start-button’ on the
customer panel. The panel’s built-in sensors are thereby activated….

Use cases of this ilk are completely inappropriate for the design of user interfaces for the
simple reason that they already assume some particular user interface and interaction design.
To write use cases of this form, you must already have designed the user interface, at least in
part. Why does the recycling customer press a button rather than a touch screen? Why does the
customer have to do anything other than begin putting items in the recycler? The tacit
assumptions built into such use cases can unnecessarily constrain the design and, in practice,

Constantine & Lockwood: Structure & Style page 4

often lead to inferior user interfaces with overly conventionalized and unnecessarily complex
interaction.

It was precisely this dilemma of circular description that led us to devise a radically different
kind of use case and to develop a systematic process for the creation and utilization of these
use cases for user interface design. The secret for turning use cases into a truly effective tool
for designing good user interfaces and enhancing usability is a shift in focus from interactions
to intentions and from elaboration to simplification. Instead of modeling the interactions
between users and a user interface, the focus shifts to the intentions of users. Instead of
elaborating use cases with specific details and alternative courses of interaction, the focus is on
simplification, on simplified descriptions that capture the essence of a case of use.

We termed these models essential use cases [Constantine, 1994b; 1995; Constantine and
Lockwood, 1999] because they constitute essential models in the sense originally employed by
McMenamin and Palmer [1984], that is, abstract, generalized, and technology-free descriptions
of the essence of a problem.

We would now define an essential use case as:

a single, discrete, complete, meaningful, and well-defined task of interest to an
external user in some specific role or roles in relationship to a system,
comprising the user intentions and system responsibilities in the course of
accomplishing that task, described in abstract, technology-free, implementation-
independent terms using the language of the application domain and of external
users in role.

We were not alone in recognizing the need for such a teleocentric (“purpose-centered”)
approach to use case modeling and for a move toward abstraction in use case construction.
Kaindl [1995] has proposed incorporating goals into use cases, as did Cockburn [1997; 2000],
and Graham [1996] has argued the value of abstract use cases. A consensus in concept if not in
details seems to be emerging: More recently, others have joined the chorus [Lee and Xue, 1999],
and even the architects of the self -styled Unified Process have recognized the limitations of
concrete use cases and the advantages of the essential form [Jacobson et al., 1999: 164].

It is our intention in this paper to help bridge the gap between software engineering and
usability engineering by adding some clarity, precision, and depth to the discussion of use
cases. Toward this end we will explore variations in narrative style and its significance for user
interface design and will introduce the notion of structured use cases, use cases that are
organized and described in a highly systematic form to enhance their utility both for user
interface design and for integration with the rest of the development process.

Notation

We must make a somewhat apologetic explanation regarding the idiosyncratic notation
employed in this paper. Although we recognize the hegemony of the UML, we have been
somewhat tardy in reconciling our notation with that notation. While the UML pays close
attention to defining the notational details of many of its models, almost nothing is specified
regarding the notation for use cases, that is, for the specification that actually defines what a
particular use case is and is about. This neglect of such a core issue has no doubt contributed
to the confusion regarding what is and is not a proper use case.

Like all usability specialists and user interface designers, we are also keenly aware that the
utility of information is profoundly affected by how it is presented. Notation is, in truth, the
user interface of models. We have long argued that the visual form of notation can significantly
increase or decrease the effectiveness of those who create and interpret the models
[Constantine, 1994a; Constantine and Henderson-Sellers, 1995a; 1995b; Page -Jones,

Constantine & Lockwood: Structure & Style page 5

Constantine, and Weiss, 1990]. Although some of the ideas in this regard have been
incorporated into the UML, largely without acknowledgement, the bulk of the arguments and
recommendations of those of us interested in the communicative function of notation seem to
have fallen on deaf ears. Modern-day modelers are thus left with the choice between notational
anarchy and a standard notation that is itself riddled with serious usability defects. (Beyond
issues raised here, see also [Henderson-Sellers, 1999; Henderson-Sellers and Barbier, 1999;
Henderson-Sellers and Firesmith, 1999]).

Two aspects of notation for use cases must be addressed. The first concerns the notation used
within use cases, that is the style of representation employed in the narrative body defining the
use case. The second concerns how relationships among use cases are visualized in diagrams to
convey the overall structure of the tasks being modeled through use cases. Each of these
aspects will be addressed separately.

USAGE-CENTERED DESIGN
A usage-centered process

Essential use cases evolved within the context of an orderly process for user interface design,
and, although it is not our intention to dwell on methodology, it is worthwhile saying
something about that process. The process is called usage -centered design [Constantine and
Lockwood, 1999] to highlight the fact that the center of attention is usage rather than users per
se. Although our approach certainly partakes of a broadly user-centered design philosophy, in
calling it usage-centered design we wanted to draw attention to those particular aspects of
users that are most relevant to user interface design and to highlight the linkage to use cases as
a model of tasks (or usage).

Usage -centered design is a flexible and scaleable “industrial-strength” process that has been
applied in business and industry to a wide variety of problems ranging in size from small-scale
web-site design to an 18-month industrial automation project involving a 6-person design team
and 17 software developers. It has been used for software and web-based applications in
contexts as diverse as banking, publishing, manufacturing, and education as well as for
designing consumer electronics and industrial automation tools.

As represented in Figure 1, usage -centered design is a model-driven process employing three
primary abstract models: a user role model, a task model, and a content model. The user role
model captures and organizes selected aspects of the relationship between particular users and
the system being designed. The task model represents, in the form of essential use cases, those
things that users in user roles are interested in accomplishing with the system. The content
model represents the content and organization of the user interface apart from its appearance
and behavior. These three core models are constructed in terms of and interdependently with
the domain model, which may take the form of a data or object model or even a simple
glossary, depending on the nature and scope of the project. (The operational model, which
captures aspects of the actual environment and operational context within which a system is
deployed and used, is also develo ped concurrently with the core models but is beyond the
scope of this chapter; interested readers should consult Constantine and Lockwood [1999].)

Constantine & Lockwood: Structure & Style page 6

Domain Model (glossary, data model, or object class model)Domain Model (glossary, data model, or object class model)

Operational Model (environmental and contextual factors)Operational Model (environmental and contextual factors)

User RolesUser Roles

Role3
Role2

Role1

User Role MapUser Role Map

Role1

Role2
Role3

ROLESROLES

Use CasesUse Cases

doing1

doing2

Use Case MapUse Case Map
doing1

doing2

TASKSTASKS

Content ModelContent Model
Context1

Context2

Navigation MapNavigation Map
Context1

Context2

CONTENTSCONTENTS
VISUAL ANDVISUAL AND

INTERACTIONINTERACTION
DESIGNDESIGN

Domain Model (glossary, data model, or object class model)Domain Model (glossary, data model, or object class model)

Operational Model (environmental and contextual factors)Operational Model (environmental and contextual factors)

User RolesUser Roles

Role3
Role2

Role1

User Role MapUser Role Map

Role1

Role2
Role3

ROLESROLES

User RolesUser Roles

Role3
Role2

Role1

User Role MapUser Role Map

Role1

Role2
Role3

User RolesUser Roles

Role3
Role2

Role1

User RolesUser Roles

Role3Role3
Role2Role2

Role1Role1

User Role MapUser Role Map

Role1

Role2
Role3

User Role MapUser Role Map

Role1Role1

Role2Role2
Role3Role3

ROLESROLES

Use CasesUse Cases

doing1

doing2

Use Case MapUse Case Map
doing1

doing2

TASKSTASKS

Use CasesUse Cases

doing1

doing2

Use Case MapUse Case Map
doing1

doing2

Use CasesUse Cases

doing1

doing2
Use CasesUse Cases

doing1doing1

doing2doing2

Use Case MapUse Case Map
doing1

doing2

Use Case MapUse Case Map
doing1doing1

doing2doing2

TASKSTASKS

Content ModelContent Model
Context1

Context2

Navigation MapNavigation Map
Context1

Context2

CONTENTSCONTENTS

Content ModelContent Model
Context1

Context2

Navigation MapNavigation Map
Context1

Context2

Content ModelContent Model
Context1

Context2

Content ModelContent Model
Context1Context1

Context2Context2

Navigation MapNavigation Map
Context1

Context2

Navigation MapNavigation Map
Context1

Context2

CONTENTSCONTENTS
VISUAL ANDVISUAL AND

INTERACTIONINTERACTION
DESIGNDESIGN

Figure 1 – Logical relationships among primary models in usage-centered design.

Each of these three models consists of two parts: a collection of descriptions and a map of the
relationships among those descriptions. Thus the relationships among user roles are
represented in overview by a user role map. The relationships among use cases are modeled in
a use case map (corresponding to but not identical with the “Use Case Diagram” of UML). The
content model represents the contents of the various interaction contexts (or “views” as they
are referred to in WISDOM [Nunes and Cunha, 2000] and some other methods) within which
users can interact with the system; the navigation map represents the interconnections among
these interaction contexts. Together, the content model and the navigation map constitute what
is sometimes called an abstract prototype [Constantine, 1999]. (The “logical prototype” or
“logical user-interface design” referred to in the Unified Process [Jacobson et al., 1999: 161ff] is
essentially the same concept, reflecting our work with Jacobson and his colleagues earlier in the
1990s [Ahlqvist, 1996a; 1996b].)

Conceptually, a final visual and interaction design, usually in the form of an annotated paper
prototype, is based on the abstract prototype, that is, the content and navigation models.
These, in turn, derive from the task model, which itself depends on the model of user roles. In
practice, however, the role model, task model, and content models are built more or less
concurrently, with the attention of the modelers moving freely among them depending on the
course of analysis and problem-solving. The models themselves serve as holding places for the
designer’s fragmentary but evolving understanding, thereby helping to organize and
systematize the process. This concurrent modeling approach makes for a more flexible and
efficient process than traditional process models, which are more strictly sequential whether
they are based on iteration or on a once-through “waterfall” cycle.

Usage -centered design is an “outside-in” approach in which the internal system design is
devised to support the user interface, which supports external user needs. For this reason,
essential use cases are considered the primary model, and concrete use cases, if needed for
other purposes, are a derived model. In practice, use cases supporting system actors can be
developed directly in concrete form and concurrently with the essential use cases supporting
user roles.

Usage -centered design constitutes an adaptable agenda that can be practiced within almost any
software development process [Constantine and Lockwood, 1999]. Key elements have, for
example, been elegantly incorporated into the “lightweight” WISDOM approach [Nunes and

Constantine & Lockwood: Structure & Style page 7

Cunha, 2000]. On the other hand, the “heavyweight” framework of the Unified Process
[Jacobson et al., 1999] has proved more challenging. Among other things, the UP perpetuates a
long-standing practice of putting cart before horse by making user interface prototyping part of
the requirements process [Kruchten et al., 2000]. However, a user interface design in the form
of a prototype is really a part of the solution description rather than the problem definition. A
key to enhancing usability is to defer user interface design details by expressing requirements
independent of their implementation and of their realization in a particular form of user
interface. The problems in the UP are not insurmountable, however, and with suitable
improvements and refinements it can serve as a context within which to practice usage -
centered design. The details of an integrated process are beyond the scope of the present
discussion, however.

Task modeling, scenarios, and use cases

Task modeling is the pivotal activity in usage -centered design. User roles are a useful construct,
but the user role model is not so much of interest in itself. It serves primarily as a bridge to the
identification and construction of use cases and secondarily as a holding place for information
about users and their work environment as it affects user interface design. Content models are
another bridge, connecting use cases to the user interface design. Both the role and content
models facilitate the design process and promote systematic development of effective user
interfaces, but they can be, under some circumstances, more or less dispensable. A task model,
on the other hand, is indispensable.

Use cases and essential use cases are, of course, only one of many potential ways of modeling
tasks, ranging from, on the one end of the spectrum, rigorous and highly structured
approaches that are of greatest interest to researchers and academics, to, on the other end,
informal movie -style storyboards and free-form scenarios.

Scenarios have been widely used in design in general and user interface design in particular to
capture and represent tasks [Carroll, 1995; Rosson and Carroll, 2000]. Although some writers
[Booch, 1994; Graham, 1996; Wirfs-Brock, 1993] have used the term more or less
interchangeably with use cases, as most commonly employed in design [Carroll, 1995],
scenarios are quite different from use cases. Scenarios are typically extended narratives
forming a plausible vignette or story-line. They tend to be rich, realistic, concrete, and specific,
often replete with gratuitous detail for enhanced verisimilitude.

For example, a scenario for “Ian Smith gets help with his HyperCam software installation
through our new Web-based technical support system” might read something like this:

Example 3.

It is 2 o’clock in the morning, and Ian cannot get his new HyperCam software to
install properly. He points his browser to www.camerahype.com, gets the splash
page, and waits for the corporate home page to appear. He scrolls down the page
and clicks on the tech support link. On the provided form, he types his name,
then gets his customer ID off the packing slip for the HyperCam and types it in.
He clicks the Submit button. He scans the Tech Support home page and finally
clicks on the .GIF showing a befuddled user with a packing crate. This takes him
to the Installation Help page, where he begins filling out the Incident Report
form. Dissatisfied with the suggestion supplied by the system after the form is
submitted, he goes to the Contact Us page and sends an email message.

It is likely that the long-standing popularity of scenarios with traditionally trained HCI and user
interface design professionals owes, in part, to this richness and realism. In contrast, use cases
tend toward more stripped down and less interesting narratives, in which details are reduced
and “variables” or class names replace more literal description, such as in this concrete use
case for “getting installation help”:

Constantine & Lockwood: Structure & Style page 8

Example 4.

The use case begins when the customer goes to the Customer Log-On page.
There, the customer types in his/her name and customer ID on the form and
submits it. The system then displays the Tech Support home page with a list of
Problem Categories. The customer clicks on Installation Help within the list, and
the system supplies the Incident Report Form. The customer completes and
submits the form, and the system presents a suggested resolution.

By contrast, a comparable essential use case for “getting help with specific problem” is even
more spare:

Example 5.

user intentions system responsibilities

identify self as customer
 present help options

select help option
 request description

describe problem
 offer possible solutions

As these examples illustrate, scenarios, traditional (concrete) use cases, and essential (abstract)
use cases represent successive levels of abstraction and generalization. A scenario comprises a
combination of use cases as they are actually enacted by some user.1 In this example, for
instance, the scenario includes enactments of use cases for logging on, for getting help with a
specific problem, and for sending email. Ignoring convention, the framers of the UML have
declared that a scenario is a single thread through an instantiated use case; we prefer to honor
accepted usage that is more common within the design and human-computer interaction
communities, which would make a scenario a composition of one or more enacted use cases,
that is, a single thread through the instantiations of multiple use cases.

A scenario is a composition of one or more enacted (instantiated) use cases
expressed as an extended narrative or sequence of events or states forming a
plausible vignette or realistic story-line.

1. In object-oriented parlance, a use case is instantiated, but the term makes little or no sense
to the average user. Human beings in user roles do not “instantiate” use cases, they “enact” or
“carry out” or “perform” them.

Of the three task models, essential use cases are the most robust, especially in the face of
changing technologies, largely because they model tasks in a form closest to the essential
nature of a problem and do not intermingle design solutions with problem description. For
example, the essential use case for “getting help with specific problem” need not be rewritten
or altered in any way should the decision later be made to implement the tech support system
as a menu-driven voice-response interface over the telephone. In contrast, neither the scenario
in Example 3 nor the concrete use case in Example 4 would remain valid.

Use case decomposition

In usage-centered design, each essential use case represents incremental capability—a small
piece of an aggregate set of tasks. Modeling with essential use cases favors a fairly fine-grained
decomposition of tasks. The work to be supported by the system is partitioned into a collection
of simple use cases interrelated by inclusion, specialization, and extension. Excessive
decomposition of use cases has been denounced by some writers [e.g., Fowler, 1997; Korson,
1998], but decomposition in usage -centered design is not carried out for its own sake or to
construct some sort of conceptually pure representation of a goal hierarchy.

Constantine & Lockwood: Structure & Style page 9

Decomposition into relatively small, coherent units has several major advantages for usage -
centered design. First, it leads to a smaller, simpler use case model in which each part of the
overall model is comparatively simple and easy to understand in itself and in relation to a small
number of other use cases. Second, the total model is simplified through reuse because
common elements are factored out into separate use cases rather than being repeated in
numerous places and variations.

When used as a guide to the design of the user interface and supporting internals, this form of
decomposition promotes reuse of internal and external components and designs. Each piece of
the problem can be solved once, and the solution can be recycled wherever the corresponding
use case is referenced in the task model.

Our design experience also suggests a subtle but significant payoff in enhanced usability. A
user interface that reflects a fine-grained, usage -centered task decomposition enables flexible
re-composition by users into new combinations of tasks. In this way, designers can deliver
powerful tools that support even unanticipated uses and usage patterns.

USE CASE NARRATIVE STYLE AND USER INTERFACE DESIGN

Scenarios, concrete use cases, and essential use cases are examples of varied styles of modeling
and representation that have different relative advantages in different contexts. Usability
inspections and usability testing usually require fairly detailed or specific scenarios that will
exercise a variety of functions and expose a greater portion of the user interface to scrutiny.
Non-technical end-users often are most comfortable with the greater realism and specificity of
scenarios or concrete use cases. For software engineering and the design of internal software
architecture, however, the more traditional concrete use cases have proven particularly
effective. Essential use cases can be too abstract to guide many important programming and
program design decisions, and scenarios informally intermix multiple functions, features, and
threads of usage.

For user interface design, however, the abstraction of essential use cases is precisely the ticket,
allowing the designer to model the essential structure of tasks without hidden and premature
assumptions about user interface design details. We have long argued that abstraction
encourages creative innovation, and the recent experiences of several teams using essential use
cases have supported this argument with a string of new software patents.

Language and structure in models

Because language influences thought patterns, the style of writing, the format, the wording, and
even the grammatical form employed in use case narratives can all influence the value of use
cases for designing user interfaces. Of course, the same must be true for the design of software
architecture as well, but our concern here is with usability and user interface design more than
the other issues in object-oriented software engineering.

Given that really good user interface design is so difficult and real-world design problems are
often so complex, the designer needs every bit of cognitive leverage and perceptual help
attainable. Some styles of writing use cases facilitate good user interface design, while others
are either indifferent or even interfere with it.

The more central and direct the role of use cases in the user interface design process, the more
important becomes the issue of the form and style of representation. If, as in usage -centered
design, the use case model directly drives and informs the user interface design, then narrative
style and representation emerge as critically important.

Constantine & Lockwood: Structure & Style page 10

Common narrative styles

Beyond the gross distinctions among scenarios, use cases, and essential use cases, we have
found that the style in which use cases are written has a profound effect on their utility to
designers and on the quality of the designs that result. In this section, we will illustrate some
common styles in which use cases have been written.

The process or narrative body of a use case, what in UML is referred to as the flow of events,
constitutes the definition of a given use case. Use case narratives have been written in widely
varying styles that differ in a number of significant ways. (For an excellent discussion of use
case style and its consequences, see [Cockburn, 2000].

Continuous narrative

Many writers and modelers have favored a continuous, free-form narrative, a style first
introduced by Jacobson and his collaborators. Here is a recent example taken from the Web:

Example 6.

A cash withdrawal transaction is started from within a session when the
customer chooses cash withdrawal from the menu of possible transaction types.
The customer chooses a type of account to withdraw from (e.g., checking) from a
menu of possible accounts, and then chooses a dollar amount from a menu of
possible amounts. The system verifies that it has sufficient money on hand to
satisfy the request. If not, it reports a failure to the session, which initiates the
Failed Transaction Extension to report the problem. If there is sufficient cash, it
sends the customer's card number, PIN, chosen account and amount to the bank,
which either approves or disapproves the transaction. If the transaction is
approved, the machine dispenses the correct amount of cash and issues a
receipt. If the transaction is disapproved due to an incorrect PIN, the Incorrect
PIN extension is executed. All other disapprovals are reported to the session,
which initiates the Failed Transaction Extension. The bank is notified whether or
not an approved transaction was completed in its entirety by the machine; if it is
completed then the bank completes debiting the customer's account for the
amount. [Bjork, 1998; used with permission]

The problems with this style of narrative are numerous. There is no clear separation between
the user side of the interchange and the system side. The narrative intermixes internal and
external requirements and jumps erratically between external and internal perspectives.
Elements that are essential to the nature of the problem (e.g., “the machine dispenses the
correct amount of cash”) are co-mingled with implicit decisions about the design of the user
interface (e.g., “customer… chooses a dollar amount from a menu of possible amounts”). The
lack of structure forces the reader to trace through the entire text just to get an idea of the
general nature of what is happening. Portions of the narrative that are important for the design
of the user interface are buried among descriptions that are irrelevant.

Numbered sequence

Another common style is to write the narrative as a series of numbered steps. For example,
consider another narrative for the same use case [Kruchten, 1999]:

Example 7.

Withdraw Money

1. The use case begins when the Client inserts an ATM card. The system
reads and validates the information on the card.

2. System prompts for PIN. The Client enters PIN. The system validates the
PIN.

Constantine & Lockwood: Structure & Style page 11

3. System asks which operation the client wishes to perform. Client selects
“Cash withdrawal.”

4. System requests amounts [sic]. Client enters amount.

5. System requests type. Client selects account type (checking, savings,
credit).

6. The system communicates with the ATM network to validate account ID,
PIN, and availability of the amount requested.

7. The system asks the client whether he or she wants a receipt. This step is
performed only if there is paper left to print the receipt.

8. System asks the client to withdraw the card. Client withdraws card. (This
is a security measure to ensure that Clients do not leave their cards in the
machine.)

9. System dispenses the requested amount of cash.

10. System prints receipt.

11. The use case ends.

One advantage of this style is immediately apparent: The separation into distinct steps makes it
easier to skim the use case for an overview and to see the general nature of the interaction.
However, it suffers from many of the same problems as the continuous narrative style. Despite
the segmentation into discrete steps, individual steps intermix system and user actions. The
narrative exemplifies a systems -centric view: With one exception, each step begins with the
system side of things.

Both examples 6 and 7 also illustrate an aspect of narrative style that is all too common in use
cases. They are wordy and filled with verbiage that is little more than noise. Despite the fact
that the beginning and end of a use case are invariably self -evident, many writers seem
compelled to announce pedantically, “The use case begins when…” or to declare, “The use case
ends.”

Partitioned narratives

Because they have little or no structure, both the continuous and the sequenced narrative styles
require, for clarity, that the perspective or focus be declared repeatedly (the system does this,
the user chooses that, the system completes something else), which contributes to their
wordiness. Even so, the boundary between what is inside the system and what is outside—the
user interface—is not readily apparent and can only be discerned piecemeal through careful
perusal of the entire narrative.

The simple solution to this is to separate the user and the system side of the interaction
completely. For use cases, this separation was originally suggested by Wirfs-Brock [1993],
although others have effected similar divisions in other forms of task models. Wirfs-Brock
divides the narrative of concrete use cases into two columns: the user action model and the
system response model. In this style, the boundary representing the user interface is obvious,
and it is immediately apparent, without intrusive repetition, which part of the narrative refers
to the user and which to the system. For example, here is another variant of the cash
withdrawal use case expressed as a partitioned narrative:

Example 8.

user action system response

insert card in ATM
 read card
 request PIN

Constantine & Lockwood: Structure & Style page 12

enter PIN
 verify PIN
 display option menu

select option
 display account menu

select account
 prompt for amount

enter amount
 display amount

confirm amount
 return card

take card
 dispense cash if available

This format is so superior and more readable by all interested parties that it is hard to justify
not using it in all cases. Of course, nothing prevents the use case writer from also numbering
the actions and responses, which makes for even greater utility.

Pseudo-code

Some writers of use cases employ varying amounts of so-called structured English or pseudo -
code in the use case narrative. For example, constructions like these are commonly
encountered:

until customer_done repeat

if valid_user_code then do…end_do else do…end_do end_if

Although such expressions seem to offer precision and may be comfortable and familiar to
software engineers, they are seldom very transparent to ordinary users, and the precision can
actually obscure the real nature of the interaction.

In our experience, the more that use case narratives look like code, the more likely it is that
they are just that. Programming is a necessary and noble activity, but it belongs as part of
implementing a solution not in modeling the problem, which is yet another argument for
essential use cases as the primary task model.

Interaction diagrams

Some designers substitute graphical models, such as the sequence diagrams and collaboration
diagrams of UML, for the narrative text more commonly used to model the flow of events
defining use cases. Although arguably well-suited to the original software engineering purposes
for which they were conceived, interactions diagrams are a poor fit with the needs of user
interface design. Instead of maintaining an external user perspective and a focus on the
essential nature of tasks, they plunge the designer into considering messages passed among
software objects. Like pseudo -code, they introduce internal design considerations prematurely,
but the notation and constructs are even more obscure and alien to non-technical users and
clients.

Pre- and post-conditions

One important exception to the rule against using programming constructs in use cases,
particularly those intended for guiding user interface design, is the use of pre - and post-
conditions, which have also become common in writing use case narratives. For example
[Schneider and Winters, 1998]:

Constantine & Lockwood: Structure & Style page 13

Example 9.

Place Order

Preconditions: A valid user has logged into the system.

Flow of events:

Basic Path

1. The use case starts when the customer selects Place Order

2. The customer enters his or her name and address.

3. If the customer enters only the zip code, the system will supply city and
state.

4. The customer will enter product codes for the desired product.

5. The system will supply a product description and price for each item.

6. The system will keep a running total of items ordered as they are
entered.

7. The customer will enter credit card information.

8. The customer will select Submit.

9. The system will verify the information, save the order as pending, and
forward payment information to the accounting system.

10. When payment is confirmed, the order is marked Confirmed, an order ID
is returned to the customer, and the use case ends.

Alternative paths

In step 9, if any information is incorrect, the system will prompt the customer to
correct the information.

Postcondition: The order has been saved and marked confirmed.

Although we initially resisted this seeming intrusion of programming into task modeling, we
found that pre - and post-conditions serve significant purposes in supporting usage -centered
design. For one, ordinary users often are more comfortable when pre -conditions are made
explicit. In the absence of the precondition in the above example, for instance, users and
customers will often protest that the use case will not work or is incomplete without logging a
valid user into the system. Indeed, many writers may be tempted to make such an action the
first step of the use case, as was done in Examples 7 and 8. However, this shortcut has the
disadvantage of making a discrete interaction a mandatory step in every use case dependent on
it, which clearly can misrepresent the real task structure. (In most American ATMs, the user
need not insert a card for each separate transaction, for example.) The pre -condition is left
implicit in Example 6 (“A cash withdrawal transaction is started from within a session…”),
which is significantly less clear than an explicitly declaration.

Pre-conditions also offer a non-procedural means for expressing necessary ordering among use
cases. If “logging into system” is a use case modeled with an appropriate narrative, then a pre -
condition expressed as “valid user logged in with ‘logging into system’” appropriately fixes the
order of usage. These relationships among use cases are equally transparent and useful to
users, user interface designers, and software developers alike. Contrary to the opinions of
purists, this practice does not represent an intrusion of procedural modeling into object-
orientation but merely expresses the intrinsic ordering of certain interrelated tasks. In fact, use
cases as the pre - and post-conditions of other use cases provides a straightforward and logical
means for modeling workflow, an aspect of task structure often neglected by use case
modelers. (An appropriate CASE tool would support tracing or highlighting workflow
relationships.)

Constantine & Lockwood: Structure & Style page 14

Abstraction

Use case narratives can be written at various levels of abstraction and to varying ends. In our
own design work, we sometimes refer to a style we call “suitably vague,” in which a certain
amount of hand-waving and disregard for precision proves useful, especially in the early stages
of task modeling. For example, in a numerically-controlled machine-tool application, an early
form of one use case might read:

Example 10.

user intentions system responsibilities

enter setup parameters
 present setup configuration

confirm setup
 perform tool setup

Not only does this degree of abstraction omit concrete details of the user interface design, it
glosses over much of the content of the task in itself. There may be dozens of individual
parameters that take on various forms and have various constraints. Presenting the setup
configuration to the user may imply elaborate, unavoidable transformations guided by the user.

Nonetheless, such “suitably vague” modeling can be extremely useful in deferring a premature
digression into distracting details. In many cases, even obscuring essential details can pay off
by implying the possibility of a generalized solution—for example, a common mechanism for
entering setup parameters even though these are of varied form and format. Indeed, just such
suitable vagueness led one team to a solution deemed by their legal advisors to be a patentable
software innovation.

In essential use cases we avoid the extra words and verbal padding so common in most use
cases for two simple and compelling reasons. First, phrases and constructions that add
meaningless words merely decrease the signal-to-noise ratio and generally make it harder for
analysts and designers to extract the real content that is relevant to user interface design.
Second, substantive but unnecessary elaborations and redundant constructions, if actually
translated into design features or elements, result in user interfaces that are unnecessarily
complex.

A simple and representative instance is the use case for recycling (Example 2), in which the first
user action represents an unnecessary step imposed by the narrative. Pressing a start button is
not part of the problem as viewed from the user’s perspective. Inserting an object to recycle is
sufficient in itself to define the start of the use case. In practice, use case narratives reduced to
essential form can guide the designer toward dramatic overall reductions in user actions,
because every nonessential step in a use case model adds to the interaction design. One
software tool for industrial automation, when redesigned through essential use cases, cut in
half the total number of steps required to complete a representative mix of programming tasks.
In fact, essential use cases have also proved an effective tool for workflow redesign and process
re-engineering owing to their parsimony in expressing the inherent nature of tasks.

Task goals and user intentions

The narratives of essential use cases are cast in terms of user intentions and system
responsibilities. Earlier in this chapter, we cited work on goal-orientation in use cases, but the
distinction between goals and intentions is a subtle though important one for user interface
design. A goal is a desired end-state of a system, and as such it is correctly described in static
terms as the state and features of objects. For example, in a hotel registration application, one
goal of the hotel clerk might be expressed as “guest checked into acceptable room.” An
intention, in contrast, is dynamic and represents direction or progress rather than an end state.

Constantine & Lockwood: Structure & Style page 15

Goals are destinations, whereas intentions represent the journey, and it is the user’s journey—
the interaction—that is most directly related to the issues of interface and interaction design.
Goals, being static, place the focus on objects or nouns, while intentions, being dynamic, bring
the actions and verbs to the foreground, implicitly admitting that interactions are alterable and
divertible. Intentions may be satisfied short of reaching one particular final goal, and any
number of intentions may support reaching a single goal.

Broadly speaking, both goals and intentions can be considered part of a broader “teleocentric”
or “purpose-centered” perspective in use case modeling and user interface design. Beyond the
immediate intentions of users, one can consider the contextual purposes of usage in a broader
or larger perspective. In many applications, individual use cases are part of a larger framework
of tasks, such as the work, profession, or job responsibilities of the user in a particular role that
is being supported by the system. The larger purposes or functions of an essential use case are
a part of the use case and need to be expressed within it.

In essential use case models, the complete hierarchy of goals and sub-goals, as well as that of
tasks and subtasks, is expressed through interrelationships among use cases (see also
[Cockburn, 2000]). These interrelationships are either embedded within the body of the use
case narrative or are placed within specialized clauses or sections devoted to that purpose.

STRUCTURED ESSENTIAL USE CASES

In any model-driven design process, the quality and character of the models shapes the quality
and character of the results. For this reason, we have evolved a highly structured form of use
case based primarily on our own work and that of our clients in the practical application of
usage -centered design but also incorporating ideas from numerous sources, including some of
the stylistic innovations referred to in the previous section. The structure is intended to create
an orderly and easily understood framework for organizing the various parts of the use case
and to ensure that all the relevant aspects of the use case have been defined—or at least
considered.

Compared with the informality evident in most of the examples presented thus far, structured
essential use cases form a more solid bridge between traditional requirements analysis and
user interface design, and between design and implementation. As a tool for managing
complexity, they also increase the effectiveness of essential use cases for truly massive
problems. Informal and relatively unstructured forms of essential use cases are quite
serviceable for relatively small and simple problems designed and implemented by small teams
working in close communication. As the number of use cases and project participants
increases, however, more systematic, elaborate, and highly structured forms of modeling and
communication are needed.

There is no hard and fast rule for choosing between the informal and structured use cases. It
depends as much on how the project is organized as upon the size of the problem. However, in
general, modeling with informal use case narratives begins to break down with more than a few
dozen use cases. Moreover, in any situation where analysts, designers, and developers work
separately and communicate primarily through models, greater formality is also demanded.

The overall organization of a structured essential use case is illustrated schematically in Figure
2. The use case is divided into three principal parts: identification, relationships, and process.
The identification section uniquely identifies the use case and explains its purpose or function.
The relationships section identifies other use cases related in some way to the use case. The
process, the narrative body of the use case, defines its interaction process or dynamic aspects.
Each of these will be explained in turn.

Constantine & Lockwood: Structure & Style page 16

Relationships

Specializes

Resembles Equivalents

Extends

Identification

ID

Contextual Purpose Supported Roles

Name

Process

Preconditions

Post-conditions

User Intentions System Responsibilities

Asynchronous Extensions Asynchronous Extensions

(steps) (steps)

Business Rules

Relationships

Specializes

Resembles Equivalents

Extends

Relationships

Specializes

Resembles Equivalents

ExtendsSpecializes

Resembles Equivalents

Extends

Identification

ID

Contextual Purpose Supported Roles

Name

Identification

ID

Contextual Purpose Supported Roles

NameID

Contextual Purpose Supported Roles

Name

Process

Preconditions

Post-conditions

User Intentions System Responsibilities

Asynchronous Extensions Asynchronous Extensions

(steps) (steps)

Business Rules

Process

Preconditions

Post-conditions

User Intentions System Responsibilities

Asynchronous Extensions Asynchronous Extensions

(steps) (steps)

Business Rules

Preconditions

Post-conditions

User Intentions System Responsibilities

Asynchronous Extensions Asynchronous Extensions

(steps) (steps)

User Intentions System Responsibilities

Asynchronous Extensions Asynchronous Extensions

(steps) (steps)

Business Rules

Figure 2 – Schematic framework for structured essential use cases.

Identity and Purpose

The Identifier is merely a sequence number or other unique and permanent identification code.
While small problems may be modeled without resort to such codes, large projects will need
them to help keep track of use cases and related models and documents.

The name of an essential use case should reflect its function or immediate purpose. An
immediate purpose represents a single, discrete intention on the part of a user. Distinguishing
intentions from goals leads to subtle differences in both description and definition of use
cases.

We have found that present participles of transitive verbs—continuing actions taking a specific
direct object—best capture the essence of user intentions. For example, getting cash from ATM
or checking arriving guest into acceptable room. It is also important that the direct object be
fully qualified by modifiers so as to distinguish it, as needed, from all other related or similar
objects within the application. In general, especially as problem size goes up, more specificity
in the objects is safer. Especially to be avoided are use case names that could be construed as
referring to more than one operation of the same name on more than one distinct and
unrelated object of the same name. For example, deleting block is unacceptable for naming a
use case in an application involving both deleting program block temporarily, a reversible
removal of a coding module, and the vastly different deleting execution-time block, the
disabling of a run-time debugging break. The boundary between suitably vague and
dangerously ambiguous depends on the specifics of the problem at hand.

One useful variation on ambiguous or non-specific naming is what we refer to as cluster cases,
which are named collections of functionally related use cases. For example, downloading
modules/blocks/programs to simulator/controller is shorthand for what might eventually
require six separate use cases or could potentially be covered by a single definition. Cluster
cases may be based on a common operation on varying objects or on multiple operations on
the same object, as in entering/modifying patient background information. Cluster cases are an

Constantine & Lockwood: Structure & Style page 17

especially useful shorthand notation in early modeling for applications with large numbers of
use cases or for projects with extremely limited design time.

Having experimented with various orthographies for use case names, we now favor underlining
and lowercase letters, with words separated by spaces. The underlining makes it easy to
visually parse the use case name as a discrete whole distinct from the rest of the narrative in
which it appears. Separating the words facilitates reordering and searching lists of use cases.
Users also find this format to be “friendlier” and less “techie” than the strung-together, bi-
capitalized style used in our book [Constantine and Lockwood, 1999] and earlier work. The
underlining is also suggestive of a hyperlink, which is precisely how a use case name should
function in on-line documentation or models.

The Contextual Purpose section contains the description of the larger goals or working context
in which the use case is employed. For example, the Contextual Purpose of browsing empty
rooms by category in a hotel reservation system might be: “In order to complete guest
registration, a suitable room must be located and assigned to the guest.”

The Supported Roles section further qualifies the essential nature of the use case by listing the
user roles that it is intended to support. For example, the use case browsing empty rooms by
category might support the roles of Ordinary Desk Clerk, Desk Supervisor, and Self-Registering
Guest.

Relationships

The Relationships section identifies other use cases to which the use case is related. In usage -
centered design, use cases may be interrelated in several ways:

• inclusion – one use case is included (by reference) within or used by another use case

• specialization – one use case is a specialized variant of another, more general case

• extension – one use case extends another by introducing alternative or exceptional
processes

In addition, we find other relationships useful on occasion.

• similarity – one use case corresponds to or is similar to or resembles another in some
unspecified ways

• equivalence – one use case is equivalent to another, that is, serves as an alias

Similarity, a relationship often noted early in use case modeling, provides a way to carry
forward insight about relationships among use cases even when the exact nature of the
relationship is not yet clear. For example, reviewing savings account summary and reviewing
checking account summary might be modeled as separate but similar use cases before it is
known whether one process can cover both or if two different approaches will be needed.
Equivalence flags those cases where a single definition can cover what are, from the user’s
perspective, two or more different intentions. This construction makes it easier to validate the
model with users and customers while also assuring that only one design will be developed. In
the absence of such a relationship, the modeler would be forced to define the two use cases as
trivial specializations of a totally artificial general use case.

Within the Relationship section, related use cases are listed in clauses labeled appropriately
using the terms Specializes, Extends, Resembles, and Equivalents. Inclusions are omitted from
this section for the simple reason that these cases are, as the name implies, included in other
parts of the use case narrative.

Constantine & Lockwood: Structure & Style page 18

For example, the use case browsing empty rooms by category might incorporate the following
Relationships:

Extends: checking arriving guest into acceptable room; reviewing room utilization

Specializes: browsing rooms

References within the Relationship section are reflected in the Use Case Map, which is
discussed later in this chapter.

Process

The Process section of the use case begins with Preconditions and ends with Post-conditions.
Both Pre - and Post-conditions can include explicit or implicit references to other use cases.

The narrative body of the use case is divided into User Intentions and System Responsibilities.
Although we have primarily used the two-column format illustrated earlier in Examples 5 and
10, this arrangement can sometimes waste display space or present formatting difficulties,
especially for use cases with complex steps. An alternative format uses indentation along with
shading or distinct fonts to distinguish the System Responsibilities from User Intentions:

Example 11.

User Intentions

 System Responsibilities

 1. present list of standard test setups

2. select standard test setup

 3. display selected test setup

4. optionally [do modifying test setup]

5. confirm test setup

 6. run test as set up and report

7. optionally [print test results]

 8. print and confirm

Although visually not quite as satisfying as the two-column format, this form is easier to create
with word processors.

ELEMENTS OF STYLE IN STRUCTURED ESSENTIAL NARRATIVES

Within the process narrative describing user intentions and system responsibilities, the
preferred primary language of expression is the natural language and vocabulary of the users
and of the application domain. However, because essential use cases serve as the core model
bridging between user requirements and the user interface design and between design and

Constantine & Lockwood: Structure & Style page 19

implementation, certain technical constructions and references are, of course, also required.
These technical elements include references to objects and other use cases as well as idiomatic
constructions for expressing conditional interaction, partial ordering, and extensions.

Objects

Ideally, the use case model, whether in concrete or essential form, is developed in tandem with
the object model or other data model, as indicated earlier in Figure 1 (cf. [Nunes and Cunha,
2000]). The steps of the use case narrative can make explicit or implicit references to objects,
their methods, or their attributes. Thus, for example “test results” may be a defined term or
object class, with “print” as one of its methods. To highlight a reference to an object or data
element as a defined term, italics or quotation marks can be used. A use case as a whole may
also correspond to a method of a class, as might be the case with the use case modifying test
setup.

Included use cases

The process narrative may include explicit references to other use cases that are used in the
course of or become part of the interaction. As illustrated in step 4 of Example 11, the name of
the use case is preceded by the word “do,” which calls out the included use case and improves
scansion, especially when being read by or reviewed with end users or clients.

Conditional interaction

Conditional interaction is presented with the word “optionally” followed by the optional actions
in square brackets. Inclusions can be conditional, as in step 4 of Example 11, above. Conditional
interaction is discussed further in connection with extensions, below.

Partial ordering

One of the shortcomings of most conventional ways of writing the narrative body of use cases
is that they provide no explicit way to express a very common situation in task modeling. Most
published narratives, including all of the examples thus far presented, are fully-ordered,
describing strictly sequential interaction: first the user does this, then the system does that and
that, and then the user does something else. In these narratives, some actions may be optional,
but the ordering is not.

Although some analysts add procedural richness through iteration and conditional expressions,
the issue of optional or flexible ordering is seldom modeled explicitly. This oversight is a major
shortcoming, since many tasks can be performed in various orders, and allowing users to
perform actions in various sequences is often a strong factor affecting usability.

In the past, many such cases were expressed in use case narratives as if they were strictly
ordered even though it was implicitly understood that the order of interaction was actually
flexible. In problems of modest size, one could trust that the final visual and interaction design
would allow for the desired flexibility even though it was not expressed in the use case model.
On large-scale projects, however, the chances are increased that important but implicit insights
can be lost between analysis and design. The natural place to carry forward such information is
as an intrinsic part of the use case narrative.

We have adopted the convention of using the phrase "in any order" followed by a list of actions
or intentions, separated by semicolons and all enclosed in braces ("curly brackets"). For
example:

Example 12.

in any order {specify part number; specify quantity ordered}

Constantine & Lockwood: Structure & Style page 20

This practice encourages the user interface designer to model as strictly ordered sequences
only those interactions where the order is actually fixed or required. The notation has proved
easy and natural for users and non-technical people to understand without instruction. The
notation is designed to be distinctive enough that the words "in any order" can be omitted to
form a shorthand that is convenient for specialists to use in rapid note taking or for
communication among themselves.

Extensions

The notion of use case "extensions" has been a core concept in use case modeling since its
introduction [Jacobson et al., 1992]. An extension is a distinct use case embodying alternative,
conditional, or exceptional courses of interaction that can alter or extend the main “flow of
events” embodied in some base case. The base use case is said to be extended by the extension
use case. The base case is the "normal" or expected interaction; the extension is an exception or
alternative.

The primary advantage of extensions is that they make it possible to keep the narrative body of
the base case simple and straightforward by separating out into distinct use cases the often
numerous exceptional or unusual circumstances. Keeping the narrative for the base case clean
is likely to lead to clean and simple operation of the user interface under normal
circumstances. A second strong argument for extensions is that they encourage reuse—in
models as well as in designs and implementation—since the extension case may modify or
extend any number of other use cases.

Extensions pose a number of problems for methodologists and practitioners, however. One
awkward aspect of the construct is the fact that the extension names the base case it extends,
not the other way around as many people seem to expect. In other words, the extension is not
visible in the base case, and diagrammatically, the arrow points from the extension to any use
cases it extends. Although this convention seems backwards to many people, it is an advantage
in one sense, since it allows extensions to be discovered or concocted after the fact without
having to return to the base case and alter or rewrite the narrative body. Thus, initial attention
is paid to the normal course of interaction and the special cases can be picked up later.

Although, even some of the leading thinkers in the areas of object-orientation and use case
analysis have struggled over agreement on the exact semantics of extensions, we have always
taken a purely pragmatic approach. Because they simplify task models and therefore can lead
to simplified user interaction, usage -centered design employs extensions freely without
worrying too much over semantic precision or theoretical rigor.

However, as the scale of design problems rises, with larger design teams and more and more
use cases, the sort of "studied sloppiness" that can be beneficial for rapid design of modest
problems begins to become a stumbling block. For this reason we have recently been rethinking
the concept of extensions and how they are modeled in use cases and use case maps.

One of the problems is that the original concept of extension is actually a conflation covering
two quite different kinds of exceptional or alternative courses of interaction. In the first variant,
the extension use case can only occur at certain points in the course of the interaction, as in
Example 11, where the user may or may not choose to modify the test setup. This is clearly not
a part of the normal or mainline course of interaction, so it is appropriate to consider it as a
distinct use case that extends running a standard test. However, the user can enact the
extension use case, modifying test setup, only after a predefined test has been selected and
before the test setup has been confirmed for the system to run it.

Constantine & Lockwood: Structure & Style page 21

Synchronous extensions

The first form of “extension” is termed "synchronous" because its occurrence is synchronized
with the use case it extends. In fact, a synchronous extension is nothing more nor less than a
conditional inclusion. It is a use case that will, under some circumstances, be included or used
at a particular point in the course of the interaction. By definition it must be "visible" in the
narrative for the base case because this narrative must specify at what point in the narrative the
extension can occur.

Asynchronous extensions

The other case covered by the original notion of extension refers to alternative or exceptional
cases whose point of occurrence is unpredictable. Such asynchronous extensions operate like
interrupts to the mainline interaction. For instance, in the use case of Example 13, the user
might choose at any time to reset the system, canceling the test and restoring all original
values. Similarly, the system could at any time assume responsibility for informing the user
that an unrecoverable exception has occurred. Because such extensions apply to the interaction
as a whole but can occur at any point, they are most reasonably separated out and presented at
the top of the narrative body, as in this example:

Example 13.

User Intentions

 System Responsibilities

Asynchronous Extensions

optionally at point do {resetting test}

 optionally at any point do {reporting fatal exception}

 1. present list of standard test setups

2. select standard test setup

 3. display selected test setup

4. optionally [do modifying test setup]

5. confirm test setup

 6. run test as set up and report

7. optionally [print test results]

 8. print and confirm

Cockburn [2000], among others, places extensions of either variety at the end of the use case
narrative, but we find that arranging the asynchronous extensions as a prologue puts them
where users, managers, and non-technical people expect to find them. It is as if to say, "Before
we start the details of our story, note that we could be interrupted at any time by certain

Constantine & Lockwood: Structure & Style page 22

occurrences." When showing use cases with to non-technical people, we would normally omit
the heading “Asynchronous Extensions” from the section.

USE CASE MAPS

A use case map models the interrelationships among use cases, mapping the overall structure
of the tasks to be supported by the system being designed. As noted earlier, problems with the
UML Use Case Diagram have kept us from simply adopting its conventions wholesale. The large,
complex models typically required for real-world applications can be particularly difficult to
read and understand when expressed in UML. Integrating actors (user roles) with use case
relationships in a single model leads to bewildering jumbles of lines for all but the most trivial
problems of the sort found in books, articles, and tutorials. A suitable CASE tool would allow
for selecting an actor or user role and seeing the associated use cases highlighted (or vice
versa), but in paper or static diagrams, we would normally omit them.

Representing use cases

Following Jacobson’s lead, we have always represented each individual use cases by an ellipse
but have recently found that this convention, which seems adequate for academic or textbook
problems where all the use case names are short and simple, breaks down for many larger and
more complex real-world problems. In particular, the elliptical shape does not as readily
accommodate long names as do other geometric shapes. Two alternatives that do not abandon
convention altogether are worthy of serious consideration. One is to put the name outside the
use case symbol, as Jacobson originally did. The other is to form a graphical hybrid that might
be called an “elliptangle.”

adding new employee to building list

adding new employee to building listadding new employee to building listadding new employee to building list

Figure 3 – Alternative representation of use cases in maps.

Cluster cases, explained earlier, are portrayed as a graphical “stack,” visually suggesting that
the named case really covers a number of use cases.

moving incremental W/X/Y/Z axismoving incremental W/X/Y/Z axis

Figure 4 – Representation of cluster cases in use case maps.

Representing relationships

Because in UML the type of relationship represented by a given line is not clear from its
appearance, one must trace a line to its endpoints and find an adjacent label somewhere in the
middle to know exactly how two use cases are related. The guillemets (« and ») surrounding
relationship labels in UML are nothing more than graphical noise that makes models harder to
parse visually.

As experience accumulates, especially with large, complex applications, we continue to revise
usage -centered design notation to promote clarity and communication. For readability in

Constantine & Lockwood: Structure & Style page 23

complex models, we use different line styles to represent different relationships, employing
labels for redundant communication. (See Figures 5 and 6.)

The distinction between synchronous and asynchronous extensions poses a notational
challenge. The “extends” relationship is now reserved for asynchronous extensions. The fact
that asynchronous extensions are referred to in the Asynchronous Extensions clause of the
base case is considered a form of optional visibility, and the arrow still points from the
extension to the extended base case.

Because synchronous extensions are merely conditional inclusions, they ought to be
represented as some variation on the graphic for inclusion. We would prefer to model such
relationships in a perfectly natural and expressive way by adding a decision diamond to the tail
of the arrow normally used to show inclusion, which is precisely the way such relationships
were represented in the structure chart notation in use around the world for more than 25
years [Yourdon and Constantine, 1975]. Unfortunately, the UML somewhat arrogantly usurps
the diamond—all but universally recognized as representing a decision or conditional
operation—to represent aggregation, thus creating an arbitrary and non-intuitive notation made
all the more obscure by the use of open diamonds and filled diamonds to represent (and, to
many users, obfuscate) aggregation and composition of classes [Henderson-Sellers and Barbier,
1999].

For conditional inclusion, other suggestions have been considered, including annotating the tail
of the arrow with a question mark or with a cardinality, such as 0..1. We now favor a distinct
line style with an informative label.

Specialization:

Inclusion:
Extension

(asynchronous):

Inclusion
(conditional):

Inclusion
(as pre-condition):

Symmetrical relationships

Equivalence:
Similarity:

specializes

uses (or includes)

extends

may use (or include)

requires

equivalent

resembles

0..N

specializes

uses (or includes)

extends

may use (or include)

requires

equivalent

resembles

0..N

Figure 5 – Relationships in use case maps.

An example of a partial use case map using these conventions is shown in Figure 6.

Constantine & Lockwood: Structure & Style page 24

0..N
0..1

extends

requires

specializes

may
include

may
include may

include

resembles

includesmay
include

running standard test

modifying test setup

resetting test

reporting fatal exception

checking test progress

running test

cold-starting drive

setting striker frequency/force

setting starting striker X/Y/Z position

setting waveform

logging registered operator

setting starting platform X/Y position

defining new test

describing test

0..Nextends 0..N
0..1

extends

requires

specializes

may
include

may
include may

include

resembles

includesmay
include

running standard test

modifying test setup

resetting test

reporting fatal exception

checking test progress

running test

cold-starting drive

setting striker frequency/forcesetting striker frequency/force

setting starting striker X/Y/Z position setting starting striker X/Y/Z position

setting waveform

logging registered operator

setting starting platform X/Y position setting starting platform X/Y position

defining new test

describing test

0..Nextends

Figure 6 – Example of a use case map.

BUSINESS RULES

In addition to functional requirements, almost all applications are defined in part by what are
commonly known as “business rules.” Business rules—or more simply, rules—are the policies,
constraints, and conditions to be satisfied that underlie business processes [Gottesdiener,
1999]. Such rules define the operational relationships or restrictions governing information and
how it is processed within a system and, in some situations, within the larger organizational
context. Although they have not figured prominently in academic and theoretical work on use
cases and object-orientation, business rules are a critically important part of most real world
applications. Because they describe how “the business” or process is supposed to operate, the
term is used even within technical areas not normally characterized in business terminology.
For example, a rule might constrain the sequence in which various containers in a chemical
process can be emptied and reloaded with other ingredients, or a rule might require that
passwords contain a mix of digits and letters and must be updated at least every 90 days.

Although business rules are not functional requirements in themselves, they often are closely
associated with the functionality embodied in use cases. Rules can apply to or be associated
with any part of a use case, a use case as a whole, or the relationships among use cases. Clearly,
the rules associated with use cases will have direct and important consequences for user
interface design. A rule requiring regular update of passwords, for instance, mandates a means
to inform the user when an update is needed and a means for changing the password accessible
from within the log-in context.

To assure correct design and implementation and to facilitate tracing requirements, business
rules should be clearly and directly connected with those parts of the analysis and design
models to which they apply. On the other hand, business rules comprise a distinct collection of

Constantine & Lockwood: Structure & Style page 25

requirements that should not be scattered among various analysis and design models where
they can become buried, lost, or inadvertently duplicated. To resolve these conflicting needs,
rules are compiled into a Business Rules Model that identifies, categorizes, and lists them.
Business rules can then be referred to by annotating use cases and use case maps with
references to the rules by name and/or identifier.

For example, a business rule may require that a credit limit increase cannot be authorized on an
account for which an activity summary has not been requested in the same session, even
though, in principle, there is otherwise no necessary sequential dependency between these two
functions. The use case reviewing account activity summary, therefore becomes a precondition
of the use case authorizing credit limit increase. An annotation, such as, “(Rule: #27 Activity
Review on Credit Increase)” is associated with the relationship between the two use cases and
would appear on the relationship line in the use case map and in the Preconditions clause in a
form like this:

do reviewing account activity summary (Rule: #27 Activity Review on Credit Increase)

For those business rules applying to the use case as a whole, a clause within the Process section
is reserved. Strictly speaking, a use case model is incomplete as a specification unless the
associated business rules are included or connected in some manner.

RECOMMENDATIONS

For user interface design, extensive experience has demonstrated that an appropriate style of
expression in writing use case narratives can support a more efficient design process, facilitate
communication within a project, and lead to higher quality designs. A consensus may finally be
emerging that use case narratives that are both abstract and purpose-centered offer
demonstrable advantages as task models for user interface design. We propose, additionally,
that a more highly-structured and systematic form of use case narrative is needed, especially to
support larger and more complex projects. Structured essential use cases provide a rich and
precise mode of expression that not only meets the needs of user interface designers and of
software engineers but is also easily understood and validated by end users and clients.

Such use cases improve modeling and communication through a refined and precise
organization that includes: (1) a clear division separating user intentions from system
responsibilities, thus highlighting the system boundary; (2) distinction and separate
presentation of asynchronous and synchronous extensions; (3) idioms for expressing partially
ordered interaction; and (4) straightforward linking with related business rules. This structure
strikes a balance that avoids both the informality and imprecision of continuous narratives on
the one hand and, on the other, the inappropriate rigor of models, such as interaction
diagrams, better suited for object-oriented design and programming than for user interface
design.

REFERENCES
Ahlqvist, S. (1996a) “Objectory for GUI Intensive Systems.” Kista, Sweden: Objectory Software
AB.

Ahlqvist, S. (1996b) “Objectory for GUI Intensive Systems: Extension.” Kista, Sweden: Objectory
Software AB.

Bjork, R. C. (1998) “Use Cases for Example ATM System.”
http://www.cs.gordonc.edu/local/courses/cs320/ATM_Example/UseCases.html

Booch, G. “Scenarios,” (1994) Report on Object Analysis and Design. 1 (3): 3-6.

http://www.cs.gordonc.edu/local/courses/cs320/ATM_Example/UseCases.html

Constantine & Lockwood: Structure & Style page 26

Carroll J. M. (ed.) (1995) Scenario-Based Design. NY: Wiley, 1995.

Cockburn, A. (1997) "Structuring Use Cases with Goals," Journal of Object-Oriented
Programming, Sep/Oct, 1997, pp. 35-40, and Nov/Dec, 1997, pp. 56-62.

Cockburn, A. (2000) Writing Effective Use Cases. Boston: Addison-Wesley.
Constantine, L. L., & Lockwood, L. A. D. (1999) Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design. Boston: Addison-Wesley.

Constantine, L. L. (1995) "Essential Modeling: Use Cases for User Interfaces,” ACM Interactions, 2
(2): 34-46, April.

Constantine, L. L. (1994a) “Mirror, Mirror,” Software Development, 2 (3), March 1994. Reprinted
in Constantine, L. L. Constantine on Peopleware. Englewood Cliffs: Prentice Hall, 1995.

Constantine, L. L. (1994b) “Essentially Speaking,” Software Development, 2 (11): 95-96,
November 1994. Reprinted in Constantine, L. L. Constantine on Peopleware. Englewood
Cliffs: Prentice Hall, 1995.

Constantine, L. L., and Hendersons-Sellers, B. (1995a) "Notation Matters. Part 1: Framing the
Issues," Report on Object Analysis and Design, 2 (3):25-29, September-October 1995.

Constantine, L. L., and Hendersons-Sellers, B. (1995b) "Notation Matters. Part 2: Applying the
Principles," Report on Object Analysis and Design, 2 (4):25-27, November-December 1995

Fowler, M. (1997) UML Distilled: Applying the Standard Object Modeling Language. Reading,
MA: Addison-Wesley.

Gottesdiener, E. (1999) “Business Rules as Requirements.” Software Development, 7 (12),
December.

Graham, I.(1996) “Task Scripts, Use Cases and Scenarios in Object-Oriented Analysis,” Object-
Oriented Systems 3 (3): 123-142.

Hendersons-Sellers, B. (1999) “OML: Proposals to Enhance UML,” in J. Bèzivin and P.-A. Muller
(eds.) The Unified Modeling Language: Beyond the Notation. Berlin: Springer-Verlag.

Hendersons-Sellers, B., and Barbier, F. (1999) “Black and White Diamonds.” in R. France and B.
Rumpe (eds.) The Unified Modeling Language: Beyond the Standard . Berlin: Springer-
Verlag.Inf. Software Technol., 41 (2): 139-156.

Hendersons-Sellers, B., and Firesmith, D. G. (1999) “Comparing OPEN and UML.” Inf. Software
Technol., 41 (2): 139-156.

Jacobson, I., Booch, G., Rumbaugh, J. (1999) The Unified Software Development Process.
Reading, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992) Object-Oriented Software
Engineering: A Use Case Driven Approach. Reading, MA: Addison-Wesley.

Kaindl, H. (1995) “An Integration of Scenarios with Their Purposes in Task Modeling.” Proc.
Symposium on Designing Interactive Systems. Ann Arbor, ACM Press.

Korson, T. (1998) “The Misuse of Use Cases,” Object Magazine, 8 (3): 18-20.
Kruchten, P. (1999) The Rational Unified Process: An Introduction. Reading, MA: Addison-

Wesley.

Lee, J., and Xue, N. (1999) “Analyzing User Requirements by Use Cases: A Goal-Driven
Approach,” IEEE Software, 16 (4): 92-101, July/August.

McMenamin, S. M., & Palmer, J. (1984) Essential Systems Analysis. Englewood, Cliffs, NJ:
Prentice Hall.

Nunes, N., and Cunha, J. (2000) “WISDOM - Whitewater Interactive System Development with
Object Models,” this volume.

Page-Jones, M., Constantine, L. L., and Weiss, S. (1990) "Modeling Object-Oriented Systems: A
Uniform Object Notation." Computer Language, 7 (10), October.

Roberts, D., Berry, D., Isensee, S., and Mullaly, J. (1998) Designing for the User with OVID. New
York: Macmillan.

Rosson, M. B., and Carroll, J. (2000) “Scenarios, Objects, and Points-of-View in User Interface
Design,” this volume.

Constantine & Lockwood: Structure & Style page 27

Rumbaugh, J., Jacobson, I., and Booch, E. (1999) The Unified Modeling Language Reference
Manual. Reading, MA: Addison-Wesley.

Schneider, G., and Winters, J. P. (1998) Applying Use Cases: A Practical Guide. Reading, MA:
Addison-Wesley.

Texel, P. P., and Williams, C. B. (1997) Use Cases Combined with Booch OMT UML. Upper
Saddle River, NJ: Prentice Hall.

Wirfs-Brock, R. (1993) "Designing Scenarios: Making the Case for a Use Case Framework,"
Smalltalk Report, November-December.

Wirfs-Brock, R. (1994) "The Art of Designing Meaningful Conversations," Smalltalk Report,
February.

Yourdon, E., and Constantine, L. L. (1975) Structured Design (First Edition). New York: Yourdon
Press.

Learn more about essential uses cases, including training in usage-
centered design, at http://www.forUse.com.

http://www.forUse.com

