8)Memory
Churn and performance
虽然Android有自动管理内存的机制,但是对内存的不恰当使用仍然容易引起严重的性能问题。在同一帧里面创建过多的对象是件需要特别引起注意的事情。
Android系统里面有一个Generational Heap Memory的模型,系统会根据内存中不同的内存数据类型分别执行不同的GC操作。例如,最近刚分配的对象会放在Young
Generation区域,这个区域的对象通常都是会快速被创建并且很快被销毁回收的,
同时这个区域的GC操作速度也是比Old Generation区域的GC操作速度更快的。
除了速度差异之外,执行GC操作的时候,任何线程的任何操作都会需要暂停,等待GC操作完成之后,其他操作才能够继续运行。
通常来说,单个的GC并不会占用太多时间,但是大量不停的GC操作则会显著占用帧间隔时间(16ms)。如果在帧间隔时间里面做了过多的GC操作,那么自然其他类似计算,渲染等操作的可用时间就变得少了。
导致GC频繁执行有两个原因:
1.Memory Churn内存抖动,内存抖动是因为大量的对象被创建又在短时间内马上被释放。
2.瞬间产生大量的对象会严重占用Young Generation的内存区域,当达到阀值,剩余空间不够的时候,也会触发GC。即使每次分配的对象占用了很少的内存,但是他们叠加在一起会增加Heap的压力,从而触发更多其他类型的GC。这个操作有可能会影响到帧率,并使得用户感知到性能问题。
解决上面的问题有简洁直观方法,如果你在Memory Monitor里面查看到短时间发生了多次内存的涨跌,这意味着很有可能发生了内存抖动。
同时我们还可以通过Allocation Tracker来查看在短时间内,同一个栈中不断进出的相同对象。这是内存抖动的典型信号之一。
当你大致定位问题之后,接下去的问题修复也就显得相对直接简单了。例如,你需要避免在for循环里面分配对象占用内存,需要尝试把对象的创建移到循环体之外,自定义View中的onDraw方法也需要引起注意,每次屏幕发生绘制以及动画执行过程中,onDraw方法都会被调用到,
避免在onDraw方法里面执行复杂的操作,避免创建对象。对于那些无法避免需要创建对象的情况,我们可以考虑对象池模型,通过对象池来解决频繁创建与销毁的问题,但是这里需要注意结束使用之后,需要手动释放对象池中的对象。
9)Garbage Collection in Android
JVM的回收机制给开发人员带来很大的好处,不用时刻处理对象的分配与回收,可以更加专注于更加高级的代码实现。相比起Java,C与C++等语言具备更高的执行效率,他们需要开发人员自己关注对象的分配与回收,但是在一个庞大的系统当中,
还是免不了经常发生部分对象忘记回收的情况,这就是内存泄漏。
原始JVM中的GC机制在Android中得到了很大程度上的优化。Android里面是一个三级Generation的内存模型,最近分配的对象会存放在Young
Generation区域,当这个对象在这个区域停留的时间达到一定程度,它会被移动到Old Generation,最后到Permanent
Generation区域。
每一个级别的内存区域都有固定的大小,此后不断有新的对象被分配到此区域,当这些对象总的大小快达到这一级别内存区域的阀值时,会触发GC的操作,以便腾出空间来存放其他新的对象。
前面提到过每次GC发生的时候,所有的线程都是暂停状态的。GC所占用的时间和它是哪一个Generation也有关系,Young
Generation的每次GC操作时间是最短的,Old Generation其次,Permanent Generation最长。执行时间的长短也和当前Generation中的对象数量有关,
遍历查找20000个对象比起遍历50个对象自然是要慢很多的。
虽然Google的工程师在尽量缩短每次GC所花费的时间,但是特别注意GC引起的性能问题还是很有必要。如果不小心在最小的for循环单元里面执行了创建对象的操作,这将很容易引起GC并导致性能问题。通过Memory
Monitor我们可以查看到内存的占用情况,
每一次瞬间的内存降低都是因为此时发生了GC操作,如果在短时间内发生大量的内存上涨与降低的事件,这说明很有可能这里有性能问题。我们还可以通过Heap
and Allocation Tracker工具来查看此时内存中分配的到底有哪些对象。
10)Performance Cost of Memory Leaks
虽然Java有自动回收的机制,可是这不意味着Java中不存在内存泄漏的问题,而内存泄漏会很容易导致严重的性能问题。
内存泄漏指的是那些程序不再使用的对象无法被GC识别,这样就导致这个对象一直留在内存当中,占用了宝贵的内存空间。显然,这还使得每级Generation的内存区域可用空间变小,GC就会更容易被触发,从而引起性能问题。
寻找内存泄漏并修复这个漏洞是件很棘手的事情,你需要对执行的代码很熟悉,清楚的知道在特定环境下是如何运行的,然后仔细排查。例如,你想知道程序中的某个activity退出的时候,它之前所占用的内存是否有完整的释放干净了?
首先你需要在activity处于前台的时候使用Heap Tool获取一份当前状态的内存快照,然后你需要创建一个几乎不这么占用内存的空白activity用来给前一个Activity进行跳转,其次在跳转到这个空白的activity的时候主动调用System.gc()方法来确保触发一个GC操作。
最后,如果前面这个activity的内存都有全部正确释放,那么在空白activity被启动之后的内存快照中应该不会有前面那个activity中的任何对象了。
如果你发现在空白activity的内存快照中有一些可疑的没有被释放的对象存在,那么接下去就应该使用Alocation
Track Tool来仔细查找具体的可疑对象。我们可以从空白activity开始监听,启动到观察activity,然后再回到空白activity结束监听。
这样操作以后,我们可以仔细观察那些对象,找出内存泄漏的真凶。
11)Memory Performance
通常来说,Android对GC做了大量的优化操作,虽然执行GC操作的时候会暂停其他任务,可是大多数情况下,GC操作还是相对很安静并且高效的。但是如果我们对内存的使用不恰当,导致GC频繁执行,这样就会引起不小的性能问题。
为了寻找内存的性能问题,Android Studio提供了工具来帮助开发者。
1.Memory Monitor:查看整个app所占用的内存,以及发生GC的时刻,短时间内发生大量的GC操作是一个危险的信号。
2.Allocation Tracker:使用此工具来追踪内存的分配,前面有提到过。
3.Heap Tool:查看当前内存快照,便于对比分析哪些对象有可能是泄漏了的,请参考前面的Case。
12)Tool - Memory Monitor
Android Studio中的Memory Monitor可以很好的帮组我们查看程序的内存使用情况。
13)Battery Performance
电量其实是目前手持设备最宝贵的资源之一,大多数设备都需要不断的充电来维持继续使用。不幸的是,对于开发者来说,电量优化是他们最后才会考虑的的事情。但是可以确定的是,千万不能让你的应用成为消耗电量的大户。
Purdue University研究了最受欢迎的一些应用的电量消耗,平均只有30%左右的电量是被程序最核心的方法例如绘制图片,摆放布局等等所使用掉的,剩下的70%左右的电量是被上报数据,检查位置信息,定时检索后台广告信息所使用掉的。
如何平衡这两者的电量消耗,就显得非常重要了。
有下面一些措施能够显著减少电量的消耗:
1.我们应该尽量减少唤醒屏幕的次数与持续的时间,使用WakeLock来处理唤醒的问题,能够正确执行唤醒操作并根据设定及时关闭操作进入睡眠状态。
2.某些非必须马上执行的操作,例如上传歌曲,图片处理等,可以等到设备处于充电状态或者电量充足的时候才进行。
3.触发网络请求的操作,每次都会保持无线信号持续一段时间,我们可以把零散的网络请求打包进行一次操作,避免过多的无线信号引起的电量消耗。关于网络请求引起无线信号的电量消耗,还可以参考这里http://hukai.me/android-training-course-in-chinese/connectivity/efficient-downloads/efficient-network-access.html
我们可以通过手机设置选项找到对应App的电量消耗统计数据。我们还可以通过Battery
Historian Tool来查看详细的电量消耗。
如果发现我们的App有电量消耗过多的问题,我们可以使用JobScheduler
API来对一些任务进行定时处理,例如我们可以把那些任务重的操作等到手机处于充电状态,或者是连接到WiFi的时候来处理。
关于JobScheduler的更多知识可以参考http://hukai.me/android-training-course-in-chinese/background-jobs/scheduling/index.html
14)Understanding Battery Drain on Android
电量消耗的计算与统计是一件麻烦而且矛盾的事情,记录电量消耗本身也是一个费电量的事情。唯一可行的方案是使用第三方监测电量的设备,这样才能够获取到真实的电量消耗。
当设备处于待机状态时消耗的电量是极少的,以N5为例,打开飞行模式,可以待机接近1个月。可是点亮屏幕,硬件各个模块就需要开始工作,这会需要消耗很多电量。
使用WakeLock或者JobScheduler唤醒设备处理定时的任务之后,一定要及时让设备回到初始状态。每次唤醒无线信号进行数据传递,都会消耗很多电量,它比WiFi等操作更加的耗电,
详情请关注http://hukai.me/android-training-course-in-chinese/connectivity/efficient-downloads/efficient-network-access.html
修复电量的消耗是另外一个很大的课题,这里就不展开继续了。
15)Battery Drain and WakeLocks
高效的保留更多的电量与不断促使用户使用你的App来消耗电量,这是矛盾的选择题。不过我们可以使用一些更好的办法来平衡两者。
假设你的手机里面装了大量的社交类应用,即使手机处于待机状态,也会经常被这些应用唤醒用来检查同步新的数据信息。Android会不断关闭各种硬件来延长手机的待机时间,首先屏幕会逐渐变暗直至关闭,然后CPU进入睡眠,这一切操作都是为了节约宝贵的电量资源。
但是即使在这种睡眠状态下,大多数应用还是会尝试进行工作,他们将不断的唤醒手机。一个最简单的唤醒手机的方法是使用PowerManager.WakeLock的API来保持CPU工作并防止屏幕变暗关闭。这使得手机可以被唤醒,执行工作,然后回到睡眠状态。
知道如何获取WakeLock是简单的,可是及时释放WakeLock也是非常重要的,不恰当的使用WakeLock会导致严重错误。例如网络请求的数据返回时间不确定,导致本来只需要10s的事情一直等待了1个小时,这样会使得电量白白浪费了。
这也是为何使用带超时参数的wakelock.acquice()方法是很关键的。但是仅仅设置超时并不足够解决问题,例如设置多长的超时比较合适?什么时候进行重试等等?
解决上面的问题,正确的方式可能是使用非精准定时器。通常情况下,我们会设定一个时间进行某个操作,但是动态修改这个时间也许会更好。例如,如果有另外一个程序需要比你设定的时间晚5分钟唤醒,最好能够等到那个时候,两个任务捆绑一起同时进行,
这就是非精确定时器的核心工作原理。我们可以定制计划的任务,可是系统如果检测到一个更好的时间,它可以推迟你的任务,以节省电量消耗。
这正是JobScheduler API所做的事情。它会根据当前的情况与任务,组合出理想的唤醒时间,例如等到正在充电或者连接到WiFi的时候,或者集中任务一起执行。我们可以通过这个API实现很多免费的调度算法。
从Android 5.0开始发布了Battery History Tool,它可以查看程序被唤醒的频率,又谁唤醒的,持续了多长的时间,这些信息都可以获取到。
请关注程序的电量消耗,用户可以通过手机的设置选项观察到那些耗电量大户,并可能决定卸载他们。所以尽量减少程序的电量消耗是非常有必要的。 |