您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
Flutter渲染机制—UI线程
 
作者:不详
   次浏览      
2020-1-14
 
编辑推荐:

本文主要详细介绍了UI线程渲染、UI线程渲染流程图、VSYNC注册流程,Framework层绘制,希望对您能有所帮助。
本文来自于gityuan,由火龙果软件Delores编辑推荐。

一、UI线程渲染

Flutter是谷歌开源的移动UI框架,可以快速在Android和iOS上构建出高质量的原生用户界面,目前全世界越来越多的开发者加入到Flutter的队伍。 Flutter相比RN性能更好,由于Flutter自己实现了一套UI框架,丢弃了原生的UI框架,非常接近原生的体验。

为了揭秘Flutter高性能,本文从源码角度来看看Flutter的渲染绘制机制,跟渲染直接相关的两个线程是UI线程和GPU线程:

UI线程:运行着UI Task Runner,是Flutter Engine用于执行Dart root isolate代码,将其转换为layer tree视图结构;

GPU线程:该线程依然是在CPU上执行,运行着GPU Task Runner,处理layer tree,将其转换成为GPU命令并发送到GPU。

通过VSYNC信号使UI线程和GPU线程有条不紊的周期性的渲染界面,本文介绍VSYNC的产生过程、UI线程在引擎和框架的绘制工作,下一篇文章会介绍GPU线程的绘制工作。

1.1 UI渲染原理

1.1.1 UI渲染概览

通过VSYNC信号使UI线程和GPU线程有条不紊的周期性的渲染界面,如下图所示:

当需要渲染则会调用到Engine的ScheduleFrame()来注册VSYNC信号回调,一旦触发回调doFrame()执行完成后,便会移除回调方法,也就是说一次注册一次回调;

当需要再次绘制则需要重新调用到ScheduleFrame()方法,该方法的唯一重要参数regenerate_layer_tree决定在帧绘制过程是否需要重新生成layer tree,还是直接复用上一次的layer tree;

UI线程的绘制过程,最核心的是执行WidgetsBinding的drawFrame()方法,然后会创建layer tree视图树

再交由GPU Task Runner将layer tree提供的信息转化为平台可执行的GPU指令。

1.1.2 UI绘制核心工作

1)Vsync单注册模式:保证在一帧的时间窗口里UI线程只会生成一个layer tree发送给GPU线程,原理如下:

Animator中的信号量pending_frame_semaphore_用于控制不能连续频繁地调用Vsync请求,一次只能存在Vsync注册。

pending_frame_semaphore_初始值为1,在Animator::RequestFrame()消费信号会减1,当而后再次调用则会失败直接返回;

Animator的BeginFrame()或者DrawLastLayerTree()方法会执行信号加1操作。

2)UI绘制最核心的方法是drawFrame(),包含以下几个过程:

Animate: 遍历_transientCallbacks,执行动画回调方法;

Build: 对于dirty的元素会执行build构造,没有dirty元素则不会执行,对应于buildScope()

Layout: 计算渲染对象的大小和位置,对应于flushLayout(),这个过程可能会嵌套再调用build操作;

Compositing bits: 更新具有脏合成位的任何渲染对象, 对应于flushCompositingBits();

Paint: 将绘制命令记录到Layer, 对应于flushPaint();

Compositing: 将Compositing bits发送给GPU, 对应于compositeFrame();

Semantics: 编译渲染对象的语义,并将语义发送给操作系统, 对应于flushSemantics()。

UI线程的耗时从doFrame(frameTimeNanos)中的frameTimeNanos为起点,以小节[4.10.6]Animator::Render()方法结束为终点, 并将结果保存到LayerTree的成员变量construction_time_,这便是UI线程的耗时时长。

1.1.3 Timeline说明

3)以上几个过程在Timeline中ui线程中都有体现,如下图所示:

另外Timeline中还有两个比较常见的标签项

“Frame Request Pending”:从Animator::RequestFrame 到Animator::BeginFrame()结束;

”PipelineProduce“: 从Animator::BeginFrame()到Animator::Render()结束。

1.2 UI线程渲染流程图

1.2.1 VSYNC注册流程

VSYNC注册流程图

当调用到引擎Engine的ScheduleFrame()方法过程则会注册VSYNC信号回调,一旦Vsync信号达到,则会调用到doFrame()方法。 对于调用ScheduleFrame()的场景有多种,比如动画的执行AnimationController.forward(),再比如比如surface创建的时候shell::SurfaceCreated()。

1.2.2 Engine层绘制

Engine层处理流程图

doFrame()经过多层调用后通过PostTask将任务异步post到UI TaskRunner线程来执行,最后调用到Window的BeginFrame()方法。

1.2.3 Framework层绘制

Framework层处理流程图

其中window.cc中的一个BeginFrame()方法,会调用到window.dart中的onBeginFrame()和onDrawFrame()两个方法。

1.3 核心类图

类关系图

为了让大家更容易理解源码,先看一张关于Shell、Engine、Animator等Flutter等Flutter引擎中核心类的类图。

Window类:是连接Flutter框架层(Dart)与引擎层(C++)的关键类,在框架层中window.dart文件里的一些方法在引擎层的window.cc文件有相对应的方法,比如scheduleFrame()方法。 在window.cc里面通过Window::RegisterNatives()注册了一些框架层与引擎层的方法对应关系;

RuntimeController类:可通过其成员root_isolate_找到Window类;

Shell类:同时继承了PlatformView::Delegate,Animator::Delegate,Engine::Delegate,所以在Engine,Animator,PlatformView中的成员变量delegate_都是指Shell对象, 从图中也能看出其中心地位,代理多项业务,该类是由AndroidShellHolder过程中初始化创建的;另外Shell类还继承了ServiceProtocol::Handler,图中省略而已。

PlatformViewAndroid类:在Android平台上PlatformView的实例采用的便是PlatformViewAndroid类。

Dart层与C层之间可以相互调用,从Window一路能调用到Shell类,也能从Shell类一路调用回Window。

接下来带着大家从源码角度来依次讲解Vsync注册以及UI线程的绘制处理流程,下一篇文章会介绍GPU线程的绘制工作。

二、 VSYNC注册流程

2.1 Engine::ScheduleFrame

[-> flutter/shell/common/engine.cc]

void Engine::ScheduleFrame
(bool regenerate_layer_tree) {
//[见小节2.2]
animator_->RequestFrame
(regenerate_layer_tree);
}

该方法说明:

animator_的赋值过程是在Engine对象初始化过程完成,而Engine初始化过程在Shell创建过程,此处animator_便是Animator对象;

ScheduleFrame的参数regenerate_layer_tree决定是否需要重新生成layer tree,还是直接复用上一次生成的layer tree;

绝大多数情况下,调用RequestFrame()时将regenerate_layer_tree_设置为true或者用默认值true,执行完Animator::BeginFrame()则设置该变量为false;

当无参数调用该方法时,regenerate_layer_tree为默认值为true。

特别的例子就是Shell::OnPlatformViewMarkTextureFrameAvailable()过程,设置参数为false,那么计划绘制一帧的时候就不需要重绘layer tree;

2.2 Animator::RequestFrame

[-> flutter/shell/common/animator.cc]

void Animator::RequestFrame
(bool regenerate_layer_tree) {
if (regenerate_layer_tree) {
// regenerate_layer_tree_决定
Vsync信号到来时,是否执行BeginFrame
regenerate_layer_tree_ = true;
}
//当调用Animator::Stop()
则会停止动画绘制
if (paused_ &&
!dimension_change_pending_) {
return;
}
//调用sem_trywait来保证不会同时
有多个vsync请求
if (!pending_frame_semaphore_.
TryWait()) {
return;
}
task_runners_.GetUITaskRunner()
->PostTask([self = weak_factory_.
GetWeakPtr(),
frame_number = frame_number_]() {
if (!self.get()) {
return;
}
TRACE_EVENT_ASYNC_BEGIN0("flutter",
"Frame Request Pending", frame_number);
self->AwaitVSync(); // [见小节2.3]
});
frame_scheduled_ = true;
//标注已经schedule绘画帧
}

过程说明:

pending_frame_semaphore_:非负信号量,初始值为1,第一次调用TryWait减1,而后再次调用则会失败直接返回。当消费了这次vsync回调,也就是调用了Animator的BeginFrame()或者DrawLastLayerTree()方法后,改信号量会加1[见小节3.6],可以再次执行vysnc的注册;

通过Animator的Start()或者BeginFrame调用到的RequestFrame方法,则肯定需要重新生成layer tree;通过Engine的ScheduleFrame方法是否重建layer tree看小节2.1;

此处通过post把Animator::AwaitVSync任务放入到UI Task Runner来执行。

2.3 Animator::AwaitVSync

[-> flutter/shell/common/animator.cc]

void Animator::AwaitVSync() {
// [见小节2.4]
waiter_->AsyncWaitForVsync(
[self = weak_factory_.GetWeakPtr()]
(fml::TimePoint frame_start_time,
fml::TimePoint frame_target_time) {
if (self) {
//是否能复用上次layer树,
取决于regenerate_layer_tree_
if (self->CanReuseLastLayerTree()) {
//复用上次layer树,直接把任务post到
gpu线程做栅格化操作
self->DrawLastLayerTree();
} else {
self->BeginFrame(frame_start_time,
frame_target_time);
}
}
});
delegate_.OnAnimatorNotifyIdle
(dart_frame_deadline_);
}

waiter_的赋值是在Animator初始化过程,取值为VsyncWaiterAndroid对象,当调用了RequestFrame(),默认参数regenerate_layer_tree_为true,意味着需要重新生成layer树,故不能重复使用上一次的layer树,接着来看一下AsyncWaitForVsync()方法的实现。

2.4 VsyncWaiter::AsyncWaitForVsync

[-> flutter/shell/common/vsync_waiter.cc]

void VsyncWaiter::AsyncWaitForVsync
(Callback callback) {
{
std::lock_guard<std::mutex>
lock(callback_mutex_);
//赋值callback_
callback_ = std::move(callback);
}
TRACE_EVENT0("flutter",
"AsyncWaitForVsync");
AwaitVSync(); // [见小节2.5]
}

此次的callback_便是[小节2.3]方法中的参数,该方法根据regenerate_layer_tree_来决定执行流。

当regenerate_layer_tree_=false,则执行DrawLastLayerTree();

当regenerate_layer_tree_=false,则执行BeginFrame();

2.5 VsyncWaiterAndroid::AwaitVSync

[-> flutter/shell/platform/android/vsync_waiter_android.cc]

void VsyncWaiterAndroid::
AwaitVSync() {
std::weak_ptr<VsyncWaiter>*
weak_this =
new std::weak_ptr<VsyncWaiter>
(shared_from_this());
//获取VsyncWaiter的弱引用
jlong java_baton = reinterpret
_cast<jlong>(weak_this);
JNIEnv* env = fml::jni::
AttachCurrentThread();
// 此次调用到Java层的
asyncWaitForVsync方法,java_baton
指向VsyncWaiter
env->CallStaticVoidMethod
(g_vsync_waiter_class->obj(), //
g_async_wait_for_vsync_method_, //
java_baton //
);
}

此处g_vsync_waiter_class,g_async_wait_for_vsync_method_的赋值过程是由JNI_OnLoad完成,如下所示。

2.5.1 JNI_OnLoad

[-> flutter/shell/platform/android/library_loader.cc]

JNIEXPORT jint JNI_OnLoad
(JavaVM* vm, void* reserved) {
// 初始化Java虚拟机
fml::jni::InitJavaVM(vm);
JNIEnv* env = fml::jni::
AttachCurrentThread();
bool result = false;
// 注册FlutterMain.
result = shell::FlutterMain::
Register(env);
// 注册PlatformView [见小节2.5.2]
result = shell::PlatformViewAndroid
::Register(env);
// 注册VSyncWaiter [见小节2.5.3]
result = shell::VsyncWaiterAndroid
::Register(env);
return JNI_VERSION_1_4;
}

首次加载共享库时虚拟机会调用此方法。

2.5.2 Register

[-> flutter/shell/platform/android/platform_view_android_jni.cc]

bool PlatformViewAndroid::
Register(JNIEnv* env) {
//记录FlutterCallbackInformation
类的全局引用
g_flutter_callback_info_class = new fml::jni::ScopedJavaGlobalRef<jclass>(
env, env->FindClass("io/flutter/view
/FlutterCallbackInformation"));
//记录FlutterCallbackInformation构造函数
g_flutter_callback_info_constructor
= env->GetMethodID(
g_flutter_callback_info_class->obj(),
"<init>",
"(Ljava/lang/String;Ljava/lang/String;
Ljava/lang/String;)V");
//记录FlutterJNI类的全局引用
g_flutter_jni_class = new fml::jni::ScopedJavaGlobalRef<jclass>(
env, env->FindClass("io/flutter/embedding
/engine/FlutterJNI"));
//记录SurfaceTexture类的全局引用
g_surface_texture_class = new fml::jni::ScopedJavaGlobalRef<jclass>(
env, env->FindClass
("android/graphics/SurfaceTexture"));
static const JNINativeMethod
callback_info_methods[] = {
{
.name = "nativeLookupCallbackInformation",
.signature = "(J)Lio/flutter/view
/FlutterCallbackInformation;",
.fnPtr = reinterpret_cast<void*>
(&shell::LookupCallbackInformation),
},
};
//注册FlutterCallbackInformation的nativeLookupCallbackInformation()方法
env->RegisterNatives
(g_flutter_callback_info_class->obj(),
callback_info_methods,
arraysize(callback_info_methods)) != 0);


g_is_released_method =
env->GetMethodID
(g_surface_texture_class->obj(),
"isReleased", "()Z");


fml::jni::ClearException(env);
g_attach_to_gl_context_method
= env->GetMethodID(
g_surface_texture_class->obj(),
"attachToGLContext", "(I)V");
g_update_tex_image_method =
env->GetMethodID
(g_surface_texture_class->obj(),
"updateTexImage", "()V");
g_get_transform_matrix_method
= env->GetMethodID(
g_surface_texture_class->obj(),
"getTransformMatrix", "([F)V");
g_detach_from_gl_context_method
= env->GetMethodID(
g_surface_texture_class->obj(),
"detachFromGLContext", "()V");
return RegisterApi(env);
}

该方法的主要工作:

记录和注册类FlutterCallbackInformation、FlutterJNI以及SurfaceTexture类的相关方法,用于Java和C++层方法的相互调用。

2.5.3 Register

[-> flutter/shell/platform/android/vsync_waiter_android.cc]

bool VsyncWaiterAndroid::Register
(JNIEnv* env) {
static const JNINativeMethod
methods[] = ;
jclass clazz = env->FindClass
("io/flutter/view/VsyncWaiter");
g_vsync_waiter_class = new fml::jni
::ScopedJavaGlobalRef
<jclass>(env, clazz);
g_async_wait_for_vsync_method_
= env->GetStaticMethodID(
g_vsync_waiter_class->obj(),
"asyncWaitForVsync", "(J)V");
return env->RegisterNatives
(clazz, methods,
arraysize(methods)) == 0;
}

该注册过程主要工作:

将Java层的VsyncWaiter类的nativeOnVsync()方法,映射到C++层的OnNativeVsync()方法,用于该方法的Java调用C++的过程;

将Java层的VsyncWaiter类的asyncWaitForVsync()方法,保存到C++层的g_async_wait_for_vsync_method_变量,用于该方法C++调用Java的过程。

可见,将调用VsyncWaiter类的asyncWaitForVsync()方法

2.6 asyncWaitForVsync[Java]

[-> flutter/shell/platform/android/io/flutter/view/VsyncWaiter.java]

public class VsyncWaiter {
// FlutterView的刷新时间周期(16.7ms)
public static long refreshPeriodNanos
= 1000000000 / 60;
private static HandlerThread
handlerThread;
private static Handler handler;
static {
handlerThread = new HandlerThread
("FlutterVsyncThread");
handlerThread.start();
}
public static void asyncWaitForVsync
(final long cookie) {
if (handler == null) {
handler = new Handler
(handlerThread.getLooper());
}
handler.post(new Runnable() {
@Override
public void run() {
//注册帧回调方法,见小节[2.6.1]/[2.6.2]
Choreographer.getInstance().
postFrameCallback
(new Choreographer.FrameCallback() {
@Override
public void doFrame
(long frameTimeNanos) {
//frameTimeNanos是VYSNC触发的时间点,
也就是计划绘制的时间点
nativeOnVsync(frameTimeNanos,
frameTimeNanos +
refreshPeriodNanos, cookie);
}
});
}
});
}
}

通过Handler将工作post到FlutterVsyncThread线程,具体的工作是通过Choreographer来注册回调方法doFrame()以监听系统VSYNC信号。

2.6.1 Choreographer.getInstance

[-> Choreographer.java]

public static Choreographer
getInstance() {
return sThreadInstance.get();
//单例模式
}
private static final ThreadLocal
<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
protected Choreographer initialValue(){
//获取当前线程FlutterVsyncThread的Looper
Looper looper = Looper.myLooper();
// 初始化Choreographer对象
return new Choreographer(looper);
}
};
private Choreographer(Looper looper) {
mLooper = looper;
//创建Handler对象
mHandler = new FrameHandler(looper);
//创建用于接收VSync信号的对象
mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null;
mLastFrameTimeNanos = Long.MIN_VALUE;
//上一次帧绘制时间点
mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());
mCallbackQueues = new CallbackQueue
[CALLBACK_LAST + 1];
for (int i = 0; i <= CALLBACK_LAST; i++){
mCallbackQueues[i] = new CallbackQueue();
}
}

此处Choreographer的mLooper和mHandler都运行在FlutterVsyncThread线程。

2.6.2 postFrameCallback

[-> Choreographer.java]

public void postFrameCallback
(FrameCallback callback) {
postFrameCallbackDelayed(callback, 0);
}
public void postFrameCallback
Delayed(FrameCallback callback,
long delayMillis) {
postCallbackDelayedInternal
(CALLBACK_ANIMATION,
callback, FRAME_CALLBACK_TOKEN,
delayMillis);
}
private void postCallbackDelayedInternal
(int callbackType, Object action,
Object token, long delayMillis) {
synchronized (mLock) {
final long now = SystemClock.
uptimeMillis();
final long dueTime = now + delayMillis;
//添加到mCallbackQueues队列
mCallbackQueues[callbackType].
addCallbackLocked
(dueTime, action, token);
if (dueTime <= now) {
scheduleFrameLocked(now);
} else {
...
}
}
}

将FrameCallback方法加入到mCallbackQueues[CALLBACK_ANIMATION]回调队列中。

三、Engine层绘制

3.1 doFrame

[-> Choreographer.java]

public void doFrame
(long frameTimeNanos) {
//Android FW每次当vsync信号触发,
则会调用该方法 [见下方]
nativeOnVsync(frameTimeNanos,
frameTimeNanos +
refreshPeriodNanos, cookie);
}

Vsync注册过程见[小节2.6] Choreographer.FrameCallback()。注册了Vysnc信号后,一旦底层Vsync信号触发,经过层层调用回到FrameDisplayEventReceiver的过程,然后会有一个通过handler的方式post到线程”FlutterVsyncThread”来执行操作, 具体流程见Choreographer原理。紧接着再处理所有注册的doCallbacks方法,则会执行Choreographer.FrameCallback中的doFrame()方法,如下所示。

new Choreographer.FrameCallback(){
@Override
public void doFrame
(long frameTimeNanos) {
//frameTimeNanos是VYSNC触发的时间点,
也就是计划绘制的时间点 [见小节3.2]
nativeOnVsync(frameTimeNanos,
frameTimeNanos + refreshPeriodNanos,
cookie);
}
}

3.2 OnNativeVsync

[-> flutter/shell/platform/android/io/flutter/view/VsyncWaiter.java]

public class VsyncWaiter {
...
// [见小节3.2.1]
private static native void
nativeOnVsync(long frameTimeNanos,
long frameTargetTimeNanos,
long cookie);
...
}

由[小节2.5.3]可知,VsyncWaiter.java中的
nativeOnVsync对应于vsync_waiter_android.cc
的OnNativeVsync(),具体过程在jni加载过程初始化,如下所示。

3.2.1 OnNativeVsync[C++]

[-> flutter/shell/platform/android/vsync_waiter_android.cc]

static void OnNativeVsync
(JNIEnv* env, jclass jcaller,
jlong frameTimeNanos,
jlong frameTargetTimeNanos,
jlong java_baton) {
auto frame_time = fml::
TimePoint::FromEpochDelta(
fml::TimeDelta::FromNanoseconds
(frameTimeNanos));
auto target_time = fml::TimePoint
::FromEpochDelta(
fml::TimeDelta::FromNanoseconds
(frameTargetTimeNanos));
//消费pending回调[见小节3.3]
ConsumePendingCallback
(java_baton, frame_time, target_time);
}

3.3 ConsumePendingCallback

[-> flutter/shell/platform/android/vsync_waiter_android.cc]

static void ConsumePendingCallback
(jlong java_baton,
fml::TimePoint frame_start_time,
fml::TimePoint frame_target_time) {
auto* weak_this =
reinterpret_cast<std::weak_ptr
<VsyncWaiter>*>(java_baton);
auto shared_this = weak_this->lock();
delete weak_this;
if (shared_this) {
//shared_this指向VsyncWaiter的弱引用
[见小节3.4]
shared_this->FireCallback
(frame_start_time, frame_target_time);
}
}

3.4 VsyncWaiter::FireCallback

[-> flutter/shell/common/vsync_waiter.cc]

void VsyncWaiter::FireCallback
(fml::TimePoint frame_start_time,
fml::TimePoint frame_target_time) {
Callback callback;
{
std::lock_guard<std::mutex> lock
(callback_mutex_);
callback = std::move(callback_);
}
if (!callback) {
TRACE_EVENT_INSTANT0("flutter",
"MismatchedFrameCallback");
return;
}
TRACE_EVENT0("flutter",
"VsyncFireCallback");
//将任务放入task队列[见小节3.4.1]
task_runners_.GetUITaskRunner()
->PostTaskForTime(
[callback, flow_identifier,
frame_start_time,
frame_target_time]() {
FML_TRACE_EVENT("flutter",
kVsyncTraceName, "StartTime",
frame_start_time, "TargetTime",
frame_target_time);
fml::tracing::TraceEventAsyncComplete(
"flutter", "VsyncSchedulingOverhead",
fml::TimePoint::Now(),
frame_start_time);
//开始执行vync [见小节3.5]
callback(frame_start_time,
frame_target_time);
TRACE_FLOW_END("flutter",
kVsyncFlowName, flow_identifier);
},
frame_start_time);
}

将任务闭包放入task队列,消息Loop一旦接受到消息则会读取出来。

3.4.1 MessageLoopImpl::RunExpiredTasks

[-> flutter/fml/message_loop_impl.cc]

void MessageLoopImpl::
RunExpiredTasks() {
TRACE_EVENT0("fml", "MessageLoop
::RunExpiredTasks");
std::vector<fml::closure>
invocations;
{
std::lock_guard<std::mutex>
lock(delayed_tasks_mutex_);
//当没有待处理的task则直接返回
if (delayed_tasks_.empty()) {
return;
}
auto now = fml::TimePoint::Now();
while (!delayed_tasks_.empty()) {
const auto& top
= delayed_tasks_.top();
if (top.target_time > now) {
break;
}
invocations.emplace_back
(std::move(top.task));
delayed_tasks_.pop();
}
WakeUp(delayed_tasks_.empty() ?
fml::TimePoint::Max()
: delayed_tasks_.top().target_time);
}
for (const auto& invocation
: invocations) {
invocation(); // [见小节3.5]
for (const auto& observer
: task_observers_) {
observer.second();
}
}
}

对于ui线程处于消息loop状态,一旦有时间到达的任务则开始执行,否则处于空闲等等状态。前面[小节3.4] VsyncWaiter::FireCallback过程已经向该ui线程postTask。 对于不可复用layer tree的情况则调用Animator::BeginFrame()方法。

3.5 callback

[-> flutter/shell/common/animator.cc]

[self = weak_factory_.GetWeakPtr()]
(fml::TimePoint frame_start_time,
fml::TimePoint frame_target_time) {
if (self) {
if (self->CanReuseLastLayerTree()) {
self->DrawLastLayerTree();
} else {
//根据默认参数regenerate_layer_tree_
为true,则执行该分支 [见小节3.6]
self->BeginFrame(frame_start_time,
frame_target_time);
}
}
}

此次的callback赋值过程位于[小节2.3]Animator::AwaitVSync()方法的闭包参数,相关说明:

frame_start_time:计划开始绘制时间点,来源于doFrame()方法中的参数;

frame_target_time:从frame_start_time加上一帧时间(16.7ms)的时间,作为本次绘制的deadline。

3.6 Animator::BeginFrame

[-> flutter/shell/common/animator.cc]

void Animator::BeginFrame
(fml::TimePoint frame_start_time,
fml::TimePoint frame_target_time) {
TRACE_EVENT_ASYNC_END0("flutter",
"Frame Request Pending", frame_number_++);
TRACE_EVENT0("flutter",
"Animator::BeginFrame");
frame_scheduled_ = false;
notify_idle_task_id_++;
regenerate_layer_tree_ = false;
//信号量加1,可以注册新的vsync信号,
也就是能执行Animator::RequestFrame()
pending_frame_semaphore_.Signal();
if (!producer_continuation_) {
//[小节3.6.1]/[小节3.6.2]
producer_continuation_
= layer_tree_pipeline_->Produce();
//pipeline已满,说明GPU线程繁忙,
则结束本次UI绘制,重新注册Vsync
if (!producer_continuation_) {
RequestFrame();
return;
}
}
//从pipeline中获取有效的continuation,
并准备为可能的frame服务
last_begin_frame_time_
= frame_start_time;
//获取当前帧绘制截止时间,
用于告知可GC的空闲时长
dart_frame_deadline_
= FxlToDartOrEarlier
(frame_target_time);
{
TRACE_EVENT2("flutter",
"Framework Workload", "mode",
"basic", "frame",
FrameParity());
//此处delegate_为Shell [小节3.7]
delegate_.OnAnimatorBeginFrame
(last_begin_frame_time_);
}
if (!frame_scheduled_) {
task_runners_.GetUITaskRunner()
->PostDelayedTask(
[self = weak_factory_.GetWeakPtr(),
notify_idle_task_id
= notify_idle_task_id_]() {
if (!self.get()) {
return;
}
// 该任务id和当前任务id一致,
则不再需要审查frame,
可以通知引擎当前处于空闲状态,100ms
if (notify_idle_task_id ==
self->notify_idle_task_id_) {
self->delegate_.OnAnimatorNotifyIdle
(Dart_TimelineGetMicros() +
100000);
}
},
kNotifyIdleTaskWaitTime);
//延迟51ms再通知引擎空闲状态
}
}

该方法主要功能说明:

layer_tree_pipeline_是在Animator对象初始化的过程中创建的LayerTreePipeline,其类型为Pipeline

此处kNotifyIdleTaskWaitTime等于51ms,等于3帧的时间+1ms,之所以这样设计是由于在某些工作负载下(比如父视图调整大小,通过viewport metrics事件传达给子视图)实际上还没有schedule帧,尽管在下一个vsync会生成一帧(将在收到viewport事件后schedule),因此推迟调用OnAnimatorNotifyIdle一点点,从而避免可能垃圾回收在不希望的时间触发。

3.6.1 LayerTreePipeline初始化

[-> flutter/shell/common/animator.cc]

Animator::Animator(Delegate& delegate,
TaskRunners task_runners,
std::unique_ptr<VsyncWaiter> waiter)
: delegate_(delegate),
task_runners_(std::move(task_runners)),
waiter_(std::move(waiter)),
last_begin_frame_time_(),
dart_frame_deadline_(0),
layer_tree_pipeline_(fml
::MakeRefCounted<LayerTreePipeline>(2)),
... {}

此处LayerTreePipeline的初始化过程如下:

using LayerTreePipeline
= Pipeline<flutter::LayerTree>;

在pipeline.h的过程会初始化Pipeline,可见初始值empty_ = 2,available_ = 0;

Pipeline(uint32_t depth) :
empty_(depth), available_(0) {}

3.6.2 Pipeline::Produce

[-> flutter/synchronization/pipeline.h]

ProducerContinuation Produce() {
//当管道不为空,
则不允许再次向管道加入数据
if (!empty_.TryWait()) {
return {};
}
//[见小节3.6.3]
return ProducerContinuation{
std::bind(&Pipeline::ProducerCommit,this, std::placeholders::_1,
std::placeholders::_2), // continuation
GetNextPipelineTraceID()};
}

通过信号量empty_的初始值为depth(默认等于2),来保证同一个管道的任务最多不超过depth个,每次UI线程执行Produce()会减1,当GPU线程执行完成Consume()方法后才会执行加1操作。

3.6.3 ProducerContinuation初始化

[-> flutter/synchronization/pipeline.h]

ProducerContinuation
(Continuation continuation,
size_t trace_id)
: continuation_(continuation),
trace_id_(trace_id) {
TRACE_FLOW_BEGIN("flutter",
"PipelineItem", trace_id_);
TRACE_EVENT_ASYNC_BEGIN0
("flutter", "PipelineProduce",
trace_id_);
}

3.6.3 Pipeline.ProducerCommit

[-> flutter/synchronization/pipeline.h]

void ProducerCommit
(ResourcePtr resource,
size_t trace_id) {
{
std::lock_guard<std::mutex>
lock(queue_mutex_);
queue_.emplace(std::move
(resource), trace_id);
}
available_.Signal();
}

3.7 Shell::OnAnimatorBeginFrame

[-> flutter/shell/common/shell.cc]

void Shell::OnAnimatorBeginFrame
(fml::TimePoint frame_time) {
if (engine_) {
engine_->BeginFrame(frame_time);
// [小节3.8]
}
}

3.8 Engine::BeginFrame

[-> flutter/shell/common/engine.cc]

void Engine::BeginFrame
(fml::TimePoint frame_time) {
TRACE_EVENT0("flutter",
"Engine::BeginFrame");
runtime_controller_
->BeginFrame(frame_time);
// [小节3.9]
}

3.9 RuntimeController::BeginFrame

[-> flutter/runtime/runtime_controller.cc]

bool RuntimeController::BeginFrame
(fml::TimePoint frame_time) {
if (auto* window =
GetWindowIfAvailable()) {
window->BeginFrame(frame_time);
// [小节3.10]
return true;
}
return false;
}

3.10 Window::BeginFrame

[-> flutter/lib/ui/window/window.cc]

void Window::BeginFrame
(fml::TimePoint frameTime) {
std::shared_ptr<tonic::DartState>
dart_state = library_.
dart_state().lock();
if (!dart_state)
return;
tonic::DartState::Scope scope
(dart_state);
//注意此处的frameTime便是前面
小节3.1中doFrame方法中
的参数frameTimeNanos
int64_t microseconds = (frameTime - fml::TimePoint()).ToMicroseconds();
// [见小节4.2]
DartInvokeField(library_.value(),
"_beginFrame",
{Dart_NewInteger(microseconds)});
//执行MicroTask
UIDartState::Current()
->FlushMicrotasksNow();
// [见小节4.4]
DartInvokeField(library_.value(),
"_drawFrame", {});
}

Window::BeginFrame()过程主要工作:

执行_beginFrame

执行FlushMicrotasksNow

执行_drawFrame

可见,Microtask位于beginFrame和drawFrame之间,那么Microtask的耗时会影响ui绘制过程。

DartInvokeField()通过dart虚拟机调用了window.onBeginFrame()和onDrawFrame方法,见hooks.dart文件中如下过程

@pragma('vm:entry-point')
void _beginFrame
(int microseconds) {
_invoke1<Duration>
(window.onBeginFrame,
window._onBeginFrameZone,
new Duration(microseconds:
microseconds));
}
@pragma('vm:entry-point')
void _drawFrame() {
_invoke(window.onDrawFrame,
window._onDrawFrameZone);
}

四、Framework层绘制

在引擎层的处理过程会调用到window.onBeginFrame()和onDrawFrame,回到framework层从这个两个方法开始说起。

4.1 SchedulerBinding.initInstances

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

mixin SchedulerBinding on BindingBase,
ServicesBinding {
@override
void initInstances() {
super.initInstances();
_instance = this;
ui.window.onBeginFrame =
_handleBeginFrame; //[见小节4.2]
ui.window.onDrawFrame =
_handleDrawFrame; //[见小节4.4]
SystemChannels.lifecycle.
setMessageHandler
(_handleLifecycleMessage);
}
}

可见,引擎层中的Window::BeginFrame()调用的两个方法,进入到dart层则分别是_handleBeginFrame()和_handleDrawFrame()方法

4.1.1 Window初始化

[-> flutter/lib/ui/window.dart]

class Window {
Window._()
FrameCallback get onBeginFrame
=> _onBeginFrame;
FrameCallback _onBeginFrame;
VoidCallback get onDrawFrame
=> _onDrawFrame;
VoidCallback _onDrawFrame;
...
}

Window初始化过程,可以知道onBeginFrame和onDrawFrame分别保存_onBeginFrame和_onDrawFrame方法。

4.2 _handleBeginFrame

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

void _handleBeginFrame
(Duration rawTimeStamp) {
if (_warmUpFrame) {
_ignoreNextEngineDrawFrame=true;
return;
}
handleBeginFrame(rawTimeStamp);
//[见小节4.3]
}

4.3 handleBeginFrame

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

void handleBeginFrame
(Duration rawTimeStamp) {
Timeline.startSync('Frame', arguments: timelineWhitelistArguments);
_firstRawTimeStampInEpoch ??=
rawTimeStamp;
_currentFrameTimeStamp =
_adjustForEpoch(rawTimeStamp ??
_lastRawTimeStamp);
if (rawTimeStamp != null)
_lastRawTimeStamp = rawTimeStamp;
profile(() {
_profileFrameNumber += 1;
_profileFrameStopwatch.reset();
_profileFrameStopwatch.start();
});
//此时阶段等于SchedulerPhase.idle;
_hasScheduledFrame = false;
try {
Timeline.startSync('Animate',
arguments: timelineWhitelistArguments);
_schedulerPhase = SchedulerPhase.
transientCallbacks;
//执行动画的回调方法
final Map<int, _FrameCallbackEntry>
callbacks = _transientCallbacks;
_transientCallbacks = <int,
_FrameCallbackEntry>{};
callbacks.forEach((int id,
_FrameCallbackEntry callbackEntry) {
if (!_removedIds.contains(id))
_invokeFrameCallback
(callbackEntry.callback,
_currentFrameTimeStamp,
callbackEntry.debugStack);
});
_removedIds.clear();
} finally {
_schedulerPhase = SchedulerPhase.
midFrameMicrotasks;
}
}

该方法主要功能是遍历_transientCallbacks,执行相应的Animate操作,可通过scheduleFrameCallback()/cancelFrameCallbackWithId()来完成添加和删除成员,再来简单看看这两个方法。

4.3.1 scheduleFrameCallback

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

int scheduleFrameCallback
(FrameCallback callback,
{ bool rescheduling = false }) {
scheduleFrame(); //触发帧绘制的调度
_nextFrameCallbackId += 1;
_transientCallbacks
[_nextFrameCallbackId] =
_FrameCallbackEntry(callback,
rescheduling: rescheduling);
return _nextFrameCallbackId;
}

callback保存在_FrameCallbackEntry对象里面

4.3.2 cancelFrameCallbackWithId

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

void cancelFrameCallbackWithId
(int id) {
assert(id > 0);
_transientCallbacks.remove(id);
_removedIds.add(id);
}

4.4 _handleDrawFrame

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

void _handleDrawFrame() {
if (_ignoreNextEngineDrawFrame) {
_ignoreNextEngineDrawFrame = false;
return;
}
handleDrawFrame(); //[见小节4.5]
}

4.5 handleDrawFrame

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

void handleDrawFrame() {
assert(_schedulerPhase == SchedulerPhase.midFrameMicrotasks);
Timeline.finishSync();
// 标识结束"Animate"阶段
try {
_schedulerPhase = SchedulerPhase.
persistentCallbacks;
//执行PERSISTENT FRAME回调
for (FrameCallback callback in
_persistentCallbacks)
_invokeFrameCallback(callback,
_currentFrameTimeStamp);
//[见小节4.5.1]
_schedulerPhase = SchedulerPhase.
postFrameCallbacks;
// 执行POST-FRAME回调
final List<FrameCallback>
localPostFrameCallbacks
= List<FrameCallback>.from
(_postFrameCallbacks);
_postFrameCallbacks.clear();
for (FrameCallback callback in
localPostFrameCallbacks)
_invokeFrameCallback(callback,
_currentFrameTimeStamp);
} finally {
_schedulerPhase = SchedulerPhase.idle;
Timeline.finishSync();
//标识结束”Frame“阶段
profile(() {
_profileFrameStopwatch.stop();
_profileFramePostEvent();
});
_currentFrameTimeStamp = null;
}
}

该方法主要功能:

遍历_persistentCallbacks,执行相应的回调方法,可通过addPersistentFrameCallback()注册,一旦注册后不可移除,后续每一次frame回调都会执行;

遍历_postFrameCallbacks,执行相应的回调方法,可通过addPostFrameCallback()注册,handleDrawFrame()执行完成后会清空_postFrameCallbacks内容。

4.5.1 _invokeFrameCallback

[-> lib/src/scheduler/binding.dart:: SchedulerBinding]

void _invokeFrameCallback
(FrameCallback callback,
Duration timeStamp,
[ StackTrace callbackStack ]) {
try {
callback(timeStamp); //[见小节4.5.2]
} catch (exception, exceptionStack){
FlutterError.reportError
(FlutterErrorDetails(...));
}
}

这里的callback是_persistentCallbacks列表中的成员,再来看看其成员是如何添加进去的。

4.5.2 WidgetsBinding.initInstances

[-> lib/src/widgets/binding.dart]

mixin WidgetsBinding on BindingBase,
SchedulerBinding, GestureBinding,
RendererBinding, SemanticsBinding {
@override
void initInstances() {
super.initInstances(); //[见小节4.5.3]
_instance = this;
buildOwner.onBuildScheduled =
_handleBuildScheduled;
ui.window.onLocaleChanged =
handleLocaleChanged;
ui.window.onAccessibilityFeaturesChanged = handleAccessibilityFeaturesChanged;
SystemChannels.navigation.
setMethodCallHandler
(_handleNavigationInvocation);
SystemChannels.system.setMessageHandler
(_handleSystemMessage);
}
}

在flutter app启动过程,也就是执行runApp过程会有WidgetsFlutterBinding初始化过程,WidgetsBinding的initInstances(),根据mixin的顺序,可知此处的super.initInstances() 便是RendererBinding类。

4.5.3 RendererBinding.initInstances

[-> lib/src/rendering/binding.dart]

mixin RendererBinding on
BindingBase, ServicesBinding,
SchedulerBinding, SemanticsBinding,
HitTestable {
void initInstances() {
super.initInstances();
_instance = this;
_pipelineOwner = PipelineOwner(
onNeedVisualUpdate: ensureVisualUpdate,
onSemanticsOwnerCreated:
_handleSemanticsOwnerCreated,
onSemanticsOwnerDisposed:
_handleSemanticsOwnerDisposed,
);
ui.window
..onMetricsChanged
= handleMetricsChanged
..onTextScaleFactorChanged
= handleTextScaleFactorChanged
..onSemanticsEnabledChanged
= _handleSemanticsEnabledChanged
..onSemanticsAction =
_handleSemanticsAction;
initRenderView();
_handleSemanticsEnabledChanged();
addPersistentFrameCallback
(_handlePersistentFrameCallback);
//[见小节4.5.4]
}
void _handlePersistentFrameCallback
(Duration timeStamp) {
drawFrame(); //[见小节4.6]
}
}

4.5.4 SchedulerBinding.addPersistentFrameCallback

[-> lib/src/scheduler/binding.dart]

mixin SchedulerBinding on
BindingBase, ServicesBinding {
void addPersistentFrameCallback
(FrameCallback callback) {
_persistentCallbacks.add(callback);
}
}

4.6 WidgetsBinding.drawFrame

[-> lib/src/widgets/binding.dart]

void drawFrame() {
try {
if (renderViewElement != null)
buildOwner.buildScope
(renderViewElement); //[见小节4.6.1]
super.drawFrame();
//[见小节4.6.4]
buildOwner.finalizeTree();
//[见小节4.12]
} finally {
}
}

4.6.1 BuildOwner.buildScope

[-> lib/src/widgets/framework.dart]

void buildScope(Element context,
[VoidCallback callback]) {
if (callback == null &&
_dirtyElements.isEmpty)
return;
Timeline.startSync('Build',
arguments: timelineWhitelistArguments);
try {
_scheduledFlushDirtyElements = true;
if (callback != null) {
_dirtyElementsNeedsResorting = false;
callback(); //执行回调方法
}
_dirtyElements.sort(Element._sort);
//排序
_dirtyElementsNeedsResorting = false;
int dirtyCount = _dirtyElements.length;
int index = 0;
while (index < dirtyCount) {
try {
//具体Element子类执行重建操作
[见小节4.6.2]
_dirtyElements[index].rebuild();
} catch (e, stack) {
}
index += 1;
if (dirtyCount < _dirtyElements.length || _dirtyElementsNeedsResorting) {
_dirtyElements.sort(Element._sort);
_dirtyElementsNeedsResorting = false;
dirtyCount = _dirtyElements.length;
while (index > 0 && _dirtyElements
[index - 1].dirty) {
index -= 1;
}
}
}
} finally {
for (Element element in _dirtyElements){
element._inDirtyList = false;
}
_dirtyElements.clear();
_scheduledFlushDirtyElements = false;
_dirtyElementsNeedsResorting = null;
Timeline.finishSync();
}
}

4.6.2 Element.rebuild

[-> lib/src/widgets/framework.dart]

void rebuild() {
if (!_active || !_dirty)
return;
performRebuild();
}

performRebuild具体执行方法,取决于相应的Element子类,这里以ComponentElement为例

4.6.3 ComponentElement.performRebuild

[-> lib/src/widgets/framework.dart]

void performRebuild() {
Widget built;
try {
built = build(); //执行build方法
} catch (e, stack) {
built = ErrorWidget.builder
(_debugReportException
('building $this', e, stack));
} finally {
_dirty = false;
}
try {
_child = updateChild
(_child, built, slot);
//更新子元素
} catch (e, stack) {
built = ErrorWidget.builder
(_debugReportException
('building $this', e, stack));
_child = updateChild(null, built, slot);
}
}

4.6.4 RendererBinding.drawFrame

[-> lib/src/rendering/binding.dart]

void drawFrame() {
pipelineOwner.flushLayout();
//[见小节4.7]
pipelineOwner.flushCompositingBits();
//[见小节4.8]
pipelineOwner.flushPaint();
//[见小节4.9]
renderView.compositeFrame();
//[见小节4.10]
pipelineOwner.flushSemantics();
//[见小节4.11]
}

RendererBinding的initInstances()过程注册了一个Persistent的帧回调方法_handlePersistentFrameCallback(),故handleDrawFrame()过程会调用该方法。pipelineOwner管理渲染管道,提供了一个用于驱动渲染管道的接口,并存储了哪些渲染对象请求访问状态,要刷新管道,需要按顺序运行如下5个阶

段:

[flushLayout]:更新需要计算其布局的渲染对象,在此阶段计算每个渲染对象的大小和位置,渲染对象可能会弄脏其绘画或者合成状态,这个过程可能还会调用到build过程。

耗时对应timeline的‘Layout’过程

[flushCompositingBits]:更新具有脏合成位的任何渲染对象,在此阶段每个渲染对象都会了解其子项是否需要合成。在绘制阶段使用此信息选择如何实现裁剪等视觉效果。如果渲染对象有一个自己合成的子项,它需要使用布局信息来创建裁剪,以便将裁剪应用于已合成的子项

耗时对应timeline的‘Compositing bits’过程

[flushPaint]:访问需要绘制的任何渲染对象,在此阶段,渲染对象有机会将绘制命令记录到[PictureLayer],并构建其他合成的[Layer];

耗时对应timeline的‘Paint’过程

[compositeFrame]:将Compositing bits发送给GPU;

耗时对应timeline的‘Compositing’过程

[flushSemantics]:编译渲染对象的语义,并将语义发送给操作系统;

耗时对应timeline的‘Semantics’过程

packages/flutter/lib/src/rendering/debug.dart,这里面记录着关于render过程相关的调试开关,可以逐一实践。

4.7 PipelineOwner.flushLayout

[-> lib/src/rendering/object.dart]

void flushLayout() {
profile(() {
Timeline.startSync('Layout', arguments: timelineWhitelistArguments);
});
try {
//遍历所有的渲染对象
while (_nodesNeedingLayout.isNotEmpty){
final List<RenderObject>
dirtyNodes = _nodesNeedingLayout;
_nodesNeedingLayout = <RenderObject>[];
for (RenderObject node
in dirtyNodes..sort
((RenderObject a, RenderObject b)
=> a.depth - b.depth)) {
//如果渲染对象需要重新布局,
则执行布局操作 [见小节4.7.1]
if (node._needsLayout &&
node.owner == this)
node._layoutWithoutResize();
}
}
} finally {
profile(() {
Timeline.finishSync();
});
}
}

4.7.1 _layoutWithoutResize

[-> lib/src/rendering/object.dart]

void _layoutWithoutResize() {
try {
performLayout(); //执行布局操作[]
markNeedsSemanticsUpdate();
//[见小节4.7.2]
} catch (e, stack) {
_debugReportException
('performLayout', e, stack);
}
_needsLayout = false;
//完成layout操作
markNeedsPaint(); // [见小节4.7.3]
}

该方法主要工作:

performLayout操作:参数sizedByParent为false需要同时改变渲染对象和指导子项的布局,性能更慢;

markNeedsSemanticsUpdate:标记需要更新语义;

markNeedsPaint:标记需要绘制;

SchedulerBinding.scheduleWarmUpFrame
RenderView.performLayout
RenderObject.layout
_RenderLayoutBuilder.performLayout
_LayoutBuilderElement._layout
BuildOwner.buildScope

4.7.2 markNeedsSemanticsUpdate

[-> lib/src/rendering/object.dart]

void markNeedsSemanticsUpdate() {
if (!attached || owner.
_semanticsOwner == null) {
_cachedSemanticsConfiguration = null;
return;
}
final bool wasSemanticsBoundary
= _semantics != null &&
_cachedSemanticsConfiguration?.
isSemanticBoundary == true;
_cachedSemanticsConfiguration = null;
bool isEffectiveSemanticsBoundary = _semanticsConfiguration.
isSemanticBoundary && wasSemanticsBoundary;
RenderObject node = this;
while (!isEffectiveSemanticsBoundary
&& node.parent is RenderObject) {
if (node != this && node
._needsSemanticsUpdate)
break;
node._needsSemanticsUpdate = true;
node = node.parent;
isEffectiveSemanticsBoundary = node._semanticsConfiguration.
isSemanticBoundary;
if (isEffectiveSemanticsBoundary
&& node._semantics == null) {
return;
}
}
if (node != this && _semantics != null && _needsSemanticsUpdate) {
owner._nodesNeedingSemantics.
remove(this);
}
if (!node._needsSemanticsUpdate) {
node._needsSemanticsUpdate = true;
if (owner != null) {
//记录需要更新语义的渲染对象
owner._nodesNeedingSemantics.add(node);
owner.requestVisualUpdate();
}
}
}

4.7.3 markNeedsPaint

[-> lib/src/rendering/object.dart]

void markNeedsPaint() {
if (_needsPaint)
return;
_needsPaint = true;
if (isRepaintBoundary) {
if (owner != null) {
//记录需要重新绘制的渲染对象
owner._nodesNeedingPaint.add(this);
owner.requestVisualUpdate();
}
} else if (parent is RenderObject){
final RenderObject parent
= this.parent;
parent.markNeedsPaint();
} else {
if (owner != null)
owner.requestVisualUpdate();
}
}

4.8 PipelineOwner.flushCompositingBits

[-> lib/src/rendering/object.dart]

void flushCompositingBits() {
profile(() { Timeline.startSync
('Compositing bits'); });
_nodesNeedingCompositingBitsUpdate.
sort((RenderObject a, RenderObject b)
=> a.depth - b.depth);
for (RenderObject node in _nodesNeedingCompositingBitsUpdate) {
//根据需要来决定是否更新位合成
if (node._needsCompositingBitsUpdate
&& node.owner == this)
node._updateCompositingBits();
// [见小节4.8.1]
}
_nodesNeedingCompositingBitsUpdate.clear();
//清空需要位合成的渲染对象
profile(() { Timeline.finishSync(); });
}

4.8.1 _updateCompositingBits

[-> lib/src/rendering/object.dart]

void _updateCompositingBits() {
if (!_needsCompositingBitsUpdate)
return;
final bool oldNeedsCompositing
= _needsCompositing;
_needsCompositing = false;
visitChildren((RenderObject child) {
//遍历所有子项来更新位合成
child._updateCompositingBits();
if (child.needsCompositing)
_needsCompositing = true;
});
if (isRepaintBoundary ||
alwaysNeedsCompositing)
_needsCompositing = true;
if (oldNeedsCompositing !=
_needsCompositing)
markNeedsPaint();
_needsCompositingBitsUpdate = false;
}

4.9 PipelineOwner.flushPaint

[-> lib/src/rendering/object.dart]

void flushPaint() {
profile(() { Timeline.startSync
('Paint', arguments:
timelineWhitelistArguments); });
try {
final List<RenderObject>
dirtyNodes = _nodesNeedingPaint;
_nodesNeedingPaint = <RenderObject>[];
//排序脏节点,深度最大的节点排第一位
for (RenderObject node in dirtyNodes..
sort((RenderObject a, RenderObject b)
=> b.depth - a.depth)) {
if (node._needsPaint &&
node.owner == this) {
//此节点是否连接到树中,
如果连接则重绘,否则跳过
if (node._layer.attached) {
PaintingContext.repaintCompositedChild
(node);
//[小节4.9.1]
} else {
node._skippedPaintingOnLayer();
}
}
}
} finally {
profile(() { Timeline.finishSync(); });
}
}

4.9.1 repaintCompositedChild

[-> lib/src/rendering/object.dart]

static void repaintCompositedChild
(RenderObject child,
{ bool debugAlsoPaintedParent
= false }){
_repaintCompositedChild(
child,
debugAlsoPaintedParent:
debugAlsoPaintedParent,
);
}
static void _repaintCompositedChild(
RenderObject child, {
bool debugAlsoPaintedParent = false,
PaintingContext childContext,
}) {
if (child._layer == null) {
child._layer = OffsetLayer();
} else {
child._layer.removeAllChildren();
}
childContext ??= PaintingContext
(child._layer, child.paintBounds);
child._paintWithContext
(childContext, Offset.zero);
childContext.stopRecordingIfNeeded();
}

4.10 RenderView.compositeFrame

[-> lib/src/rendering/view.dart]

void compositeFrame() {
Timeline.startSync
('Compositing', arguments:
timelineWhitelistArguments);
try {
//创建SceneBuilder [见小节4.10.1]
final ui.SceneBuilder builder
= ui.SceneBuilder();
//创建Scene [见小节4.10.2]
final ui.Scene scene = layer.
buildScene(builder);
if (automaticSystemUiAdjustment)
_updateSystemChrome();
ui.window.render(scene);
// [见小节4.10.3]
scene.dispose();
} finally {
Timeline.finishSync();
}
}

该方法主要工作:

分别创建Flutter框架(dart)和引擎层(C++)的两个SceneBuilder;

分别创建Flutter框架(dart)和引擎层(C++)的两个Scene;

执行render()将layer树发送给GPU线程;

4.10.1 SceneBuilder初始化

[-> lib/ui/compositing.dart]

class SceneBuilder extends
NativeFieldWrapperClass2 {
@pragma('vm:entry-point')
SceneBuilder() { _constructor(); }
void _constructor() native
'SceneBuilder_constructor';
...
}

SceneBuilder_constructor这是native方法,最终调用到引擎中的lib/ui/compositing/scene_builder.h中的SceneBuilder::create()方法, 创建C++的SceneBuilder对象。

4.10.2 OffsetLayer.buildScene

[-> lib/src/rendering/layer.dart]

ui.Scene buildScene
(ui.SceneBuilder builder) {
updateSubtreeNeedsAddToScene();
//遍历layer树,将需要子树加入到scene
addToScene(builder);
//将layer添加到SceneBuilder
return builder.build();
//调用C++层的build来构建Scene对象。
}

遍历layer树,将需要更新的全部都加入到SceneBuilder。再调用build(),同样也是native方法,执行SceneBuilder::build()来构建Scene对象。

4.10.3 Window::Render

[-> flutter/lib/ui/window/window.cc]

void Render(Dart_NativeArguments args){
Dart_Handle exception = nullptr;
Scene* scene = tonic::DartConverter
<Scene*>
::FromArguments(args, 1, exception);
if (exception) {
Dart_ThrowException(exception);
return;
}
UIDartState::Current()->window()
->client()->Render(scene); // [4.10.4]
}

ui.window.render()位于window.dart文件,这是一个native方法,会调用到window.cc的Render()方法。

4.10.4 RuntimeController::Render

[-> flutter/runtime/runtime_controller.cc]

void RuntimeController
::Render(Scene* scene) {
//从scene中取出layer树
[见小节4.10.5]
client_.Render
(scene->takeLayerTree());
}

4.10.5 Engine::Render

[-> flutter/shell/common/engine.cc]

void Engine::Render
(std::unique_ptr<flow::
LayerTree> layer_tree) {
if (!layer_tree)
return;
SkISize frame_size = SkISize::Make
(viewport_metrics_.physical_width,
viewport_metrics_.physical_height);
if (frame_size.isEmpty())
return;
layer_tree->set_frame_size(frame_size);
animator_->Render(std::move(layer_tree));
// [4.10.6]
}

4.10.6 Animator::Render

[-> flutter/shell/common/animator.cc]

void Animator::Render
(std::unique_ptr<flow::LayerTree>
layer_tree) {
if (dimension_change_pending_ &&
layer_tree->frame_size() !=
last_layer_tree_size_) {
dimension_change_pending_ = false;
}
last_layer_tree_size_ =
layer_tree->frame_size();
if (layer_tree) {
layer_tree->set_construction_time
(fml::TimePoint::Now() -
last_begin_frame_time_);
}
//提交待处理的continuation,
本次PipelineProduce完成
//[见小节4.10.7]
producer_continuation_.Complete
(std::move(layer_tree));
delegate_.OnAnimatorDraw
(layer_tree_pipeline_);
//[见小节4.10.8]
}

UI线程的耗时从doFrame(frameTimeNanos)中的frameTimeNanos为起点,以Animator::Render()方法结束为终点, 并将结果保存到LayerTree的成员变量construction_time_,这便是UI线程的耗时时长。

4.10.7 ProducerContinuation.Complete

[-> flutter/synchronization/pipeline.h]

class ProducerContinuation {
void Complete(ResourcePtr resource){
if (continuation_) {
continuation_(std::move(resource),
trace_id_);
continuation_ = nullptr;
TRACE_EVENT_ASYNC_END0
("flutter", "PipelineProduce",
trace_id_);
TRACE_FLOW_STEP("flutter",
"PipelineItem", trace_id_);
}
}

4.10.8 Shell::OnAnimatorDraw

[-> flutter/shell/common/shell.cc]

void Shell::OnAnimatorDraw(
fml::RefPtr<flutter::Pipeline
<flow::LayerTree>> pipeline) {
//向GPU线程提交绘制任务
task_runners_.GetGPUTaskRunner()->PostTask(
[rasterizer = rasterizer_->GetWeakPtr(),
pipeline = std::move(pipeline)]() {
if (rasterizer) {
//由GPU线程来负责栅格化操作
rasterizer->Draw(pipeline);
}
});
}

这个方法主要是向GPU线程提交绘制任务。

4.11 PipelineOwner.flushSemantics

[-> lib/src/rendering/view.dart]

void flushSemantics() {
if (_semanticsOwner == null)
return;
profile(() { Timeline.startSync
('Semantics'); });
try {
final List<RenderObject>
nodesToProcess =
_nodesNeedingSemantics.toList()
..sort((RenderObject a,
RenderObject b) => a.depth - b.depth);
_nodesNeedingSemantics.clear();
//遍历_nodesNeedingSemantics,
更新需要更新语义的渲染对象
for (RenderObject node in
nodesToProcess) {
if (node._needsSemanticsUpdate
&& node.owner == this)
node._updateSemantics();
// [见小节4.11.1]
}
_semanticsOwner.sendSemanticsUpdate();
// 发送语义更新[见小节4.11.2]
} finally {
profile(() { Timeline.finishSync(); });
}
}

4.11.1 _updateSemantics

[-> lib/src/rendering/object.dart]

void _updateSemantics() {
if (_needsLayout) {
//此子树中没有足够的信息来计算语义,
子树可能被视图窗口保持活着但没有布局
return;
}
final _SemanticsFragment fragment
= _getSemanticsForParent(
mergeIntoParent: _semantics?.
parent?.isPartOfNodeMerging ?? false,
);
final _InterestingSemanticsFragment
interestingFragment = fragment;
final SemanticsNode node = interestingFragment.compileChildren(
parentSemanticsClipRect: _semantics?.parentSemanticsClipRect,
parentPaintClipRect: _semantics?.
parentPaintClipRect,
).single;
}

4.11.2 sendSemanticsUpdate

[-> lib/src/semantics/semantics.dart]

void sendSemanticsUpdate() {
if (_dirtyNodes.isEmpty)
return;
final Set<int>
customSemanticsActionIds = Set<int>();
final List<SemanticsNode> visitedNodes = <SemanticsNode>[];
while (_dirtyNodes.isNotEmpty) {
final List<SemanticsNode>
localDirtyNodes = _dirtyNodes.
where((SemanticsNode node) => !_detachedNodes.contains(node)).toList();
_dirtyNodes.clear();
_detachedNodes.clear();
localDirtyNodes.sort
((SemanticsNode a, SemanticsNode b)
=> a.depth - b.depth);
visitedNodes.addAll(localDirtyNodes);
for (SemanticsNode node in
localDirtyNodes) {
if (node.isPartOfNodeMerging) {
//如果合并到父节点,确保父节点已被添加到脏列表
if (node.parent != null && node.parent.isPartOfNodeMerging)
node.parent._markDirty(); //将节点添加到脏列表
}
}
}
visitedNodes.sort((SemanticsNode a,
SemanticsNode b) => a.depth - b.depth);
final ui.SemanticsUpdateBuilder builder = ui.SemanticsUpdateBuilder();
for (SemanticsNode node in visitedNodes) {
if (node._dirty && node.attached)
node._addToUpdate(builder,
customSemanticsActionIds);
}
_dirtyNodes.clear();
for (int actionId in
customSemanticsActionIds) {
final CustomSemanticsAction action = CustomSemanticsAction.getAction(actionId);
builder.updateCustomAction(id: actionId, label: action.label, hint: action.hint, overrideId: action.action?.index ?? -1);
}
ui.window.updateSemantics(builder.build());
// [见小节4.11.3]
notifyListeners(); //通知已注册的监听器
}

可以看看监听器的数据,是否影响性能。

updateSemantics这是window.dart中的一个native方法,调用到如下方法。

4.11.3 Window::updateSemantics

[-> flutter/lib/ui/window/window.cc]
void UpdateSemantics
(Dart_NativeArguments args) {
Dart_Handle exception = nullptr;
SemanticsUpdate* update =
tonic::DartConverter<SemanticsUpdate*>
::FromArguments(args, 1, exception);
if (exception) {
Dart_ThrowException(exception);
return;
}
UIDartState::Current()->window()
->client()->UpdateSemantics(update);
// [见小节4.11.4]
}

4.11.4 RuntimeController::UpdateSemantics

[-> flutter/runtime/runtime_controller.cc]

void RuntimeController::
UpdateSemantics(SemanticsUpdate* update){
if (window_data_.semantics_enabled) {
client_.UpdateSemantics
(update->takeNodes(),
update->takeActions());
// [见小节4.11.5]
}
}

4.11.5 Engine::UpdateSemantics

[-> flutter/shell/common/engine.cc]

void Engine::UpdateSemantics
(blink::SemanticsNodeUpdates update,
blink::CustomAccessibility
ActionUpdates actions) {
delegate_.OnEngineUpdateSemantics
(std::move(update), std::move(actions));
// [见小节4.11.6]
}

4.11.6 Shell::OnAnimatorDraw

[-> flutter/shell/common/shell.cc]

void Shell::OnEngineUpdateSemantics(
blink::SemanticsNodeUpdates update,
blink::CustomAccessibilityActionUpdates
actions) {
task_runners_.GetPlatformTaskRunner()
->PostTask(
[view = platform_view_->GetWeakPtr(),
update = std::move(update),
actions = std::move(actions)] {
if (view) {
view->UpdateSemantics(std::move(update), std::move(actions));
}
});
}

这个方法主要是向平台线程提交Semantic任务。

再回到小节4.6,可知接下来再执行finalizeTree()操作;

4.12 BuildOwner.finalizeTree

[-> lib/src/widgets/framework.dart]

void finalizeTree() {
Timeline.startSync('Finalize tree',
arguments: timelineWhitelistArguments);
try {
lockState(() {
//遍历所有的Element,执行unmount()动作,
且取消GlobalKeys的注册
_inactiveElements._unmountAll();
});
} catch (e, stack) {
_debugReportException('while
finalizing the widget tree', e, stack);
} finally {
Timeline.finishSync();
}
}

遍历所有的Element,执行相应具体Element子类的unmount()操作,下面以常见的StatefulElement为例来说明。

4.12.1 StatefulElement.unmount

[-> lib/src/widgets/framework.dart]

void unmount() {
super.unmount(); //[见小节4.12.2]
_state.dispose();
//执行State的dispose()方法
_state._element = null;
_state = null;
}

4.12.2 Element.unmount

[-> lib/src/widgets/framework.dart]

void unmount() {
if (widget.key is GlobalKey) {
final GlobalKey key = widget.key;
key._unregister(this);
//取消GlobalKey的注册
}
}

附录

本文涉及到相关源码文件

flutter/shell/common/
- vsync_waiter.cc
- engine.cc
- animator.cc
- shell.cc
- rasterizer.cc
flutter/shell/platform/android/
- vsync_waiter_android.cc
- platform_view_android_jni.cc
- library_loader.cc
- io/flutter/view/VsyncWaiter.java
flutter/runtime/runtime_controller.cc
flutter/synchronization/pipeline.h
flutter/fml/message_loop_impl.cc
flutter/lib/ui/window/window.cc
flutter/lib/ui/window.dart
flutter/lib/ui/hooks.dart
lib/src/widgets/framework.dart
lib/src/widgets/binding.dart
lib/src/scheduler/binding.dart
lib/src/semantics/semantics.dart
lib/src/rendering/
- binding.dart
- object.dart
- view.dart
 
   
次浏览       
相关文章

深度解析:清理烂代码
如何编写出拥抱变化的代码
重构-使代码更简洁优美
团队项目开发"编码规范"系列文章
相关文档

重构-改善既有代码的设计
软件重构v2
代码整洁之道
高质量编程规范
相关课程

基于HTML5客户端、Web端的应用开发
HTML 5+CSS 开发
嵌入式C高质量编程
C++高级编程