编辑推荐: |
本文探讨了数字孪生卫星概念及内涵,并对数字孪生卫星的关键技术及其在卫星工程全生命周期中的应用设想进行研究与探讨,希望对您的学习有所帮助。
本文来自于问空天 ,由火龙果软件Alice编译、推荐。 |
|
摘 要:在分析卫星产业发展趋势与升级转型新需求后,为推动卫星与新技术融合发展,提升大型卫星工程的整体管理水平与流程管控能力,促进卫星产业数字化、网络化、智能化、服务化转型升级,将数字孪生技术与卫星工程的关键环节、关键场景、关键对象紧密结合,探讨提出了数字孪生卫星的概念。为阐述数字孪生卫星内涵,以卫星互联网项目为背景,从空间维度对数字孪生卫星的组成进行了分析,包括数字孪生卫星试验验证系统、数字孪生卫星总装车间、数字孪生卫星产品、数字孪生卫星网络等。从时间维度对数字孪生卫星核心要素,包括模型线程(Model
Thread)、数据线程(Data Thread)、服务线程(Service Thread),进行了阐述。在此基础上提出了数字孪生卫星关键技术体系,并结合前期已开展的相关实践工作,从全生命周期视角对数字孪生卫星在卫星总体设计、详细设计、生产制造(含装配、集成与测试)、在轨服务与健康管理、网络运维管理各阶段的应用进行了探讨,以期为未来卫星产业发展,卫星工程和卫星互联网工程建设提供参考。
1 卫星产业发展趋势与新需求
卫星作为发射数量最多、应用最广、发展最快的航天器,正改变着人类的生活,影响着人类的文明。近年来,卫星产业发展迅猛,数字化、网络化、智能化、服务化[1]转型升级需求日益增长,并随着多波束天线技术、频率复用技术[2]、高级调制方案、软件定义无线电[3]、软件定义载荷、软件定义网络[4]、微小卫星制造[5],以及一箭多星、火箭回收等技术的发展与成熟,卫星产业正呈现出结构小型化、制造批量化、功能多样化、在轨可重构、星座巨型化、组网智能化、业务服务化、天地一体化互联、低成本商业化等发展趋势。
在新技术发展和多样化需求的双驱动下,更多大型卫星工程的实现成为了可能,同时也为卫星产业带来了相应的新挑战。如基于低轨卫星通信系统的卫星互联网项目,近年引起了高度关注,形成了全球性的发展热潮,OneWeb、SpaceX、TeleSat、LeoSat等公司相继发布其通信卫星星座计划,并紧锣密鼓地开展相关建设工作[6]。中国航天科技集团的鸿雁全球卫星星座通信系统与中国航天科工集团的虹云工程也以实现全球卫星通信为目的而提出。卫星互联网项目星座规模大(从100颗到12
000颗)、建设周期短(轨道和频率资源有限,先到先得,星座建设分秒必争)、项目流程长(星座设计、轨道设计、网络设计、批量制造、卫星发射、在轨组网、网络运维等)、投入成本高(卫星批量化制造、卫星高密度发射、卫星星座维护等),由此卫星工程的设计、实施、管理等能力面临巨大挑战。针对卫星互联网等项目,各阶段虽已开展一定的数字化工作,如基于模型的系统工程(Model
Based System Engineering, MBSE)等研究[7],但在卫星工程全生命周期中仍存在部分系统数字化程度低、系统间信息交互能力弱、流程间模型演化与数据关联能力差等不足或问题,且卫星产品、卫星车间、卫星网络等的数字化、网络化、智能化、服务化水平仍不能满足快速响应、实时管控、高效智能、灵活重构、便捷易用等多样化需求。
同时,卫星产业出现与以云计算、物联网、大数据、区块链、人工智能等为代表的新一代信息技术(New IT)进一步融合发展的趋势。如美国陆军设计新的窄带卫星通信体系结构,并在设计中引入机器学习和人工智能技术,以提升在网络管理、自动控制和系统互操作性等方面的能力[8];Orbital
Insight和佳格天地等国内外企业探索挖掘卫星大数据应用,以支撑国土、林业、海洋、农业、规划、交通、气象、环保、工信等诸多领域大数据创新应用[9];华为公司为亚太卫星控股有限公司打造云计算数据中心,提供设备与平台的业务服务[10];SpaceChain公司获得欧洲太空总署(ESA)的技术支持,推进卫星区块链技术的商业服务与应用发展[11]。
上述卫星工程面临的新挑战与发展趋势,对卫星产业发展提出了以下新需求:
(1)数字化、网络化、智能化、服务化转型升级新需求 卫星互联网项目的发展热潮,在设计、制造、运维等方面都给卫星产业带来了巨大冲击,卫星产业的数字化、网络化、智能化、服务化转型升级刻不容缓。主要体现为:①在数字化方面,通过对全要素、全流程、全业务、全系统的数字化,有效借助信息技术实现信息物理充分融合,推进实现模型、数据、仿真驱动的系统工程管理、流程控制、决策验证等,从而大大提升设计、制造、运维各流程的质量与效率;②在网络化方面,借助互联网、物联网、工业互联网等实现各要素、各系统、各阶段间互联互通,并促进模型间、数据间、业务间的交互与融合,进而提升信息交互、系统集成、部门合作的效率,同时,卫星星座网络化也是通信行业发展的必然趋势;③在智能化方面,基于数字化与网络化,借助智能卫星、智能设备、大数据、人工智能等技术,实现对数据、知识、经验的分析挖掘,进而提高自动控制、设备管控、网络管理、系统运行等环节的自组织、自同步、自学习、自适应能力;④在服务化方面,一方面,提高卫星产业内不同阶段、不同对象、不同系统、不同应用场景的服务化水平,提升应用、管理、协作效率,另一方面,加强卫星产业的应用业务服务化、系统平台服务化、卫星资源服务化,提高服务和应用的质量与效益。
(2)卫星产业与New IT技术融合发展新需求 随着云计算、物联网、大数据、区块链、人工智能、虚拟现实(Virtual
Reality, VR)和增强现实(Augmented Reality, AR)等New IT技术的迅速发展与广泛应用,卫星产业与New
IT技术融合发展已成为必然趋势,两者将成为相互促进、共同发展的关系,这既是外界系统环境的需求,也是行业内部发展的需求。一方面,New
IT技术的大面积发展应用促使卫星产业需要在接口、功能、应用上与New IT技术进行对接,并出现基于卫星互联网的大型物联网、基于卫星遥感数据的大数据挖掘分析等应用研究;另一方面,卫星产业的进一步发展转型,也离不开New
IT技术的支持,并产生基于云计算的卫星数据存储和业务服务、基于物联网的卫星总装车间各要素感知互联、基于大数据的卫星数据分析与决策、基于区块链的卫星网络安全维护、基于人工智能的卫星智能管控和网络智能管理、基于VR和AR的卫星装配工艺可视化及培训等方面的探索与应用。
(3)卫星系统工程协同管理新需求 卫星互联网等项目比以往更加依赖各专业、各阶段、各系统间的协同,由此对卫星系统工程管理提出更高的要求。①专业性上,不仅需要传统卫星研制相关专业的参与,还需要网络设计、网络运营、网络服务提供商等领域专家的参与,专业跨度更大;②阶段性上,从卫星互联网总体设计到卫星互联网运维,从卫星详细设计到卫星在轨管控,彼此间模型、数据、服务的依赖程度更大,不同阶段间的合作需求更大;③系统性上,卫星互联网工程需要卫星研制、运载火箭、发射场地、测运控系统、网络运营、卫星及地面互联网服务提供商等诸多系统彼此协同才能实现并应用,系统组成与分布更复杂。实现各专业、各阶段、各系统间的协同需要更加科学、更加连续、更加全面的卫星系统工程管理,开展卫星系统工程协同管理理论研究和工程探索十分必要。
(4)卫星及相关系统智能应用/服务新需求 制造批量化、功能多样化、在轨可重构、组网智能化、业务服务化等趋势与需求的出现,对硬件为主、软件为辅的传统产业模式下卫星及相关系统的智能应用/服务能力提出了新需求。例如:卫星产品方面,对卫星功能可配置、软件系统可重构、在轨自运行、环境自感知等能力的新需求;卫星制造车间(含装配、集成与测试)方面,对工艺自动规划、设备智能管控、产线优化调度、数字化测试试验等功能的新需求;卫星通信网络方面,对网络可配置、网络快速重构、网络智能管理、网络紧急组网等应用的新需求。针对以上新需求,亟需借助信息化手段提升卫星及相关系统智能应用/服务的能力。
近年,数字孪生(Digital Twin)引起全球工业界与学术界的广泛关注和研究。作为一种实现数字化、网络化、智能化、服务化转型升级的有效手段,数字孪生与New
IT技术具有极高的融合度[12]。在产品设计、制造、运维等阶段以及全生命周期管理中得到广泛的应用与探索,同时在航空航天产品、航空总装线、军事复杂系统等方面均有相关研究与应用,与上述卫星产业发展新需求不谋而合。因此,本文在总结分析卫星产业发展趋势以及转型需求后,以面向卫星互联网的低轨卫星通信系统工程为研究分析对象,阐述了卫星工程流程现状特点,基于前期相关工作探索提出数字孪生卫星的概念,将数字孪生与卫星工程中关键环节、关键场景、关键对象紧密结合,从空间维度和时间维度对数字孪生卫星的概念内涵进行阐述,并总结数字孪生卫星关键技术体系,然后从全生命周期视角对数字孪生卫星的应用进行探讨和设想,最后对已开展相关工作进行介绍,以期为未来卫星产业发展及卫星工程建设提供参考。
2 卫星工程
以面向卫星互联网的低轨卫星通信系统工程为例,卫星工程包括卫星总体设计、卫星详细设计、卫星生产制造(含总装、集成和测试)、卫星发射入轨、卫星在轨管控(在轨运行、在轨维护、在轨更新、故障预测与健康管控等)、卫星网络运维(卫星组网、卫星网络服务、星座更新运维等)等多个阶段,是一项多学科、多技术、多系统协同工作的复杂系统工程,其全生命周期流程(不含卫星发射入轨)如图1所示。为深入了解卫星工程,对卫星总体设计、卫星详细设计、卫星生产制造、卫星在轨管控、卫星网络运维五个阶段以及卫星系统工程管理的现状特点和发展挑战进行具体分析。
(1)卫星总体设计 卫星总体设计是对卫星轨道、星座、网络、发射任务等一系列总体事项进行概念设计和论证的阶段,需多学科、多专业、多系统间进行不停的协同与权衡,是一个反复迭代与论证的过程。由于面向卫星互联网的新一代低轨卫星通信系统星座规模大、卫星移动快、网络拓扑时变等特点,对卫星轨道、星座系统以及卫星网络的设计与验证提出极高的要求与挑战。目前,已有应用MBSE在卫星通信系统架构建模[13]、星间通信链路建模[14]、微重力科学卫星总体设计[15]等方面的探索研究,但在数据利用、系统协同、设计管理上仍很欠缺,需要对当前总体设计协同、优选、验证的方式进行改进,进而满足卫星总体设计上更快、更优、更可靠的需求。
(2)卫星详细设计 卫星详细设计是在总体设计提出的概念需求的基础上,借助多学科理论知识将概念设计转化为卫星具体的结构、参数、功能设计,需多系统进行协同设计的同时,也会根据外部和内部的反馈与要求进行反复迭代。传统的卫星设计模式是基于文档的设计模式,存在信息一致性差、描述模糊、沟通协调费时费力等问题;同时无法与模型和代码进行关联,造成仿真验证上也存在诸多困难。目前在卫星详细设计上已有如基于委托—代理模型的卫星系统设计流程管理[16]、基于多Agent协商的对地观测卫星协同设计优化[17]、基于MBSE的立方体卫星模型构建与试验验证[18]等研究,需进一步开展相关研究探索,推进卫星详细设计的模型化、数据化、仿真化,使得卫星设计能满足更多的功能需求、实现更短的研制周期、响应更快的型号迭代。
(3)卫星生产制造 卫星生产制造包括工艺设计、工装设计、部件生产、物料准备和装配、集成与测试(Assembly,
Integration and Test, AIT)等过程,其中AIT是决定卫星制造质量与效率的最重要一步。卫星AIT以多系统协同的手工作业为主,工艺流程繁杂[19],装备、工具、物料等管理复杂,由此导致工程繁复且时间随机性强。目前,已开展了卫星AIT数字化的相关工作,如基于数字孪生的总装线管控架构研究[20]、基于三维模型的卫星装配工艺设计与应用[21]、数字孪生驱动的工装设备仿真与控制[22]等,但距离实现全要素全流程的数字化管控仍有很大差距。此外,目前卫星总装仍以单星单工位或单星单线的模式为主,而未来需能够适应型号科研生产、多型号混合生产、大批量快速生产等多种情况,这对卫星总装的数字化、柔性化、智能化、批量化都提出了更高的要求。在探索卫星新生产模式的同时,针对生产要素、生产计划、生产过程中管理、控制、调度与协同等问题,迫切需要借助信息物理融合手段解决以上问题,有效提高卫星制造效率、保证产品质量、降低生产成本。
(4)卫星在轨管控 卫星在轨管控是卫星入轨后进行任务执行及服务应用的实际使用阶段,包括在轨运行、在轨维护、在轨更新、故障预测与健康管控等过程。传统卫星软硬件耦合性强,在轨运行存在系统重构难、软件更新难、应用维护难等问题,影响了卫星可配置和灵活应用的能力,尤其在低轨卫星通信系统中,卫星链路及路由时变、通信业务随机性强,对卫星灵活的在轨配置和业务处理能力提出了更高的要求。当前针对卫星在轨管控,借助软件定义卫星[23]等相关技术,采用开放系统架构,已在有效载荷即插即用、应用软件按需加载、系统功能按需重构等方面有一定探索与应用。但卫星的在轨管控不仅需要卫星具有重构更新的能力,更需要卫星实现全面的信息化、数字化、智能化,对在轨卫星产品实时状态进行真实而细致的反映,从而支持在轨智能自治和远程有效管控。同时,开展卫星的故障预测与健康管理(Prognostics
Health Management, PHM)[24],对卫星的运维管控乃至卫星网络的可靠运维也都有着重要意义。
(5)卫星网络运维 卫星网络运维主要针对卫星互联网、卫星导航系统等卫星组网的星座系统,包括卫星组网、卫星网络服务、卫星星座更新与维护等过程。与地面互联网相比,基于低轨卫星通信系统的卫星互联网具有卫星节点在轨、网络拓扑时变、链路无线开放、空间环境复杂等特点,由此对整个网络的实时性、可靠性、稳定性、安全性都提出了巨大的挑战。卫星互联网的管理与运维相对于地面互联网将更加复杂且困难。现已有如软件定义网络(Software
Defined Network, SDN)、网络虚拟化(Network Virtulization,
NV)、网络功能虚拟化(Network Functions Virtualization, NFV)等研究[25],通过对网络不同层级实现虚拟化,一定程度上实现网络硬件与软件的解耦,便于对网络的流量、路由、协议、传输策略等进行控制、配置、更新及优化[26],但对动态复杂卫星互联网,需对其物理节点、数据链路、网络拓扑、实时流量等状态进行建模映射,实现对网络状况的全面监控,从而支持网络的行为预测与智能管控。同时,节点失效、链路失效、路由失效等问题对卫星互联网的区域覆盖能力、网络性能、网络稳定性都会造成十分严重的影响,实现卫星互联网高效智能运维至关重要。卫星互联网运维既包括对卫星节点的健康监控与寿命预测,也包括对网络状态的实时分析和故障预测,进而才能保障卫星互联网的健壮性和可靠性。
(6)卫星系统工程管理 卫星系统工程管理既包含对上述各阶段具体过程进程、技术状态、质量可靠性等管理,也包括对总体方案、各阶段信息沟通、协同合作等管理。卫星互联网等项目的系统工程规模更大、跨度更大、成本更大,其系统工程管理将更加复杂困难。目前在结合数字孪生与MBSE用于系统工程各阶段[27]、基于数字孪生与MBSE的太空项目各阶段设计与验证[28]、借助太空系统数字孪生实现工程全生命周期管理[29]等方面已有相关研究与探讨,如何进一步研究数字孪生、MBSE等技术在卫星系统工程各阶段及总体管理上的应用,对于提高系统工程管理能力十分必要。
总结上述发展现状特点,卫星工程在设计、制造、运维3方面的主要特点表现为:
(1)设计上 设计要素众多,考虑因素众多,基于文档工程,人工系统协同,以物理验证为主,流程迭代繁复。
(2)制造上 手工装配为主,协同作业复杂,单星或小批量研制模式为主,快速批量化生产较弱。
(3)运维上 测运控多系统协同,大星座系统管控难,在轨卫星重构难、更新难、配置难、维护难。
同时,在卫星系统工程管理上,各部分间模型、数据、软件、服务的壁垒依旧存在,而各专业合作、各阶段协作、各系统协同的需求更强烈、要求更严格。其共同问题体现为:物理为主、信息为辅、人工为主、软件为辅的卫星产业模式与需求更加多样、工程更加复杂、应用更加广泛的卫星产业现状间的矛盾,借助数字化、网络化、智能化、服务化手段发展创新模式、改进传统方式、突破相关技术,是卫星产业进一步发展的必然要求。
3 数字孪生卫星
3.1 数字孪生及航空航天应用
数字孪生以数字化的方式建立物理实体的多维、多时空尺度、多学科、多物理量的动态虚拟模型,并借助实时数据再现物理实体在真实环境中的属性、行为、规则等[30]。作为一种在信息世界刻画物理世界、仿真物理世界、优化物理世界、增强物理世界的重要技术[31],数字孪生是一种实现物理世界与信息世界交互与共融的有效方法[32],也是一种深度融合New
IT技术的有效手段[33],更是一种推进全球工业和社会发展向数字化、网络化、智能化、服务化转型的有效途径[34]。
目前,数字孪生已引起了工业界和学术界的广泛关注,在产品全生命周期中[35],从设计[36]、制造[37]到运维[38-39]等方面均有大量的研究与应用实践探索。在领域应用上,数字孪生广泛应用在航空航天、军工、电力、医疗、汽车、火车、船舶、智慧城市等领域[40],尤其在航空航天领域探索时间最久、应用最深。
“孪生”的概念最早出现于1969年美国的阿波罗项目中,美国国家航空航天局(NASA)通过制造两个完全相同的航天器,形成“物理孪生”,两者虽没有直接的数据连接与信息交互,但借助留在地面的航天器一定程度上反映和预测在地外空间执行任务的航天器的状态,进而进行任务训练、实体实验并辅助任务分析和决策[41]。之后,这种“物理孪生”或“物理伴飞”的方法虽仍在部分系统中进行应用,但由于航天器的系统和任务的复杂性越来越高,且数量迅速增长,航天系统难以支撑大量并完整构建物理孪生的成本,借助数字化手段仿真、分析、验证航天器的研究逐渐出现。随着数字化相关技术的发展成熟,美国NASA于2010年提出将数字孪生技术应用于未来航天器的设计与优化、伴飞监测以及故障评估中[42]。美国空军研究实验室于2011年提出在未来飞行器中利用数字孪生实现状态监测、寿命预测与健康管理等功能[43],自此引起了数字孪生在航空航天及其他领域中的广泛关注,并在航空航天产品设计、制造装配、运维使用、系统整体管控等方面形成了大量研究应用,部分工作简要介绍如下。
(1)在产品设计上 法国达索公司借助基于数字孪生的3D体验平台,利用用户在虚拟空间进行产品体验并反馈的信息不断改进修正产品设计模型,进而对物理实体产品进行改进提升[44];中国北京世冠金洋科技发展有限公司研发航天飞行器数字孪生技术及仿真平台,实现对卫星各子系统仿真模型的集成及数字卫星的组装构建与仿真评估[45];中国精航伟泰测控仪器有限公司正致力于卫星数字孪生设计技术的开发研究,以期提升卫星设计研制效率[46]。
(2)在制造装配上 洛克希德·马丁公司借助数字主线(Digital Thread)与数字孪生技术实现对F-35生产全流程中的数据与模型的充分利用,进而显著提高F-35的生产效率[47];美国诺格公司借助数字孪生支撑F-35生产质量管控,并有效改进了工艺流程,缩短了决策时间[48];法国空客集团在A350XWB总装线上应用数字孪生技术,实现总装过程的数字化监控与自动化管控[49]。
(3)在运维使用上 美国NASA和美国空军实验室合作构建F-15的数字孪生,并借助飞机全生命周期数据进行故障预测与健康管理,有效提高维护预警的准确度和维修计划的可靠性[50];美国通用公司借助数字孪生,结合传统故障分析方法,对飞行器的疲劳裂纹等故障进行分析并实现更准确的预测[51]。
(4)在系统整体管控上 王建军等提出基于数字孪生的航天器系统工程,对航天器系统工程模型、应用框架及技术架构进行了研究[52];北航数字孪生研究组刘蔚然等于2019年在文献[53]中基于数字孪生五维模型提出数字孪生卫星/空间通信网络的应用设想,通过构建数字孪生卫星(单元级)、数字孪生卫星网络(系统级)以及数字孪生空间信息网络(复杂系统级),形成统一管理平台,可实现卫星的全生命周期管控、时变卫星网络优化组网以及空间信息网络构建与优化等功能。
由上可见,数字孪生与航空航天领域具有深远的联系,数字孪生的提出、发展、应用都与航空航天领域的具体需求和技术发展密不可分。同时,数字孪生在该领域中,既对产品、产线、整体系统等各类对象有着具体研究,又在设计、制造、运维、管理等工程阶段有着相关应用,在空间维度和时间维度上的研究与应用既广且深。
3.2 数字孪生卫星概念
通过对卫星工程发展趋势以及转型新需求的分析,以及对数字孪生与卫星工程现状特点和发展挑战的总结,结合数字孪生概念及相关理论,基于前期相关研究并深入拓展,本文探讨提出数字孪生卫星的概念。
数字孪生卫星是将数字孪生技术与卫星工程中的关键环节、关键场景、关键对象紧密结合,基于模型与数据对物理空间的卫星工程进行实时的模拟、监控、反映,并借助算法、管理方法、专家知识、软件等对卫星工程进行分析、评估、预测、管理、优化,实现功能既包含空间维度上对各场景及对象的服务应用,又实现时间维度上的系统工程管理。以低轨卫星通信系统为例,数字孪生卫星概念内涵如图2所示。从空间维度上,通过构建与卫星试验验证平台、卫星总装车间、卫星产品、卫星网络等对象或场景实时映射的数字孪生,实现更优更快的仿真、监控、评估、预测、优化和控制[12]等功能服务,从时间维度上,形成贯穿卫星工程全生命周期的模型线程(Model
Thread)、数据线程(Data Thread)、服务线程(Service Thread),对各阶段模型、数据、服务进行定义、转换、调用和关联,同时实现对总体设计、详细设计、生产制造、在轨管控、网络运维等环节真实同步,进而辅助卫星工程各阶段管控与协同。时间维度中的模型线程、数据线程、服务线程支撑着空间维度中各数字孪生的构建与更新,同时基于空间维度中各数字孪生的辅助实现对时间维度中卫星工程的管理与控制。数字孪生卫星通过推动实现卫星工程中复杂系统及复杂过程的信息物理融合,以期解决工程各阶段与总体管理难、各系统与部门协作难、模型与数据利用效果差、产品和系统使用效率低等问题,提升卫星工程的基本能力与管理水平。
数字孪生卫星的提出,能满足上述卫星发展新需求与工程挑战:
(1)数字孪生是一种综合性技术手段,既有对物理对象的数字化表达,也有物理与虚拟的接口实现交互连接,还有对数据的集成、融合、分析、挖掘,更有对模型、数据、功能等的服务化封装与应用,将数字孪生与卫星产业的结合将有效促进数字化、网络化、智能化、服务化转型升级。
(2)数字孪生五维模型[53]能很好地与New IT技术集成与融合[12],在接口、组成、功能上与大数据、物联网、云计算、人工智能等都有很好的对接,能满足卫星与New
IT技术融合发展的需求。
(3)将数字孪生应用于卫星工程各阶段,基于统一的数据、模型、服务格式与接口,形成贯穿卫星工程全生命周期的模型线程、数据线程、服务线程,有效实现不同阶段的交互与融合,进而推进系统工程全生命周期的协同管理。
(4)通过建立关键对象或场景的数字孪生,包括卫星试验验证平台、卫星总装车间、卫星产品、卫星网络等,借助数字孪生的服务化手段将有效提升卫星及相关系统的智能应用/服务水平。
为进一步理解数字孪生卫星的概念,以便应用到卫星工程各阶段,下文将从空间维度和时间维度两个层面对数字孪生卫星概念内涵做更进一步地阐释。
3.2.1 空间维度的数字孪生卫星
从空间维度上,将数字孪生与卫星工程中的关键对象与关键场景结合。以低轨卫星通信系统为例,数字孪生卫星关键对象/场景主要包括数字孪生卫星试验验证系统、数字孪生卫星总装车间、数字孪生卫星产品、数字孪生卫星网络,如图3所示[53]。
数字孪生卫星试验验证系统、数字孪生卫星总装车间、数字孪生卫星产品、数字孪生卫星网络既实现对其物理对象/场景的实时映射,各自实现相应的仿真验证、迭代优化、管理控制等功能,也通过彼此间的协作与交互,在不同阶段实现相互支持、功能协同、系统融合,共同支撑着卫星系统工程的实施与管理。基于数字孪生五维模型理论[53],各数字孪生包含物理实体,虚拟实体,服务,孪生数据以及各组成部分间的连接这五个方面的部分或者全部,并依据具体场景和应用按需构建。同时,数字孪生存在着单元级、系统级、复杂系统级的组成划分[53],且同一对象在不同阶段会有不同的组成特性。例如,当对数字孪生卫星产品进行单独的认识与分析时,将其视为复杂系统级数字孪生,包含组件的数字孪生(单元级)以及由组件构成的分系统的数字孪生(系统级);而在构建并分析数字孪生卫星网络时,数字孪生卫星产品被视作组成单元,需要进行简化、归纳、压缩形成单元级数字孪生,与其他单元共同构成数字孪生卫星网络(复杂系统级),辅助卫星网络的分析与决策。
下面对数字孪生卫星的空间组成做进一步阐述:
(1)数字孪生卫星试验验证系统 卫星试验验证系统包括各系统功能模拟器、空间环境模拟平台、试验卫星等对物理对象,用于实现对设计的全数字、半物理及全物理的仿真验证。通过构建卫星试验验证系统的数字孪生,并将系统模型与设计模型、环境模型、任务方案等进行关联,借助历史数据或当前在轨系统数据实现对设计的验证。数字孪生卫星试验验证系统在实现对各试验器及平台的控制的同时,也将各验证器及平台在信息空间上连接起来,并进行信息化集成,进而实现对相关设计的全面性验证与系统性优化。
(2)数字孪生卫星总装车间 在卫星生产过程中,通过构建总装设备、测试设备、物流设备等的数字孪生,并形成总装单元、测试单元以及生产线的数字孪生,进而与其他信息化系统共同构成数字孪生卫星总装车间。数字孪生卫星总装车间基于对总装车间“人—机—物—法—环”全要素、全流程、全业务的感知与互联,结合设计方案及模型,实现对卫星总装车间的数字化映射与智能化管控。数字孪生卫星总装车间在实际卫星生产过程中,具体实现工艺的规划与仿真、物流的智能配给、总装过程监控与快速调度、全要素管理与配置、以及总装过程中卫星的系统功能虚拟集成与验证、全流程质量分析追溯、整星虚拟测试等。
(3)数字孪生卫星产品 卫星出厂后,数字孪生卫星产品与实际卫星产品共同交付,借助数字孪生卫星产品对入轨后的卫星进行映射。数字孪生卫星产品将具备两种虚拟模型:一种是多时空尺度下高保真的几何模型、物理模型、行为模型、规则模型等虚拟模型的集合,可以完整映射物理卫星产品的实时功能与性能,用于辅助地面的卫星管理与状态分析;另一种是对上述模型简化、归纳、压缩后形成的虚拟模型,可以实现部分功能与性能的映射,同时运算压力更小,用于在轨伴飞并提供实时的运算分析与智能决策能力。两种虚拟模型不断同步,共同反映物理卫星产品的实时状态,随着未来卫星在轨计算能力及云计算能力的提升,两种模型的差异性将逐渐变小。数字孪生卫星产品将结合卫星全生命周期各类数据,推动实现对卫星在轨状态监控与分析、姿态自控制及优化、在轨任务智能决策、系统软件重构验证、故障预测与健康管控等功能。
(4)数字孪生卫星网络 在导航系统、低轨通信系统等卫星系统中,需要对在轨卫星星座进行组网。基于卫星星座中各卫星的数字孪生,并结合卫星网络的地面基站模型、星间链路模型、网络拓扑模型、网络协议模型、空间环境模型等以及在轨卫星与网络的实时数据,结合形成数字孪生卫星网络,实现对空间中的卫星星座系统以及卫星网络行为的实时映射。数字孪生卫星网络更加复杂且庞大,其运行实现需要借助测控系统、网络运维系统、网络服务提供商等各系统的协同工作,同时需要结合物联网、大数据、人工智能等New
IT技术共同推进实现网络的自组织、自管理、自运行,提升卫星网络的管控能力与效率。数字孪生卫星网络具体实现卫星星座与网络状态的实时监控与分析、网络智能运维与管控、网络行为预测、网络管控与配置仿真、网络设计仿真验证等功能。
软件首先需要从焊膏印刷机中提取出其制造数据,并将数据以一定的格式存放在服务器中。当对焊膏印刷机运行状态进行离线分析时,软件向服务器发送请求获取制造数据,通过分析数据格式将焊膏印刷机的关键参数存入数据库,同时将其以动态曲线的形式显示给用户。
从时间维度上,将数字孪生与卫星工程中的关键环节结合。以低轨卫星通信系统工程为例,数字孪生主要应用于卫星总体设计、卫星详细设计、卫星生产制造、卫星在轨管控和卫星网络运维阶段,数字孪生卫星将上述各个环节彼此紧密联系,打通各环节间的模型壁垒、数据壁垒、服务壁垒,进而形成数字孪生卫星的核心要素,即贯穿卫星工程全生命周期的模型线程(Model
Thread)、数据线程(Data Thread)、服务线程(Service Thread),实现对各阶段的模型、数据、服务的标准化定义、高效转换、安全调用和彼此关联。同时,以数字孪生卫星试验验证系统、数字孪生卫星总装车间、数字孪生卫星产品、数字孪生卫星网络为主要对象,对工程的实时状态进行映射并实现高效的优化、验证、决策、运维等应用服务,辅助卫星工程各阶段及整体的实施和管理,以提升效率和效果。
具体包括:①在卫星总体设计和卫星详细设计阶段,通过数据线程挖掘全生命周期数据以进行设计优化,并与MBSE等技术结合,借助模型线程的模型转换、数据线程的数据调用、服务线程的服务协作以及数字孪生卫星验证系统,辅助卫星总体与产品详细的概念设计、设计协作以及试验验证,从而提升设计的质量与效率;②在卫星生产制造阶段,基于数字孪生车间[30]等理论,将数字孪生与总装车间、信息系统结合,同时借助模型线程和数据线程打通与设计环节的信息壁垒,建立卫星设计—验证—总装—集成—测试全流程的系统工程,并对实际生产制造进行实时的监控、管理、优化、控制,以应对卫星制造的需求多样化、快速批量化、智能柔性化趋势;③在卫星在轨管控和卫星网络运维阶段,基于模型线程、数据线程、服务线程,实现了物理卫星与卫星星座系统间模型、数据、服务的转换与调用,同时与物理卫星及卫星星座系统实时映射,并借助软件定义技术、PHM技术等,增强信息空间反映、优化、控制、管理物理卫星及卫星星座系统的能力。
下面对数字孪生卫星的模型线程(Model Thread)、数据线程(Data Thread)、服务线程(Service
Thread)做进一步介绍。
(1)模型线程(Model Thread) 模型线程是用于支持全生命周期内数字孪生模型构建与管理的体系框架,将不同阶段的模型进行关联、归纳、转换、演化、协同、融合,实现对各阶段模型的快速生成、高效利用和统一管理,进而支持不同数字孪生间的交互与不同阶段数字孪生的演化,如图4所示。具体的:①卫星总体设计阶段,通过参考在轨卫星及网络模型,基于模型对轨道、星座、组网、构型以及任务等进行概念设计,形成相应的概念模型,在实际数据的驱动下进行总体方案验证并形成总体方案模型;②卫星详细设计阶段,在总体方案模型的基础上,同样基于模型对卫星产品的结构、电路、载荷、通信等各模块与分系统进行设计,并对分系统和整星进行仿真验证形成卫星详细设计模型;③卫星生产制造阶段,基于卫星详细设计模型,结合总装工艺设计模型和卫星总装车间模型,模型间基于实际总装过程及数据实现交互,卫星详细设计模型演化为卫星实作模型,并通过卫星测试与模型验证实例化为卫星产品模型,进而构成数字孪生卫星产品;④卫星在轨管控阶段,卫星产品模型形成两种状态,一种是模型简化后的在轨分析模型,用于在轨分析决策,一种是完全还原在轨卫星的复杂模型,用于地面分析管控,两种模型同步并对在轨卫星进行实时映射,同时不断地自我修正与演化;⑤卫星网络运维阶段,在轨卫星的模型进行组合形成卫星星座模型,并结合星间链路模型、网络拓扑模型、网络协议模型、空间环境模型等共同组成卫星网络模型,进而构成数字孪生卫星网络,同时卫星网络模型可以为卫星总体设计提供模型支持。
(2)数据线程(Data Thread) 数据线程是支持数字孪生卫星全生命周期内进行数据格式定义、数据生成、分布式存储、数据清洗、数据关联、数据挖掘、数据演化、数据融合等数据操作与管理的体系框架,实现对全生命周期数据的安全管理、便捷使用和充分利用,支撑各数字孪生全要素的实时感知和全流程/全业务的完全记录,如图5所示。具体的:①卫星总体设计阶段,结合在轨卫星及网络数据,概念设计过程会产生卫星构型、轨道、星座、组网、任务的相关设计数据,对相关参数进行初步确定;②卫星详细设计阶段,基于总体设计对卫星产品的详细设计参数数据进行确定,形成相关的卫星详细设计数据集;③卫星生产制造阶段,融合工艺操作数据和卫星车间的相关数据,形成卫星总装过程中的实作数据,随后经过卫星测试,再次融合测试数据形成卫星出厂数据,以支撑数字孪生卫星产品的构建;④卫星在轨管控阶段,首先会根据轨道设计数据等保证卫星进入正确轨道,随后卫星在在轨运行过程中会产生分系统数据、姿态数据、通信数据等实际状态数据,同时地面系统会产生卫星实时轨道数据、地面控制数据、星地链路通信数据等实际测控数据,卫星在轨数据不断更新,完整记录数字孪生卫星产品全生命周期的数据并支持相关数据分析;⑤卫星网络运维阶段,基于总体设计构建卫星网络,卫星在轨数据与卫星网络数据进行关联,同时卫星网络产生网络流量数据、网络链路数据、网络星座数据、网络测控数据等实时运行与测控数据,实现对卫星网络的记录及分析,并为卫星总体设计提供数据支持。
(3)服务线程(Service Thread) 服务线程借助服务封装、服务匹配、服务组合、服务协作等技术,通过各流程间和各流程内的服务调用与协同,实现数字孪生卫星全流程服务的便捷易用性、跨阶段可操作性、管理统一性和安全可靠性等,并形成各类彼此关联协同的功能组件、应用软件、移动端App等,如图6所示。具体的:①卫星总体设计阶段,结合总体设计模型与数据,借助服务组合与协作实现总体设计的需求分析优化、设计仿真验证、系统设计管理等服务,并可以在具体设计中与详细设计相关服务进行协同;②卫星详细设计阶段,根据卫星详细设计阶段的模型与数据形成设计优化迭代、协同设计管理、详细设计验证等服务,同时与总体设计中的系统设计管理、设计仿真验证等服务进行关联,保证详细设计与总体设计的协同性一致性;③卫星生产制造阶段,主要集中在卫星AIT过程,通过卫星产品与卫星总装车间的数字孪生提供总装过程智能管控、总装要素精准管理、卫星质量管理追溯、卫星高效测试试验等服务,同时在总装过程中出现问题可通过服务化手段与总体设计和详细设计进行交互反馈;④卫星在轨管控阶段,针对卫星在轨管控运维需求,实现在轨状态监测、在轨任务分析决策、卫星重构与更新、卫星PHM等服务;⑤卫星网络运维阶段,对由卫星构成的卫星网络实现网络状态监控、网络运维管控、网络行为预测、网络设计仿真等服务,并与卫星在轨管控的在轨分析决策、在轨状态监测、卫星重构与更新等服务进行协作。
数字孪生卫星借助多时空尺度、多维、自更新的虚拟模型表达卫星及相关系统的实时功能与性能,通过对各阶段产生的孪生数据进行处理、存储、分析、关联、更新、迭代反映卫星及相关系统的实时状态,在模型和数据的共同驱动下对卫星各个周期过程进行优化、控制、决策、管理,并形成全覆盖的智能服务系统,为各专业、各阶段、各系统的从业人员与用户提供更加便捷、易用、可靠、稳定的服务。数字孪生卫星伴随着卫星工程的全生命周期不断迭代演化,对实现卫星产业的数字化、网络化、智能化、服务化转型升级、与New
IT技术融合发展、系统工程协同管理、卫星及相关系统的智能应用/服务具有巨大的潜在推动作用。
4 数字孪生卫星关键技术
数字孪生卫星关键技术如图7所示。卫星工程技术体系复杂且庞大,本文主要覆盖与数字孪生卫星构建和运行直接相关的关键技术,分为4大类:①数字孪生通用技术,②设计与验证技术,③智能AIT技术,④在轨卫星与网络管控技术。
3.2.2 时间维度的数字孪生卫星
(2)设计与验证技术 设计与验证技术主要是在卫星总体设计和卫星详细设计阶段,用于与数字孪生集成融合并辅助相关设计与验证。包括:①可行性分析验证技术;②设计协同与管理技术;③多学科设计优化技术;④多系统协同仿真技术;⑤空间环境仿真技术;⑥卫星系统功能仿真技术;⑦卫星网络通信仿真技术;⑧可行性分析验证技术等。
(3)智能AIT技术 智能AIT技术主要是在卫星生产制造AIT阶段,用于支撑该阶段数字孪生功能的实现。包括:①脉动式总装生产线技术;②总装车间智能物联技术;③总装精确信息化管理技术;④总装实时仿真技术;⑤工艺快速设计及仿真技术;⑥虚拟测量与测试技术;⑦数字化工艺装备管控技术;⑧智能精准物流配送技术等。
(4)在轨卫星与网络管控技术 在轨管控与服务技术主要是在卫星在轨管控和卫星网络运维阶段,用于支撑数字孪生功能实现和与数字孪生集成融合。包括:①软件定义卫星技术;②通用化操作系统技术;③卫星在轨健康管控技术;④卫星在轨维修装配技术;⑤软件定义网络技术;⑥卫星互联网可靠性与维护技术;⑦卫星互联网信息安全技术;⑧卫星互联网运维管理技术等。
5 全生命周期视角的数字孪生卫星应用设想
本章基于数字孪生卫星概念,以面向卫星互联网的低轨卫星通信系统工程为对象,对数字孪生卫星总体设计、数字孪生卫星详细设计、数字孪生卫星智能制造、数字孪生卫星在轨服务与健康管控、数字孪生卫星网络运维管理5类应用进行探讨。
5.1 数字孪生卫星总体设计
数字孪生卫星总体设计可实现更加高效、可靠、智能的需求分析优化、协同设计管理、系统仿真验证等应用,如图8所示。①需求分析优化,借助模型线程和数据线程,充分利用已有的数字孪生卫星星座或数字孪生卫星产品的模型与数据,结合实际使用不断迭代并从中发掘总体设计中的设计缺陷、漏洞、更优方案,并对虚拟模型进行修正、优化、改进以形成总体设计概念方案模型;②系统设计管理,借助数字孪生实现以模型为核心、以数据为驱动的总体协同设计,通过模型线程形成的标准化模型与数据线程形成的结构化数据进行设计定义、交流、协作,不同系统间的设计协同、设计约束、设计优化将以对模型的定义、管理、优化和约束来实现,同时已有的数字孪生卫星产品和数字孪生卫星星座将提供高拟真模型与精准可靠数据的支持。③设计仿真验证,以模型和数据为驱动的总体设计将更易于实现系统仿真验证,通过对数字孪生卫星试验验证系统、设计模型和反映全生命周期的孪生数据等进行结合,实现对各种空间环境中的任务设计、轨道设计、星座设计、网络设计等进行快速仿真验证,大大提升总体设计的效率与可靠性。
5.2 数字孪生卫星详细设计
数字孪生卫星详细设计如图9所示,包括设计优化与迭代、协同设计管理、卫星详细设计验证等潜在应用。①设计优化迭代,借助数据线程实现对卫星工程全生命周期数据的充分利用,借助数据挖掘等实现卫星详细设计中型号结构的优化、系统功能的升级、部件组件的改进等,同时借助数字孪生卫星试验验证系统进行快速准确验证,减少迭代次数;②协同设计管理,与数字孪生卫星总体设计类似,以模型线程形成的标准化模型作为卫星详细设计的核心,借助模型更新、模型迭代、模型版本管理实现各阶段各分系统的设计流程管理,借助模块化模型、模型交互、模型组合、模型协同实现各分系统的设计协同管理。同时通过模型线程,设计模型将对卫星制造过程进行指导,制造过程也会对设计模型进行反馈修正,最终通过模型校核、验证与确认,将设计模型实例化为数字孪生卫星产品的虚拟模型;③详细设计验证,借助数字孪生卫星试验验证系统,结合数据线程中的空间环境数据、物理卫星在轨运行数据、虚拟卫星在轨分析数据等数据,基于卫星设计模型实现对卫星详细设计的精确仿真分析,对卫星的功能、性能以及在轨任务执行进行有效验证。
5.3 数字孪生卫星智能制造
数字孪生卫星智能制造如图10所示,针对卫星AIT流程可实现卫星总装过程智能管控、总装要素精准管理、卫星质量管理与追溯、卫星高效测试与试验等应用。①总装过程智能管控,通过对卫星总装车间人、机、物、环境的全面感知和安全集成,实现物理车间与虚拟车间的同步映射,进而对卫星总装车间全要素、全流程、全业务进行实时监控和完全记录,辅助人员实现现场精确控制、快速调度、智能决策,并基于数字孪生卫星总装车间进行仿真预测,实现故障问题的预测预警和事前处理;②总装要素精准管理,结合人、机、物、环境各要素的感知集成数据及其虚拟模型实现总装各要素的管理、控制、协同,并借助服务线程实现对总装设备、测试设备、物流设备等的故障预测与健康管理;③卫星质量管理与追溯,通过对总装过程工艺操作的完全记录,结合数字孪生卫星总装车间与数字孪生卫星产品的交互协同与仿真分析,实现卫星产品质量实时管理和质量完全可追溯,进而实现卫星质量问题的快速诊断定位和分析预测,并可以在设计存在缺陷等情况下借助服务线程对总体设计和详细设计进行反馈;④卫星高效测试与试验,基于伴随总装过程不断演化的数字孪生卫星产品模型与数据,结合各类虚拟环境开展电测、检漏、热试验、力学试验等虚拟测试与试验,对物理测试试验进行补充,并提高关键试验效率。
5.4 数字孪生卫星在轨服务与健康管理
数字孪生卫星在轨服务与健康管理包括对在轨卫星的任务分析决策、在轨状态监测、卫星系统重构与软件更新、卫星故障预测与健康管理等潜在应用,如图11所示。①任务分析决策,针对姿态调整、实时通信、载荷工作等卫星在轨任务,借助伴飞数字孪生卫星产品对任务需求实现虚拟仿真分析与验证,并生成任务策略、控制指令、配置参数等发送给物理卫星,保证任务执行的有效性和可靠性;②在轨状态监测,通过对物理卫星实时状态各类数据的采集与分析,实现物理卫星与虚拟卫星实时映射,并对在轨卫星进行全面状态感知与可视化状态监测,辅助相关分析与决策制定;③卫星系统重构与软件更新,针对软件定义卫星中系统重构与软件更新的需求,借助与物理卫星完全映射的虚拟卫星和孪生数据,对更新代码进行仿真验证与测试,验证测试合格后再对物理卫星进行系统重构与软件更新,以保证更新代码的有效性、准确性和可靠性;④卫星故障预测与健康管理,借助物理卫星的实时采集数据和虚拟卫星的同步映射仿真数据,以及同步更新的在轨伴飞简化模型和地面管理复杂模型,实现模型驱动与数据驱动协同的卫星故障预测与健康管理,对故障进行预测与识别,以及对卫星的健康寿命进行分析与预测,形成故障处理或卫星回收策略。
5.5 数字孪生卫星网络运维管理
数字孪生卫星网络运维管理可实现卫星网络状态监控、网络运维管控、网络行为预测、网络设计仿真等应用,如图12所示。①网络状态监控,基于虚拟模型与卫星测控、网络监控等实时信息,实现对卫星网络的节点、星座、空间环境等物理状态和网络流量、网络拓扑、网络安全等网络状态的可视化监控;②网络运维管控,借助与物理卫星网络实时映射的虚拟卫星网络,对卫星网络的性能进行分析,并结合软件定义网络、网络功能虚拟化等技术对网络行为、网络流量、网络资源进行定义、控制与配置,实现卫星网络的高效运维与快速控制,有效推动卫星网络安全维护、卫星网络配置更新、卫星紧急组网的等功能实现;③网络行为预测,结合网络虚拟模型与网络实时数据进行实时仿真,实现对网络的未来行为的预测,并对网络故障进行预测预警和应急处理,以保障网络的可靠稳定;④网络设计仿真,借助数字孪生卫星网络对卫星轨道设计、卫星星座设计、网络拓扑设计、网络路由设计、网络协议设计进行仿真验证,实时更新的模型与数据保证了仿真的真实性与可靠性,既可以满足对设计方案的可行性验证,也可以实现对设计方案和再设计方案的优化。
6 相关实践工作
6.1 数字孪生卫星总装车间研究及实践
针对批量化卫星总装型号任务特点,为解决总装过程中信息物理融合问题,即物理融合(工装设备交互协作)、模型融合(车间要素模型运行与交互)、数据融合(物理数据、信息数据融合及管理)、服务融合(车间管控服务调用与集成),团队基于数字孪生车间与数字孪生卫星的概念理论,分别在数字孪生卫星总装车间模型构建、数据采集与控制系统实现、车间集成管控系统搭建方面进行了相关研究。
在数字孪生卫星总装车间模型构建上,对数字孪生卫星总装车间建模方法进行研究,并以验证生产线为例构建车间模型。首先,对车间生产线“人—机—料—法—环”等关键要素的数据属性与结构进行分析,并对所有要素特别是采集要素的具体数据模型进行了构建,研究了各要素数据结构快速构建方法与结构化定义方法。同时,基于数据模型研究了数字孪生总装车间虚拟模型构建方法,对几何模型、运动模型、控制模型等进行建模,实现模型的协同与融合,研究了模型交互机制,最后结合数据模型和车间规则库等共同构建了车间级的数字孪生虚拟模型,如图13所示。
在数据采集与控制系统实现上,对卫星总装过程在线数据采集与传输系统架构进行设计研究并实现各要素数据的实时采集以及部分总装设备的控制。针对卫星总装过程数据多源异构且采集时机与频率各不相同的特点,设计分布式的采集网络架构,研究了软硬件结合的协议处理方法,同时结合边缘计算对每个工装设备和工位的数据进行处理,保证了整个车间数据采集与传输的顺畅,并与上述构建的数字孪生卫星总装车间模型进行关联,实现了基于实时数据驱动的模型运动与更新以及部分总装设备的控制,如图14所示。
在车间集成管控系统搭建上,基于数字孪生卫星总装车间模型构建、数据采集与控制系统研究,搭建了数字孪生卫星总装车间管控系统。系统集成了上述的虚拟模型、数据库、采集系统以及部分设备(如AGV、机械臂等)的控制系统,实现了对车间各要素的数据实时采集与信息管理、虚拟车间实时同步与状态监控、车间工装设备安全实时控制、车间工艺工单自动处理等功能。研究工作应用在某卫星研制单位卫星总装数字化批量生产验证线中,系统相关功能在具体总装工艺工序中得到验证,为未来进一步开展数字孪生卫星车间工作奠定基础,如图15所示。
6.2 数字孪生卫星通信网络仿真分析研究及实践
针对未来大型卫星网络的设计及仿真需求,为实现数字孪生卫星网络中卫星通信网络的仿真分析,并对卫星网络的性能进行评估评价,团队基于数字孪生卫星理论,在卫星网络模型构建、卫星网络评价体系构建、仿真分析软件开发方面开展了相关研究与开发工作。
在卫星网络模型构建上,分别研究了卫星网络场景建模和卫星网络通信行为建模。卫星通信网络场景建模方面,基于STK(Satellite
Tool Kit)内核,实现对卫星网络卫星节点、地面站节点、地面移动节点以及星间链路、星地链路等的模型构建,模型包括节点的几何模型、轨道/运动模型、通讯功能/性能模型和链路的空间几何距离、链路物理属性模型、链路通讯行为模型,同时实现基于数据的快速构建、星座数据库导入构建、星座自动批量构建、链路自动批量构建等模型构建方法;卫星网络通信建模方面,基于CCSDS(Consultative
Committee for Space Data Systems)相关协议,实现网络层与传输层的网络功能建模,以及多种业务类型的信源建模,实现多种优化算法驱动下的反应式路由方法,支持不同需求下不同业务的通信行为仿真,同时建立了链路信道分配优化机制与业务队列调度优化方法,用以辅助相关分配机制与调度策略的制定,进而提高链路及网络的通信效率。
在卫星网络评价体系构建上,结合上述卫星网络模型构建相关工作,针对卫星网络的通信行为与通信业务特点,从外部用户需求及传输网络内部运行两方面,分析并提出空间信息网络服务质量评价体系,借助数据分析手段实现对不同卫星网络的通信能力、稳定性、可靠性等进行评价。上述工作如图16所示。
在仿真分析软件开发上,集成上述方法技术,开发卫星通信网络仿真分析软件。软件实现对空间场景、网络协议、算法等方面的自由配置,以及对卫星网络的空间场景和网络通信进行同时仿真计算,并基于卫星网络传输服务质量评价体系,通过指标计算对卫星网路性能状态进行评估,同时开发了数据接口支持节点、链路、通信业务的实时导入更新以及仿真运行结果的定制化导出。软件实现卫星网络场景构建、卫星网络通信参数配置、路由及优化算法配置、卫星网络仿真计算、网络功能/性能评价等服务。相关研究与开发工作在某单位顺利完成系统验证验收,为开展数字孪生卫星网络的设计、仿真、分析功能奠定一定基础,如图17所示。
7 结束语
近年来,卫星产业正呈现出结构小型化、制造批量化、功能多样化、在轨可重构、组网智能化、业务服务化、低成本商业化等发展趋势,产业转型升级需求态势明显。同时,卫星互联网项目的激烈竞争为卫星产业带来新的挑战,New
IT技术的蓬勃发展也为产业发展带来了新的机遇。为了迎合发展趋势、应对新的挑战、把握新的机遇、满足新的需求,本文在对以上现状进行分析后,探讨提出了数字孪生卫星的概念。
数字孪生卫星是将数字孪生与卫星工程中关键环节、关键场景、关键对象紧密结合,从空间维度上,与试验验证平台、总装车间、卫星产品、卫星网络等对象或场景实时映射,实现更优更快的仿真、监控、评估、预测、优化和控制;从时间维度上,与总体设计、详细设计、生产制造、在轨管控、网络运维等环节真实同步,形成贯穿卫星工程全生命周期的模型线程、数据线程、服务线程,并进而辅助卫星工程各阶段管控与协同。在详细阐述数字孪生卫星概念及内涵后,对数字孪生卫星的关键技术及其在卫星工程全生命周期中的应用设想进行研究与探讨,并对团队已开展的相关前期实践工作进行了介绍。
本文是在团队前期相关研究工作基础上,总结形成的探索性研究与应用设想,希望相关工作能为数字孪生在卫星产业的进一步发展应用提供参考,同时能够抛砖引玉,引发更多专业人士对数字孪生在卫星产业的应用进行探讨与研究。未来将进一步完善和优化数字孪生卫星概念理论框架,同时深入研究相关关键技术,并在不同方面开展更加深入的应用研究。卫星产业复杂且庞大,本文限于认识水平和篇幅,在细节和覆盖度上难免有不足和疏漏之处,恳请国内外专家和同行多多批评指正。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。 |