引言
本文主要从线程的基础用法,CLR线程池当中工作者线程与I/O线程的开发,并行操作PLINQ等多个方面介绍多线程的开发。
其中委托的BeginInvoke方法以及回调函数最为常用。
而 I/O线程可能容易遭到大家的忽略,其实在开发多线程系统,更应该多留意I/O线程的操作。特别是在ASP.NET开发当中,可能更多人只会留意在客户端使用Ajax或者在服务器端使用UpdatePanel。其实合理使用I/O线程在通讯项目或文件下载时,能尽可能地减少IIS的压力。
并行编程是Framework4.0中极力推广的异步操作方式,更值得更深入地学习。
希望本篇文章能对各位的学习研究有所帮助,当中有所错漏的地方敬请点评。
目录
一、线程的定义
二、线程的基础知识
三、以ThreadStart方式实现多线程
四、CLR线程池的工作者线程
五、CLR线程池的I/O线程
六、异步 SqlCommand
七、并行编程与PLINQ
八、计时器与锁
一、线程的定义
1. 1 进程、应用程序域与线程的关系
进程(Process)是Windows系统中的一个基本概念,它包含着一个运行程序所需要的资源。进程之间是相对独立的,一个进程无法访问另一个进程的数据(除非利用分布式计算方式),一个进程运行的失败也不会影响其他进程的运行,Windows系统就是利用进程把工作划分为多个独立的区域的。进程可以理解为一个程序的基本边界。
应用程序域(AppDomain)是一个程序运行的逻辑区域,它可以视为一个轻量级的进程,.NET的程序集正是在应用程序域中运行的,一个进程可以包含有多个应用程序域,一个应用程序域也可以包含多个程序集。在一个应用程序域中包含了一个或多个上下文context,使用上下文CLR就能够把某些特殊对象的状态放置在不同容器当中。
线程(Thread)是进程中的基本执行单元,在进程入口执行的第一个线程被视为这个进程的主线程。在.NET应用程序中,都是以Main()方法作为入口的,当调用此方法时系统就会自动创建一个主线程。线程主要是由CPU寄存器、调用栈和线程本地存储器(Thread
Local Storage,TLS)组成的。CPU寄存器主要记录当前所执行线程的状态,调用栈主要用于维护线程所调用到的内存与数据,TLS主要用于存放线程的状态信息。
进程、应用程序域、线程的关系如下图,一个进程内可以包括多个应用程序域,也有包括多个线程,线程也可以穿梭于多个应用程序域当中。但在同一个时刻,线程只会处于一个应用程序域内。
由于本文是以介绍多线程技术为主题,对进程、应用程序域的介绍就到此为止。关于进程、线程、应用程序域的技术,在“C#综合揭秘——细说进程、应用程序域与上下文”会有详细介绍。
1.2 多线程
在单CPU系统的一个单位时间(time slice)内,CPU只能运行单个线程,运行顺序取决于线程的优先级别。如果在单位时间内线程未能完成执行,系统就会把线程的状态信息保存到线程的本地存储器(TLS)
中,以便下次执行时恢复执行。而多线程只是系统带来的一个假像,它在多个单位时间内进行多个线程的切换。因为切换频密而且单位时间非常短暂,所以多线程可被视作同时运行。
适当使用多线程能提高系统的性能,比如:在系统请求大容量的数据时使用多线程,把数据输出工作交给异步线程,使主线程保持其稳定性去处理其他问题。但需要注意一点,因为CPU需要花费不少的时间在线程的切换上,所以过多地使用多线程反而会导致性能的下降。
二、线程的基础知识
2.1 System.Threading.Thread类
System.Threading.Thread是用于控制线程的基础类,通过Thread可以控制当前应用程序域中线程的创建、挂起、停止、销毁。
它包括以下常用公共属性:
2.1.1 线程的标识符
ManagedThreadId是确认线程的唯一标识符,程序在大部分情况下都是通过Thread.ManagedThreadId来辨别线程的。而Name是一个可变值,在默认时候,Name为一个空值
Null,开发人员可以通过程序设置线程的名称,但这只是一个辅助功能。
2.1.2 线程的优先级别
.NET为线程设置了Priority属性来定义线程执行的优先级别,里面包含5个选项,其中Normal是默认值。除非系统有特殊要求,否则不应该随便设置线程的优先级别
2.1.3 线程的状态
通过ThreadState可以检测线程是处于Unstarted、Sleeping、Running 等等状态,它比
IsAlive 属性能提供更多的特定信息。
前面说过,一个应用程序域中可能包括多个上下文,而通过CurrentContext可以获取线程当前的上下文。
CurrentThread是最常用的一个属性,它是用于获取当前运行的线程。
2.1.4 System.Threading.Thread的方法
Thread 中包括了多个方法来控制线程的创建、挂起、停止、销毁,以后来的例子中会经常使用。
2.1.5 开发实例
以下这个例子,就是通过Thread显示当前线程信息
static void Main(string[] args) { Thread thread = Thread.CurrentThread; thread.Name = "Main Thread"; string threadMessage = string.Format("Thread ID:{0}\n Current AppDomainId:{1}\n "+ "Current ContextId:{2}\n Thread Name:{3}\n "+ "Thread State:{4}\n Thread Priority:{5}\n", thread.ManagedThreadId, Thread.GetDomainID(), Thread.CurrentContext.ContextID, thread.Name, thread.ThreadState, thread.Priority); Console.WriteLine(threadMessage); Console.ReadKey(); } |
运行结果
2.2 System.Threading 命名空间
在System.Threading命名空间内提供多个方法来构建多线程应用程序,其中ThreadPool与Thread是多线程开发中最常用到的,在.NET中专门设定了一个CLR线程池专门用于管理线程的运行,这个CLR线程池正是通过ThreadPool类来管理。而Thread是管理线程的最直接方式,下面几节将详细介绍有关内容。
在System.Threading中的包含了下表中的多个常用委托,其中ThreadStart、ParameterizedThreadStart是最常用到的委托。
由ThreadStart生成的线程是最直接的方式,但由ThreadStart所生成并不受线程池管理。
而ParameterizedThreadStart是为异步触发带参数的方法而设的,在下一节将为大家逐一细说。
2.3 线程的管理方式
通过ThreadStart来创建一个新线程是最直接的方法,但这样创建出来的线程比较难管理,如果创建过多的线程反而会让系统的性能下载。有见及此,.NET为线程管理专门设置了一个CLR线程池,使用CLR线程池系统可以更合理地管理线程的使用。所有请求的服务都能运行于线程池中,当运行结束时线程便会回归到线程池。通过设置,能控制线程池的最大线程数量,在请求超出线程最大值时,线程池能按照操作的优先级别来执行,让部分操作处于等待状态,待有线程回归时再执行操作。
基础知识就为大家介绍到这里,下面将详细介绍多线程的开发。
三、以ThreadStart方式实现多线程
3.1 使用ThreadStart委托
这里先以一个例子体现一下多线程带来的好处,首先在Message类中建立一个方法ShowMessage(),里面显示了当前运行线程的Id,并使用Thread.Sleep(int
) 方法模拟部分工作。在main()中通过ThreadStart委托绑定Message对象的ShowMessage()方法,然后通过Thread.Start()执行异步方法。
public class Message { public void ShowMessage() { string message = string.Format("Async threadId is :{0}", Thread.CurrentThread.ManagedThreadId); Console.WriteLine(message); for (int n = 0; n < 10; n++) { Thread.Sleep(300); Console.WriteLine("The number is:" + n.ToString()); } } } class Program { static void Main(string[] args) { Console.WriteLine("Main threadId is:"+ Thread.CurrentThread.ManagedThreadId); Message message=new Message(); Thread thread = new Thread(new ThreadStart(message.ShowMessage)); thread.Start(); Console.WriteLine("Do something ..........!"); Console.WriteLine("Main thread working is complete!"); } } |
请注意运行结果,在调用Thread.Start()方法后,系统以异步方式运行Message.ShowMessage(),而主线程的操作是继续执行的,在Message.ShowMessage()完成前,主线程已完成所有的操作。
3.2 使用ParameterizedThreadStart委托
ParameterizedThreadStart委托与ThreadStart委托非常相似,但ParameterizedThreadStart委托是面向带参数方法的。注意ParameterizedThreadStart
对应方法的参数为object,此参数可以为一个值对象,也可以为一个自定义对象。
public class Person { public string Name { get; set; } public int Age { get; set; } }
public class Message
{
public void ShowMessage(object person)
{
if (person != null)
{
Person _person = (Person)person;
string message = string.Format("\n{0}'s age
is {1}!\nAsync threadId is:{2}",
_person.Name,_person.Age,Thread.CurrentThread.ManagedThreadId);
Console.WriteLine(message);
}
for (int n = 0; n < 10; n++)
{
Thread.Sleep(300);
Console.WriteLine("The number is:" +
n.ToString());
}
}
}
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Main threadId is:"+Thread.CurrentThread.ManagedThreadId);
Message message=new Message();
//绑定带参数的异步方法
Thread thread = new Thread(new ParameterizedThreadStart(message.ShowMessage));
Person person = new Person();
person.Name = "Jack";
person.Age = 21;
thread.Start(person); //启动异步线程
Console.WriteLine("Do something ..........!");
Console.WriteLine("Main thread working is
complete!");
}
} |
运行结果:
3.3 前台线程与后台线程
注意以上两个例子都没有使用Console.ReadKey(),但系统依然会等待异步线程完成后才会结束。这是因为使用Thread.Start()启动的线程默认为前台线程,而系统必须等待所有前台线程运行结束后,应用程序域才会自动卸载。
在第二节曾经介绍过线程Thread有一个属性IsBackground,通过把此属性设置为true,就可以把线程设置为后台线程!这时应用程序域将在主线程完成时就被卸载,而不会等待异步线程的运行。
3.4 挂起线程
为了等待其他后台线程完成后再结束主线程,就可以使用Thread.Sleep()方法。
public class Message { public void ShowMessage() { string message = string.Format("\nAsync threadId is:{0}", Thread.CurrentThread.ManagedThreadId); Console.WriteLine(message); for (int n = 0; n < 10; n++) { Thread.Sleep(300); Console.WriteLine("The number is:" + n.ToString()); } } }
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Main threadId is:"+
Thread.CurrentThread.ManagedThreadId);
Message message=new Message();
Thread thread = new Thread(new ThreadStart(message.ShowMessage));
thread.IsBackground = true;
thread.Start();
Console.WriteLine("Do something ..........!");
Console.WriteLine("Main thread working is
complete!");
Console.WriteLine("Main thread sleep!");
Thread.Sleep(5000);
}
} |
运行结果如下,此时应用程序域将在主线程运行5秒后自动结束
但系统无法预知异步线程需要运行的时间,所以用通过Thread.Sleep(int)阻塞主线程并不是一个好的解决方法。有见及此,.NET专门为等待异步线程完成开发了另一个方法thread.Join()。把上面例子中的最后一行Thread.Sleep(5000)修改为
thread.Join() 就能保证主线程在异步线程thread运行结束后才会终止。
3.5 Suspend 与 Resume (慎用)
Thread.Suspend()与 Thread.Resume()是在Framework1.0
就已经存在的老方法了,它们分别可以挂起、恢复线程。但在Framework2.0中就已经明确排斥这两个方法。这是因为一旦某个线程占用了已有的资源,再使用Suspend()使线程长期处于挂起状态,当在其他线程调用这些资源的时候就会引起死锁!所以在没有必要的情况下应该避免使用这两个方法。
3.6 终止线程
若想终止正在运行的线程,可以使用Abort()方法。在使用Abort()的时候,将引发一个特殊异常
ThreadAbortException 。
若想在线程终止前恢复线程的执行,可以在捕获异常后 ,在catch(ThreadAbortException
ex){...} 中调用Thread.ResetAbort()取消终止。
而使用Thread.Join()可以保证应用程序域等待异步线程结束后才终止运行。
static void Main(string[] args) { Console.WriteLine("Main threadId is:" + Thread.CurrentThread.ManagedThreadId); Thread thread = new Thread(new ThreadStart(AsyncThread)); thread.IsBackground = true; thread.Start(); thread.Join(); } //以异步方式调用 static void AsyncThread() { try { string message = string.Format("\nAsync threadId is:{0}", Thread.CurrentThread.ManagedThreadId); Console.WriteLine(message); for (int n = 0; n < 10; n++) { //当n等于4时,终止线程 if (n >= 4) { Thread.CurrentThread.Abort(n); } Thread.Sleep(300); Console.WriteLine("The number is:" + n.ToString()); } } catch (ThreadAbortException ex) { //输出终止线程时n的值 if (ex.ExceptionState != null) Console.WriteLine(string.Format("Thread abort when the number is: {0}!", ex.ExceptionState.ToString())); //取消终止,继续执行线程 Thread.ResetAbort(); Console.WriteLine("Thread ResetAbort!"); } //线程结束 Console.WriteLine("Thread Close!"); } |
运行结果如下
四、CLR线程池的工作者线程
4.1 关于CLR线程池
使用ThreadStart与ParameterizedThreadStart建立新线程非常简单,但通过此方法建立的线程难于管理,若建立过多的线程反而会影响系统的性能。
有见及此,.NET引入CLR线程池这个概念。CLR线程池并不会在CLR初始化的时候立刻建立线程,而是在应用程序要创建线程来执行任务时,线程池才初始化一个线程。线程的初始化与其他的线程一样。在完成任务以后,该线程不会自行销毁,而是以挂起的状态返回到线程池。直到应用程序再次向线程池发出请求时,线程池里挂起的线程就会再度激活执行任务。这样既节省了建立线程所造成的性能损耗,也可以让多个任务反复重用同一线程,从而在应用程序生存期内节约大量开销。
|