
1

UML Project Plan
Richard Felsinger, 960 Scottland Drive, Mt Pleasant, SC 29464 dick@felsinger.com 843-881-3648 1/29/2001

The purpose of this project plan is to provide a template for your project. There are a large number of templates and tables
which you should fill-in with your project information, estimates, etc. The single most important reference in this plan is
The Rational Unified Process An Introduction Second Edition by Philippe Kruchten. A sample UML model - Simplified Bank
Account example is provided in the appendix to show examples of UML diagrams and specifications. To update this plan
for your project:
- change the name OOProject to your project name,
- fill-in the various template forms with your project information,
- update this document to reflect your project plans and policies,
- get project team member feedback, approve, then place the updated project plan in a shared directory,
- execute the plan and monitor the project.

Our goal is that this project plan shall assist all project team members to work toward the successful completion of the
project and to create a defect-free software product.

Introduction
An OO Project is a sequence of unique, complex, and connected activities having one goal or purpose, and that must be
completed by a specific time, within budget, and according to specification. Key aspects of a project are shown below.
Increasing "Scope and Quality" in the middle of the triangle will increase the "Cost", "Time", and "Resources".

Cost Scope and Quality Time
(SW,HW,Services) (Iterations - Features) (Weeks per Iteration)

Resources
(Staff,Tools)

Key aspects of OO Project Management compared to a non-OO Project Management are:
- planning and monitoring at various levels of scale/abstraction: Enterprise - Business Level, Project - System Level,
Build/Release Level,
- using the Unified Process Phases: Inception - Definition, Elaboration - Planning, Construction - Modeling/Coding,
Transition - Deployment to end users,
- using the Unified Process create the following models: Requirements, Analysis, Design, Implementation, and Testing for
each Build/Release.
- using Unified Modeling Language elements and semantics,
- using Object-oriented size, complexity, and quality measures.

Grady Booch in Object-Solutions - Managing the Object-Oriented Project states “The central task of the software
management team is to balance a set of incomplete, inconsistent, and shifting technical and non-technical requirements, to
produce a system that is optimal for its essential minimal characteristics.” Booch states "A successful software project is
one whose deliverables satisfy and possibly exceed the end user's expectations, was developed in a timely and economical
fashion, and is resilient to change and adaptation." Project management consists of planning, scheduling, staffing, resource
allocation, and monitoring to create a defect free system “better, faster, cheaper”.

Grady Booch in Object-Solutions - Managing the Object-Oriented Project states “The five habits of a successful object-
oriented project include:
- A ruthless focus on the development of a system that provides a well-understood collection of essential minimal
characteristics.
- The existence of a culture that is centered on results, encourages communication, and yet is not afraid to fail.
- The effective use of object-oriented modeling.
- The existence of a strong architectural vision.

2

- The application of a well-managed iterative and incremental development life cycle.”

Philippe Kruchten in The Rational Unified Process An Introduction Second Edition provides suggestions to support
effective software engineering:
- Develop software iteratively.
- Manage requirements.
- Use component-based architectures.
- Verify software quality.
- Control changes to software.

The following are the recommended texts for the project:
The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar Jacobson,
The Unified Modeling Language Reference Manual by James Rumbaugh, Ivar Jacobson, and Grady Booch,
The Unified Software Development Process by Ivar Jacobson, Grady Booch, and James Rumbaugh,
The Rational Unified Process An Introduction Second Edition by Kruchen.

Other references are listed at the end of the plan.

The following are the recommended standards:
The Unified Modeling Language - www.omg.org
Coding Standards - http://java.sun.com/docs/codeconv/index.html or http://gee.cs.oswego.edu/dl/html/javaCodingStd.html.

Enterprise Planning and
Monitoring

The OOProject System should be modeled in terms of the level of scale/abstraction as shown below. It is important to
know where the OOProject is in terms of the overall enterprise.

Levels of Scale/Abstraction
Level Definition UML Example OOProject
Global Concerns languages,

standards, policies that
affect multiple
enterprises

Internet - ANSI and
IEEE Standards

Enterprise Organization with
systems

XYZ Company

Overall System - Group
of Applications/

Requirements View:
actors and the system
Implementation View:
components

Requirements: Actor +
System
Implementation:
Components

Office 2000 Overall
System
including
OOProject

System/Subsystem/Com
ponent - Application

Group of classes that
operate together as a
system or application

System Package or
Component

Word 2000 OOProject
System

Package Group of classes Package - tabbed box
Collaboration Group of classes that act

together for a specific
purpose - implements a
pattern

Collaboration - dashed
oval

Class Defines a group of
objects

Class Document

Attribute - Operation Attribute - Values;
Operation - Service

Attribute - Operation Document.Name -
Document.Open()

3

It is desirable to show the OOProject System as a component in the larger system for the following reasons:
- sets the boundary of the OOProject System,
- facilitates accurate communications to know the level of scale/abstraction,
- facilitates assigning responsibility for the OOProject System and interacting components,
- speeds development if component interfaces (set of operations) are clearly defined.

Enterprise Business Modeling
Business Modeling is to model the enterprise as a whole. It is important for the OOProject to support Enterprise short-
term and long-term goals and to properly fit-into the Enterprise.

The Business Model provides the following: Vision Document, Organization Chart, Business Events and Processes (Use
Cases), Business Actors, Workers, and Entities (Domain Model), Business Rules Catalog, Business Interfaces (Set of
Operations), Business Patterns, Business Systems Architecture - Component Diagram, Glossary. See The Rational Unified
Process An Introduction Second Edition by Krutchen and Business Modeling with UML by Eriksson and Penker.

Business Model

Key UML Elements Business Processes (Use Cases), Business Domain Objects

Key Concern Model Business

Objective Sufficient Business/Enterprise information

Static/Structural Diagrams Business Domain Objects

Dynamic/Time Based Diagrams Business Processes (Use Cases)

Tools UML CASE, Requirements Tracking

Key Team Players Business/System Analysts, Architect

Model Sign-off Project Manager, Architect, Client/User

The following is a sample status table for the Enterprise Business Model:

Enterprise Business Model
Location - Reference Number Comment

Business Model
Business Events
Business Actors, Workers, Entities
Business Interfaces
Business Patterns
Business Glossary
Architecture - Components

Benefits of Business Modeling are:
- supports defining good requirements leading to rapid, effective system development,
- supports creating a system that is correct, reliable, extensible, and reusable,
- supports communication, consistency and reduces redundancy.

System Architecture for CBD - Component-Based
Development

The OOProject System is a part of a larger enterprise system consisting of components. Component-based development
(CBD) is the creation and deployment of software-intensive systems assembled from components, as well as the
development and harvesting of such components. It is desirable to have a layered architecture of components - an
ordered set of virtual worlds, each built in terms of the ones below it and providing the basis of implementation for the ones
above it.

4

Kruchen in The Rational Unified Process An Introduction Second Edition defines architecture as follows: "Architecture
encompasses significant decisions about the following:
- The organization of a software system.
- The selection of structural elements and their interfaces by which the system is composed, together with their behavior as
specified in the collaboration among those elements.
- The composition of these elements into progressively larger subsystems.
- The architectural style that guides this organization, these elements and their interfaces, their collaborations, and their
composition."

Architecture refers to the organizational structure of a system, including its decomposition into parts, their connectivity,
interaction mechanisms, and the guiding principles that inform the design of a system. The UML component diagram
shown below has components with lollipops (interfaces). An interface is a set of operations without implementation.

Benefits of Component Based Development are:
- supports developing highly upgradable, modifiable systems with plug-in replacement components,
- supports communications by defining components with well-defined interfaces (set of operations),
- supports reusability by defining reusable components,
- supports a highly resilient system architecture,
- supports using standardized component frameworks, e.g. COM+, CORBA, EJB, etc,
- supports using commercially available components,
- provides a natural basis for configuration management and versioning.

Project Planning and Monitoring
Project Objectives and Overview

The OOProject shall design, construct, and deploy the OOProject System in accordance with the OOProject Requirements.
The objective is to create a system that is correct, reliable, understandable, extensible, and reusable. The system must meet
all functional requirements, e.g. features (modeled with use cases). The system must meet non-functional requirements:
usability, reliability, performance, and supportability.

Description or Location Comment
Project Name
Project Description
Project Objectives
Project Functional Requirements Document
Project Non-Functional Requirements Document
Project Constraints
Project Assumptions
Project Standards UML, Coding Standards, Other (exceptions, threads)
Enterprise Business Model
Project Goodness Guidelines See Appendix
Project Stereotypes, Tagged Values, and Constraints See Appendix
Sample Project UML Model See Appendix
Project Documentation See Summary of Artifacts (Appendix B) in The

Rational Unified Process An Introduction Second
Edition by Kruchen

Project Tools Tutorials, Tapes, CDs, Books, Training Sessions
Project Glossary
Project Reuse Libraries Component, Class, Operation, Pattern-UML

5

Collaboration
Project UML Model Review Bi-weekly or at completion of each iteration

Benefits of defining project objectives are:
- supports communications by getting team members, the client, and others "on the same page",
- supports measurement of plan versus actual to monitor progress and identify potential problems,
- supports efficiency by getting team members focused on meeting the project objectives,
- supports setting effective planning and prioritization of activities to meet the project objectives.

Project Risks
Risk is an ongoing or impending concern that has a significant probability of adversely affecting the success of major
milestones. If the risk occurs then there may be significant adverse affect on the project in terms of cost, schedule, and
features.

 Booch in Object Solutions states "What are the most serious risks factors that face any real project?
- Inaccurate metrics
- Inadequate measurement
- Excessive schedule pressure
- Management malpractice
- Inaccurate cost estimating
- Silver bullet syndrome
- Creeping user requirements
- Low quality
- Low productivity
- Canceled projects"

To ensure that we meet project objectives, the OOProject shall identify and monitor all major risks. We must prepare for
and avoid catastrophic "surprises" and unexpected events. The projected risks for the OOProject is shown below.

Risk Name Description Probability of
Occurrence

Impact if Occurs Avoidance Plan Contingency Plan
if Occurs

Comment

Database
not
delivered
on schedule

10% Delay of Project Monitor
Monthly

Benefits of defining project risks are:
- supports effective planning to avoid "surprises",
- greatly increases the probability for a successful project,
- supports effective decision making for a successful project.

Project Phases and Scheduling
The OOProject shall follow the following the Unified Software Development Process as documented in The Unified
Software Development Process by Ivar Jacobson, Grady Booch, and James Rumbaugh and The Rational Unified Process
An Introduction Second Edition by Krutchen. This is an incremental iterative development process that emphasizes the
delivery of progressively more complex software builds/releases. A phase is the span of time between two major
milestones of a development process, e.g. inception, elaboration, construction, transition. The phases are described below.

Unified Process Phases

Source: The Rational Unified Process An Introduction Second Edition by Krutchen
With Number of Projected Weeks per Phase for a 52 Week Project

Inception Phase - Elaboration Phase - Construction Phase - Transition Phase -

6

5 weeks 16 weeks 26 weeks 5 weeks
Description Define the scope of

the project and
develop business
case

Plan the project,
specify features, and
baseline the
architecture

Build the product.
Software is brought
from an executable
architectural baseline to
the point where it is
ready to be transitioned
to the user community

the software is
turned into the
hands of the user
community

Products Vision document,
use case list,
project glossary,
business case
(context, success
criteria, financial
forecast), risk
assessment, project
plan, business
model

Use case model, non-
functional
requirements, software
architecture,
architectural prototype,
iteration plan,
development process,
preliminary user
manual

UML model
(requirements, analysis,
design,
implementation,
testing) and
build/release for each
iteration

Software product
rollout to marketing,
distribution, and
sales teams

Estimated Time for 52
week project

10% - 5 weeks 30% - 16 weeks 50% - 26 weeks with 2
-3 week iteration

10% - 5 weeks

Estimated
Effort/Resources

5% 20% 65% 10%

Key Personnel Roles Project Manager,
Architect,
Business/System
Analyst

Project Manager,
Architect,
Business/System
Analyst

Project Manager,
Architect,
Business/System
Analyst,
Developer/Programmer
, QA Tester

Project Manager,
Architect

Milestone to be
Achieved at end of
Phase - Project Manager
Sign-off

Lifecycle Objective
Milestone

Lifecycle Architecture
Milestone

Initial Operational
Capability Milestone

Product Release
Milestone

Benefits of having well-defined project phases are:
- supports having a well-managed project,
- supports communications so that the client and team members know the progression of the project,
- supports measurement of planned versus actual to identify problems early.

Project Staffing
The OOProject shall be staffed with person filling the following roles: Project Manager, Architect,
Methodologist/Toolsmith, User, Business/System Analyst, Developer/Programmer, QA Tester, and others as required. The
description of each role are:

Project Manager - manages all aspects of the project including schedules, resources, staffing, etc to meet the project
objectives and to effect the project build/release software products.

Architect - oversees the technical aspects of the project including the overall system architecture of components, their
interfaces (set of operations), and their communications. Responsible for the development and deployment infrastructure.
Provides the Processing Environment (HW and SW Configuration List) and Implementation Model (component diagram
and deployment diagram).

Methodologist/Toolsmith - oversees the use of UML and the Unified Process. Responsible to ensure the correctness and
completeness of UML models. Provides the UML, Unified Process, and tools help desk. Creates CASE tool scripts for
reporting and code generation.

7

Client/User - provides the user point of view and acts as the domain expert.

Business/System Analyst - leads and coordinates the requirements gathering, use case modeling, and class modeling in the
Business Modeling, Requirements, and Analysis Models.

Developer/Programmer - creates all diagrams, specifications, and code in the Design Model.

QA Tester - creates the test plan, test cases, test procedures, and related testing documentation. Conducts tests and
provides test case results.

Number Assigned Staff - Names/TBD - to be determined
With Number of Projected Weeks per Phase for a 52 Week Project

Roles Inception Phase
- 5 weeks

Elaboration Phase
- 16 weeks

Construction
Phase - 26 weeks

Transition
Phase - 5 weeks

Project Manager 1 - John Smith 1 - John Smith 1 - John Smith 1 - John Smith
Architect 1 - ??? 1 - ??? 1 - ??? 1 - ???
Client/User 1 - ??? 1 - ??? 1 - ??? 1 - ???
Business/System
Analysts

3 - ???, ???, ??? 3 - ???, ???, ??? 3 - ???, ???, ??? 0

Developer/Programmer 0 3 - ???, ???, ??? 3 - ???, ???, ??? 1 - ???
QA Tester 0 1 - ??? 1 - ??? 1 - ???
Other TBD TBD TBD TBD
Total Assigned 6 10 10 5

Benefits of having well-defined roles for team members are:
- supports effective planning and decision making for a successful project,
- supports communication so that team members know their responsibilities,
- supports creating a quality system with different team members working on the system from different points of view.

Project Resources
Resources must be identified, budgeted, and controlled - both personnel and other resources, e.g. tools, equipment,
services, etc.

Resources - Requested/Authorized/Used in each cell
With Number of Projected Weeks per Phase for a 52 Week Project

Resource Category Inception Phase - 5
weeks

Elaboration Phase - 16
weeks

Construction Phase - 26
weeks

Transition Phase - 5
weeks

Personnel
Services
Software
Equipment
Travel
Other
Total

Benefits of having well-defined roles for team members are:
- supports effective planning and decision making for a successful project,
- supports communication to identify required resources,
- supports creating a quality system and a satisfied customer.

Project Configuration Management and Versioning
The goal of project configuration management is to track and maintain the integrity of evolving project assets. These assets
must be available for reuse. There are three independent functions:
- configuration management deals with the issue of artifact (asset/document) identification, versions, and dependencies;
- change request management deals with the capture and management of requested changes in artifacts (asset/document);
- status and measurement deals with project control information.

8

Project Assets and Documents
Artifact (asset/document) Responsibility Location Current Version/Date Tool Comment

Benefits of having configuration management and versions are:
- supports communication so that team members are working on the latest version,
- supports efficiency by reducing redundant efforts,
- supports creating a quality system in which all parts fit together.

Project Requirements
The OOProject shall maintain an up-to-date requirements document and a Requirements Traceability Table shown below.

 Requirements Traceability Table (Partial)
Require
ment
Number

Requirement
Name

Reference Use Case
Name

UML
Element

Test Case Description Responsibility

1.1 DepositToSavings
Account

DepositToSavi
ngsAccount

Benefits of having well-defined project requirements are:
- supports communication so that team members are working to meet the requirements,
- supports defining use cases, use case increments (group of use cases) and build/release iterations (use case scenarios
within an increment),
- supports identifying and resolving inconsistencies in requirements,
- supports creating a quality system in which the client requirements are fully met.

Iteration Planning and Monitoring
The OOProject shall use an incremental and iterative software development approach as documented in the Unified
Process. A Use Case Increment is a set of use cases that represent a complete subset of business functionality largely
independent of other increments. A Use Case Scenario is a set of interactions for a use case, e.g. optimistic(simple),
normal (moderate), or pessimistic (complex) scenario. An iteration is a sequence of activities with an established plan and
evaluation criteria, resulting in an executable release. It is a complete pass through all phases of the software development,
e.g. Requirements, Analysis, Design, Implementation, Testing for a use case increment leading to an executable release. A
product release is a complete and consistent set of artifacts and includes a software build (an executable version of the
system).

Use Case Increments and Build/Release Iterations
The OOProject a number of use case increments. Each use case increment has a number of build/release iterations
generally requiring 3 - 4 weeks of effort depending upon the size of the build/release.

9

These are the steps:
1 - Identify all use cases (name only)
2 - Group use cases together to identify use case increments
3 - In each use case increment, identify build/release iterations
4 - In each build/release iteration, identify all use case scenarios (name only)

OOProject Increment/Iteration Plan (3 - 4 Week Iteration)
Increment
Name

Use Cases Build/Release Iterations Use Case Scenarios

Increment 1 Use Case 1, 2, 3 Iteration 1 Optimistic/Simple,
Iteration 2 Normal/Moderate,
Iteration 3 Pessimistic/Complex

Iteration 1 Optimistic/Simple: UC1Opt, UC2Opt, UC3Opt
Iteration 2 Normal/Moderate: UC1Nor, UC2Nor, UC3Nor
Iteration 3 Pessimistic/Complex:UC1Pess, UC2Pess, UC3Pess

Increment 2 Use Case 3, 4, 5 Iteration 4 Optimistic/Simple,
Iteration 5 Normal/Moderate,
Iteration 6 Pessimistic/Complex

Iteration 4 Optimistic/Simple:UC4Opt, UC5Opt, UC6Opt
Iteration 5 Normal/Moderate:UC4Nor, UC5Nor, UC6Nor
Iteration 6 Pessimistic/Complex:UC4Pess, UC5Pess, UC6Pess

Below is a sample Increment/Iteration Plan Except from Appendix A

Increment
Name

Use Cases Build/Release Iterations Use Case Scenarios

Deposits and
Withdraws

Checking Deposit,
Checking
Withdraw, Saving
Deposit, Saving
Withdraw

Deposit and Withdraw
Optimistic/Simple,

Deposit and Withdraw
Normal/Moderate,

Deposit and Withdraw
Pessimistic/Complex

CheckingDepositOptimistic, CheckingWithdrawOptimistic,
SavingDepositOptimistic, SavingWithdrawOptimistic

CheckingDepositNormal, CheckingWithdrawNormal, SavingDepositNormal,
SavingWithdrawNormal

CheckingDepositPessimistic, CheckingWithdrawPessimistic,
SavingDepositPessimistic, SavingWithdrawPessimistic

Inquiries and
Transfers

Checking Inquiry,
Checking Transfer,
Saving Inquiry,
Saving Transfer

Inquiries and Transfers
Optimistic/Simple,

Inquiries and Transfers
Normal/Moderate,

Inquiries and Transfers
Pessimistic/Complex

CheckingInquiryOptimistic, CheckingTransferOptimistic,
SavingInquiryOptimistic, SavingTransferOptimistic

CheckingInquiryNormal, CheckingTransferNormal, SavingInquiryNormal,
SavingTransferNormal

CheckingInquiryPessimistic, CheckingTransferPessimistic,
SavingInquiryPessimistic, SavingTransferPessimistic

Overdrafts CheckingOverdraft,
SavingOverdraft

Overdraft Optimistic/Simple

Overdraft Normal/Moderate

Overdraft
Pessimistic/Complex

CheckingOverdraftOptimistic, SavingOverdraftOptimistic

CheckingOverdraftOptimistic, SavingOverdraftNormal

CheckingOverdraftOptimistic, SavingOverdraftPessimistic

For each Build/Release Iteration, the following is scheduling and monitoring table. The UML Model is the current model
location, e.g. XYZ\F:UMLModels\Iteration1Model.mdl.

Iteration 1

Increment 1 Increment 2

Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Project

Time

10

OOProject Schedule Status
Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessimistic/Complex

UML Model
Planned Start
Revised Start
Actual Start
Planned Completion
Revised Completion
Actual Completion/Review
%Complete
Model Review Date
Date Build Approved
Comment

UML Model reviews are scheduled bi-weekly or at the end of each iteration. Periodically, we may schedule UML Model
reviews within an iteration for Requirements, Analysis, Design, and/or Implementation. All the applicable UML diagrams
and specifications shall be placed in the Project Directory available for project staff review and comments. Source code
and test results for the iteration shall be available for staff review and comments. The model review shall consist of a brief
presentation of major UML diagrams and issues.

Benefits of having using use case increments and build/release iterations are:
- supports effective planning and decision making with a "little by little" rather than "do it all at once - big bang"
development approach
- reduces project risks because the client sees tangible results,
- supports effective change-management,
- supports creating a quality system with phased deliveries.

Requirements Use Case Specification
The Use Case Specification is one of the major specifications to document OOProject Requirements. For each OOProject
Use Case, collect the following information: Name, Trigger, Input Parameters, Output Return, Precondition/Exception
Raised, Postcondition/Exception Raised, Basic/Optimistic Scenario, Alternative/Pessimistic Scenarios, Business Rules,
Test Cases. The following is a sample Use Case Specification.

Use Case Specification for WithdrawFromCheckingAccount Use Case
Use Case Name : WithdrawFromCheckingAccount
Trigger: WithdrawFromCheckingAccount
Input Parameters : sAcctNum, nWithdraw
Output Return: sText
Precondition: ValidAccount = true and nWithdraw <= nCurrentBalance
Precondition Exception Raised: To be determined
Description/Transformation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < nOldBalance
Postcondition Exception: None
Basic Scenario/Optimistic Scenario: Text - to be determined; Diagram - see WithdrawFromCheckingAccount -
Optimistic Scenario Sequence Diagram
Alternative Scenarios/Pessimistic Scenario: Text - to be determined - Diagram - see WithdrawFromCheckingAccount
Activity Diagram
Business Rules : ValidAccountRule, AdequateBalanceRule
Test Cases : 1 - Optimistic:Inputs: sAcctNum - BGates001, nWithdraw - 100, nCurrentBalance - 1000 Conditions: None,
Output: "BGates001 withdraw $100 OK and recorded", 2 … To be determined
Input and Output Forms : See below

Input/Output Forms for WithdrawFromCheckingAccount Use Case:

11

Withdraw Request Form
Customer Account Number __________
Withdraw Amount __________

Button-Submit Button-Clear

Withdraw Response Form
Customer Account Number __________
Withdraw Amount __________
Status ________________________

Button-OK

Benefits of having a well-defined use case specification form are:
- supports consistency in modeling use cases,
- supports completeness especially to identify precondition, postconditions, and business rules,
- is useful to interview domain experts.

Unified Process Models in Construction Phase
In the construction phase, we create the major UML diagrams and specifications in the Unified Process are shown below:

System/Subsystem/Component Package/Class/Object
I – Requirements II - Analysis
Requirements Statement/Product Capabilities Class Diagram

Operations

Attributes

Class Name

Operations

Attributes

Class Name
Relationship

Use Case Diagram for All Use Cases Package Diagram

Package Package

Sequence Diagram for Each Use Case Course Sequence and/or Collaboration Diagram

Activity Diagram for Each Use Case All Courses Activity Diagram & Statechart

State

State

Activity State

Activity State

Activity State

Activity State

IV - Implementation III - Design
Processing Environment HW & SW Processing Environment HW & SW
Component Diagram & Deployment Diagram Updated Class/Package/Sequence/
& Code Collaboration/Activity/Statecharts

12

V Testing/Deployment

Key aspects of these models in the Unified Process - Construction Phase are shown below. The key is to create all
diagrams in these models for each build/release iteration (3 - 4 weeks).

Requirements
Model

Analysis
Model

Design
Model

Implementation
 Model

Testing
Model

Key UML
Elements

System, Actor,
Use Case,
Interaction

Business Package,
Class, Object,
Message

HW & SW
Configuration,
Package, Class
Object, Message

Component, Node,
Code

Test Plan and
Test Cases

Key Concern Model System as
a Black Box

Model Business
Elements in the
Problem Domain
with no
implementation
details

Update Analysis
Diagrams/Specificatio
ns for a specific
implementation, e.g.
HW & SW
Configuration.

Model physical
elements for the
distributed
environment; Code
to meet all
requirements

Unit
(Class/Opera
tion) Tests,
Integration/O
verall System
Tests

Objective -
weak coupling -
strong cohesion
among elements

Sufficient
information on
all use
cases/scenarios.
All
increments/iterat
ions planned.

Simplest
Business/Problem
Domain Model to
meet requirements

Sufficient information
to generate maximum
code or manually code

Optimum
Component
Architecture -
Network friendly;
Code that meets all
requirements

Sufficient
Testing that
code meets
all
requirements

Static/Structural
Diagrams

Block Diagram
and Use Case
Diagram
Showing Actors

Package/Class
Diagram

Package/Class
Diagram

Component and
Deployment
Diagrams;
Reversed Class
Diagrams

--

Dynamic/Time
Based Diagrams

Use Case
Diagram,
Sequence
Diagram for
each use case
scenario,
Activity
Diagram for
each use case

Sequence Diagram
for each use case
scenario,
Statechart for each
state-based class,
Activity Diagram
for each complex
operation

Sequence Diagram for
each use case
scenario, Statechart
for each state-based
class, Activity
Diagram for each
complex operation

Optionally update
sequence diagrams
showing distributed
messages

--

Tools UML CASE,
Requirements
Tracking, CM

UML CASE,
Requirements
Tracking, CM

UML CASE,
Requirements
Tracking, CM

UML CASE,
Requirements
Tracking, CM,
Testing

CM

Key Team
Players

Business/System
Analysts

Business/System
Analyst

Developer Architect,
Developer

Developer/T
ester

Model Sign-off Project Manager,
Architect,
Client/User

Project Manager,
Architect,
Client/User

Project Manager,
Architect

Project Manager,
Architect

Project
Manager,
Architect,
Client/User
for

13

Acceptance

Metrics and Monitoring
Metrics provide a quantitative measure to monitor progress, make estimates, identify risks, and to identify high risk
complex entities. Metrics contribute to effective project management and creating quality systems. There should be
automated metric collection with the CASE tool and code analyzers. “If you can’t measure it, it’s not engineering.”

Management Metrics provide information on project schedule, resources, and other management concerns in terms of
planned versus actual values. Sample project metrics: milestones completed, assigned people, costs, use case scenarios, key
classes, support classes (GUI, collections, etc), packages per system, person-days per class, classes per developer,
development iterations, etc. See Lorenz and Kidd Object-Oriented Software Metrics.

Project Metrics provide information on the system, packages, classes, and other elements. Project metrics are valuable to
show changes over time and to indicate high risk complex elements.

Sample Project Metrics
System Level Metrics -
Number in the System

Class/Object Level
Metrics - Number
in the System

Class/Object Level
Metrics - Number of &
Average Number

Code Metrics -
Number of &
Average
Number

Size Metrics Analysis: Requirements, Actors,
Component In Messages,
Component Out Messages,
Component Input Objects/Data,
Component Output
Objects/Data, Use Cases, Use
Case Scenarios
Design: Executable
Components, Messages between
Components, Nodes, Links
between Nodes

Packages, Classes,
Interfaces,
Operation,
Attributes,
Relationships,
Objects, Messages,
States, Transitions,
Exception Classes,
Reused Classes

Lines of
Code/System,
LOC/Class,
LOC/Operation

LOC refers to
NCSS - Non-
comment Source
Statements

Complexity
Metrics

Higher Ratio
Suggests
Greater
Complexity

Use Case Scenarios/Use Case Levels of
Generalization,

Classes &
Interfaces/Package,
Attributes/Class,
Operations/Class,
Relationships/Class,
Message Sends/Class,
Message Sends/Operation,
Parameters/Operation,
Subclasses/Superclass

Weighted
Operations/Class,
McCabe
Cyclomatic
Complexity/Oper
ation,
Halsted/Operatio
n, Length * (Fan-
in * Fan-out)2

Reuse
Metrics

Reused Patterns, Reused
Components

Reused Patterns,
Reused Packages,
Reused Classes

Quality
Metrics

Defects Defects Defects Defects

Our goal is to use CASE and other tool monitoring. The following automatically generated tables will be used. As
required more detailed reports may be generated.

Size Metrics - Number of UML Elements - CASE Tool Generated
Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessimistic/Complex

Actors
Use Cases
Use Case Scenarios

14

Packages
Classes
Interfaces
Attributes
Operation
Generalization Relationships
Realizes Relationships
Composition Relationships
Shared Aggregation
Relationships
Dependency Relationships
Objects
Messages
States
Transitions
Components
Component Dependencies
Nodes
Node Links
Test Cases
Total SLOC-Source Lines of
Code
SLOC per Class
SLOC per Operation

Complexity Measures - CASE or Other Tool Generated Min/Max/Average Provided in Each Cell
Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessimistic/Complex

Classes & Interfaces per
Package
Attributes per Class
Operations per Class
Parameters per Operation
Message Sends/ per
Operation
Message Sends per Class
Relationships per Class
Weighted Operations per
Class
McCabe Cyclomatic
Complexity per Operation
Halsted per Operation
Length * (Fan-in * Fan-
out)2

Benefits of having project metrics and monitoring are:
- supports communication so that team members are working on the latest version,
- supports identifying risks and problems early to meet cost, schedule, and other objectives,
- supports efficiency by reducing redundant efforts,
- supports creating a quality system in which all parts fit together.

15

Reuse
Our goal is to promote reuse in the OOProject. There are several forms of reuse as documented by Scott Ambler in
Building Object Applications That Work (SIGS Books, 1997):

Operation Reuse is the reuse of complex operations, such as utility operation or complex algorithmic operations.

Class Reuse is the reuse of classes. Class reuse is accomplished by sharing common classes or collections of functions and
procedures. Class reuse leads to code reuse.

Inheritance Reuse is to use inheritance to take advantage of behavior implemented in existing classes.

Template Reuse is typically a form of documentation reuse. It refers to using a common set of layouts for key
development artifacts—documents, models, and source code.

Component Reuse is the use of pre-built, fully encapsulated components. Examples of components are Java Beans and
ActiveX components.

Pattern Reuse is the use of documented patterns such as documented in Design Patterns by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Patterns in Java Vol 1 and 2 by Mark Grand, A System of Patterns by Frank Buschmann, Regine Meunier,
Hans Rohnert, Peter Sommerlad, and Michael Stal, and other books.

Framework Reuse is the use of collections of classes that implement the basic functionality of a common technical or
business domain together. Examples of frameworks are the San Francisco Framework.

Artifact Reuse is to use of previously created development artifacts—use cases, standards documents, domain-specific
models, procedures and guidelines, and other applications.

In the OOProject we will maintain the Reuse Table.

Reuse by Iteration
Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessimistic/Complex

Operations from
Class/Operation Library
Classes from
Class/Operation Library
Patterns from
Pattern/Collaboration
Library

Benefits of reuse are:
- deduces effort and resources since a reused element has already been documented, constructed, and tested,
- supports high quality system based upon high quality reused elements,

Quality Assurance and Testing
Quality Assurance is to ensure adequate processes, resources, and management to create quality products within required
constraints that are defect-free. Quality factors are reliability, correctness, extensibility, reusability, portability,
maintainability, understandability, usability, etc. Quality Assurance Activities primarily for correctness and defect discover
include:

UML Model Reviews - these include the presentation of diagrams and specifications.

16

Walkthroughs (Optional) - a role-playing technique to check the completeness and consistency of O-O models. A person
represents the system, an actor, object, or other element. Starting with a system in message complete use case scenarios are
traced though the system leading to system out messages.

CASE Tool Checks - automated checks for consistency and completeness of diagrams and specifications.

Code Inspections - examining source code and reversed class diagrams.

Testing - executing a system, component, class, operation or other element with test cases to validate that the element
accomplishes requirements and to verify correctness.

Correctness Proofs (Optional) - using formal method with mathematical formalisms to establish the correctness of
analysis/design models and code.

QA Activities During the Construction Phase
QA Activities Requirements

Model
Analysis Model Design Model Implementation

Model
Testing

QA Planning Project Plan Project Plan Project Plan Project Plan,
Coding Standards

Testing Plan,

UML Model
Reviews &
Inspections

System
Requirements
Project Plan

See Requirement
Model Checklist

Analysis Models
of Diagrams &
Specifications

See Analysis
Model Checklist

Design Models of
Diagrams &
Specifications

See Design
Model Checklist

CASE Tool
Scripts, Test
Cases, Code
Inspection
See
Implementation
Model Checklist

Test Cases, Code
Inspection

See Testing
Checklist

Tool Checks Requirements
Traceability

CASE Tool
Checks of
Analysis Models

CASE Tool
Checks of Design
Models

Compiler, Code
Analyzer, CASE
Reverse
Engineering,
Testing Tools

Testing Tools for
Unit Tests,
System Tests,
Acceptance Tests

Operation Specification
Operation Specification is a key specification that is useful to support correctness. Below is a sample Operation
Specification:
Use Case Name : withdraw
Trigger: withdraw
Input Parameters : nWithdraw : int
Output Return: boolean
Precondition: nWithdraw <= nCurrentBalance
Precondition Exception Raised: exInsuffientFunds
Description/Transformation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < priorCurrentBalance
Postcondition Exception: exIncorrectBalance
Basic Scenario/Optimistic Scenario: See withdrawFromCheckingAccount Sequence Diagram
Alternative Scenarios/Pessimistic Scenario: See withdrawFromCheckingAccount Activity Diagram
Business Rules: ValidAccountRule, AdequateBalanceRule

Reversed Engineered Class Diagrams for each
Build/Release

Reverse Engineering is to create UML diagrams and specifications from source code, e.g. Java, C++, etc. The class
diagram shall be automatically created from source code by the CASE tool. Other diagrams, e.g. use case, sequence, state,

17

etc, must be manually created using the reversed class diagram and interviewing domain experts. The following are the
steps to develop a Reverse Engineered UML Model for each Build/Release Iteration

1 - Select one or more UML CASE tools to reverse engineer OOProject source code. Set the reverse options in the UML
CASE tool.

2 - Collect the source code for the build/release.

3 - For each directory/package reverse engineer the source code to create the reversed class diagram.

4 - Verify and update the reversed class diagram to ensure that the diagram is accurate showing classes, attributes,
operations, and relationships (realization, generalization, association, shared aggregation, composition, and dependency).

5 - Create a glossary - data dictionary listing and defining all major terms and other reports from the reversed class diagram.

6 - After examining the reversed class diagram and reports, create a list of recommended code changes for correctness,
compliance with coding standards, etc.

Benefits of Reverse Engineering are:
- visually displays hard-to-read code,
- identifies poorly written code early, e.g. spaghetti code,
- promotes following project coding standards, e.g. capitalization, prefixes, naming, etc,
- improves the quality of code.

Testing
Testing shall occur throughout the project lifecycle. As presented in The Rational Unified Process An Introduction Second
Edition by Krutchen, there are the following testing dimensions:

- Quality: Reliability, Functionality - required use cases, Performance.
- Stages of testing:

Unit Tests - smallest testable elements of the system are tested individually, e.g. component, collaboration, class,
operation

Integration Tests - integrated units (components or subsystems) are tested
System Test - complete system is tested - end to end
Acceptance Test - complete system tested by end users to ensure readiness for deployment

- Types of tests:
Benchmark Test
Configuration Test
Function Test
Installation Test
Integrity Test
Load Test
Performance Test

The OOProject Test Plan shall include the following:
- Test Cases - the set of test inputs, conditions, and expected results - See Test Specification below.
- Test Procedures - the set of "how to" setup, execute, and evaluate test results .
- Test Scripts - high level programs for automated testing, e.g. Testing Tool Script
- Test Classes and Components - drivers, stubs, and other programs for testing

The following is the OOProject Test Case Specification:

Test Case Specification:

Test Use Case Name:
Use Case Name:

18

Use Case Scenario Name:
Trigger:
Input Parameters:
Output Return:
Precondition:
Precondition Exception Raised:
Description/Transformation:
Postcondition:
Postcondition Exception:
Comments:

Testing by Iteration - Planned/Completed/% in each cell
Reference/
Location

Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessimistic/Complex

Unit Tests - Operations
Unit Tests - Class
Unit Tests -
Component
Integration Tests
System Tests - End to
End
User Acceptance Test
Quality factor comments:
reliability, correctness,
extensibility, reusability,
portability, maintainability,
understandability, usability

Benefits of testing are:
- supports identifying defects early thereby reducing the costing of fixing each defect,
- supports identifying risks and problems early,
- supports the proper interaction and integration of components,
- supports creating a quality defect-free system.

Summary
This project plan is to assist all project team members to work toward the successful completion of the project, to create a
defect-free software product, and to ensure a satisfied customer.

Project Plan Approval:

____________________________ ____________________________ ________________________
Project Manager Approval & Date Architect Approval & Date Approval & Date

Appendices
Tasks to Create a Complete UML Model

Based upon The Rational Unified Process An Introduction Second Edition by Krutchen

0 - Business Modeling - Enterprise Level

19

Review the Business Model: Vision Document, Organization Chart, Business Events and Processes (Use Cases), Business
Actors, Workers, and Entities (Domain Model), Business Rules Catalog, Business Interfaces (Set of Operations), Business
Patterns, Business Systems Architecture - Component Diagram, Glossary. See The Rational Unified Process An
Introduction Second Edition by Krutchen and Business Modeling with UML by Eriksson and Penker.

I - Requirements - System/Subsystem/Component Level (Implementation
Language Independent)

1 - Requirements - Review the Requirements Statement, System Drawing, and System Block Diagram (Customer
Provided). Optionally, create a System Collaboration Diagram (Context Diagram) showing object/data inputs and outputs
to set the system boundary. Optionally, create the Requirements Traceability Table listing Requirement Name, Number,
Reference, Use Case, UML Element, Test Case, Description, Responsibility, etc. Optionally, review management plans,
schedules, risks, naming/coding standards, methodology plans - UML process/stereotypes/properties/constraints.

2 - All Use Cases - Create the Use Case Diagram showing all use cases. Optionally, show use case relationships
(includes, extends, generalization) and/or hierarchical use cases (high level to detailed). Identify the use case increments
and iterations.

3 - Each Use Case - Create a Use Case Specification for each use case stating use case name, trigger, inputs, outputs,
precondition/exception, postcondition/exception, basic and alternative scenarios (optimistic to pessimistic), business rules.
Optionally, create a Sequence Diagram for each use case scenario. Optionally, create input/output forms and test case for
each use case.

4 - Each Use Case All Scenarios - Create an Activity Diagram for each use case showing all use case scenarios
(optimistic to pessimistic). Optionally, show all scenarios/paths for a use case in text, flow chart, or other diagram.

5 - Information - Create the Product Capabilities listing non-functional requirements: usability (reliability, performance,
security, human factors), generality (portability, compatibility), timing, space, memory, etc. Optionally create a semantic
data model (High Order Concept Model (HOCM)) showing all major elements/concepts inside and outside the system to be
the basis for Class/Package Diagram.

II - Analysis - Class and Object Level (Implementation Language Independent)

6 - Classes and Packages - Create the list of candidate classes, CRC Cards (Class Responsibility Collaboration), Class
Diagram, and Package Diagram. Optionally create an Object Diagram showing attribute values.

7 - Objects and Messages - Create a Sequence Diagram for each use case - optimistic scenario. Optionally, create a
Sequence Diagram for all other use case scenarios. Alternatively, create a Collaboration Diagram for each use case
scenario.

8 - States and Transitions - Create a State Diagram for each state-based class showing states, events, conditions, and
actions.

9 - Operations - Create an Operation Specification showing preconditions, transformations, postconditions, and
exceptions for each complex operation. Optionally, create an Activity Diagram for each complex operation showing the
sequence of activity states, conditions, and actions.

III - Design - Class and Object Level for a Specific Processing Environment

10 - Processing Environment - Create the processing environment consisting of the planned Implementation H/W and
S/W Configuration List: operating system, language, class libraries, components, GUI, distribution - object request broker,
persistent data storage, etc. Optionally, list potential patterns, component standard (Active X, Java Bean, CORBA), naming
conventions, coding standards, code generation scripts, tools (CASE, compiler, configuration management, testing, etc).

20

11 - Updated Analysis Diagrams and Specifications - Update all diagrams and specifications to add detail for the
Processing Environment including data types, visibility, parameters/returns, support classes, operation detail
(precondition/exception, transformation, postcondition/exception), etc. Optionally provide implementation of patterns, e.g.
polymorphic operations, exceptions (exception superclass/subclasses), threads, data access, transactions, security, message
queuing, etc. Goal: diagrams and specifications provide adequate information for manual coding or code generation.

IV - Implementation - System/Subsystem/Component Level for a Specific
Processing Environment

12 - Implementation Processing Environment, Component Standard and Component Patterns - Update the
Processing Environment to show provided components (GUI, data access, transactions, distribution, message queuing,
security, etc), component standard (Active X, Enterprise Java Bean, CORBA), and component to component patterns, e.g.
small single operation component, class based component, session per user - entity component, package based component,
large multi-package component.

13 - Implementation Components - Create the Component Diagram showing all required components and files with the
dependency relationship, e.g. .EXE, DLL, .OCX, .LIB, .TXT, .HLP, etc. Optionally show interfaces (lollipops) and create
an interface diagram showing exposed operations. Optionally show IDL (Interface Definition Language) code, e.g.
CORBA IDL, Microsoft IDL, Java.

14 - Implementation Nodes (Processors and Devices) - Create the Deployment Diagram showing all required
processors, devices, and other equipment, e.g. client network computer, Windows PC, NT Server, Transaction Server, Web
Server, Mail Server, Fax, Printer, Network, etc.

V - Construction
15 - Coding Standards and Code Generation Scripts - Update coding standards and code generation scripts. Coding
standards list sample code showing code for all major UML elements and relationships and policy for inheritance,
interfaces, exceptions, threads, etc.

16 - Code Each Component and Reverse Engineer Diagrams

VI - Testing
17 - Testing Plan - Update the Testing Plan to list test cases (name, input, output, conditions), test procedures (step by step
instructions for each test case), test components (drivers, harnesses, scripts).

18 - Tests - Conduct tests, e.g. class/operation tests (Unit Tests), individual component tests (use case based), overall
system - multiple component tests (use case based integration/acceptance testing).

VII - Model and Construct Other Components As Required
19 - GUI/User/External Interface Components - Optional - Create the GUI component (windows, menus, dialog boxes,
panels).

20 - Persistent Storage Components - Optional - Create the persistent storage component - data storage tables/stored
procedures/triggers.

21

UML CASE Study - BankApp with Rational
Rose

Preliminary - Business Enterprise Models
Business Vision, Objectives, and Organization - Provided Separately

Business Events (UML Signal Events -Named Stimulus Form or Document) and Processes (UML
Use Cases)
Process
Name

Actors Events/
Inputs

Transfor
mation

Events/
Output

Constraints Description Reference Point of
Contact

Withdraw
FromAcc
ount

Customer,
Teller,
BankDB

Withdr
awReq
uest

Update
Account

Withdr
awRec
ord

Business Actors, Business Workers, and Business Entities (Problem Domain Entities)

Business Actor (UML Actor) Business Worker (UML Actor) Business Entity (UML Class)
Customer Teller Account, SavingsAccount,

CheckingAccount

SavingsAccount
<<BusinessEntity>>

CheckingAccount
<<BusinessEntity>>

Customer

(from Use Case View)

Teller

(from Use Case View)

<<BusinessActor>> <<BusinessWorker>> <<BusinessWorker>>

Account
<<BusinessEntity>>

BankDB

(from Use Case View)

WithdrawEvent
<<SignalEvent>>

WithdrawRequest
<<ReceiveSignalEvent>>

WithdrawRecord
<<SendSignalEvent-Create>>

Customer Teller BankDBWithdrawFromAccount

<<Business Actor>> <<Business Worker>> <<Business Worker>><<Business Process>>

22

Business Rules Catalog
Rule Identifier Actor, Entity, Process Description:If

Conditional..Then Action
Areas Reference Point of

Contact
ValidAccount Account If AccountNum is Valid

then Account is Valid

Business Interfaces (Named Set of Operations) - Provided by Architect

Business Patterns Catalog - See Business Modeling with UML by Eriksson and Penker

Business Glossary - to be completed

Business Systems Architecture - Provided by Architect

I - Requirements Models
1 - Requirements: The BankApp shall manage checking and savings account deposits and withdraws.
Future: inquiries, transfers, overdraft, etc. Inputs/Outputs TellerGUI to BankApp: sAcctNum,
nDeposit, nWithdraw, sText. Inputs/Outputs BankApp to BankDB: sAcctNum, nDeposit, nWithdraw.

1 - Requirements Traceability Table : Requirement Number, Name, Reference, Use Case Name,
UML Element, Test Case, Description, Responsibility.

 Requirements Traceability Table (Partial)
Require
ment
Number

Requirement
Name

Reference Use Case
Name

UML
Element

Test Case Description Responsibility

1.1 DepositToSavingsAcc
ount

DepositToSaving
sAccount

BankPkg

1.2 DepositToCheckingA
ccount

DepositToChecki
ngAccount

BankPkg

1.3 WithdrawFromSaving
Account

WithdrawFromSa
vingAccount

BankPkg

1.4 WithdrawFromChecki
ngAccount

WithdrawFromCh
eckingAccount

BankPkg

Storable

+ read()
+ write()

<<Interface>>
Verifiable

+ verify()

<<Interface>>
TransactionCapable

+ begin()
+ commit()
+ rollback()

<<Interface>>
Legality

+ getLegalStatus()
+ getLegalReferences()

<<Interface>>

TellerGUI BankApp BankDB

ITellerGUI
IBankApp IBankDB

23

2 - Requirements - Use Case Diagram - All Use Cases

Rose Use Case Diagram: In Browser Window select Use Case View; Rename Main to be Use Case
Diagram; Place actors, use cases, and relationships (Rose Unidirectional Association and
Generalization) on the diagram; Select each actor - right mouse to enter actor operations; Select Tools -
Check Model; Select File - Save.

2 - Requirements - High Level Collaboration Diagram (Context Diagram)

 : TellerGUI : BankDB

 : Bank
App

sAcctNum nWi thdraw nDepos i t , sTex t
<->

sAcc tNum nWi thdraw nDepos i t
<->

Rose High Level Collaboration Diagram: In Browser Window select Use Case View; Select Browse
- Interaction Diagram - Use Case View - <New>; Select Collaboration Diagram; Enter Diagram Name;
Place objects representing actors on the diagram; Double-click each object then select the actor name
from the pull-down list; Place one object in the center of the diagram to represent the system; Double-
click the object and enter the system name; Select Rose Object Link symbol and drag between actors
and the system ; Select the Rose Text Box “ABC” and enter names of passed objects/data; Select
Tools - Check Model; Select File - Save.

2 - Requirements - Use Case Increments:
Increment 1: Checking and Saving Account Deposits and Withdraws
Increment 2: Inquiries and Transfers
Increment 3: Overdrafts
Iterations within each Increment: optimistic, normal, pessimistic

Increment
Name

Use Cases Build/Release Iterations Use Case Scenarios

Deposits and Checking Deposit, Deposit and Withdraw CheckingDepositOptimistic, CheckingWithdrawOptimistic,

DepositToSavingsAccount

WithdrawFromCheckingAccount

WithdrawFromSavingAccount

Teller
GUI

+ display()

DepositToCheckingAccount

Bank
DB

+ getAccount()
+ recordDeposit()

+ recordWithdraw()

ITellerGUI
IBankDB

24

Withdraws Checking
Withdraw, Saving
Deposit, Saving
Withdraw

Optimistic/Simple,

Deposit and Withdraw
Normal/Moderate,

Deposit and Withdraw
Pessimistic/Complex

SavingDepositOptimistic, SavingWithdrawOptimistic

CheckingDepositNormal, CheckingWithdrawNormal, SavingDepositNormal,
SavingWithdrawNormal

CheckingDepositPessimistic, CheckingWithdrawPessimistic,
SavingDepositPessimistic, SavingWithdrawPessimistic

Inquiries and
Transfers

Checking Inquiry,
Checking Transfer,
Saving Inquiry,
Saving Transfer

Inquiries and Transfers
Optimistic/Simple,

Inquiries and Transfers
Normal/Moderate,

Inquiries and Transfers
Pessimistic/Complex

CheckingInquiryOptimistic, CheckingTransferOptimistic,
SavingInquiryOptimistic, SavingTransferOptimistic

CheckingInquiryNormal, CheckingTransferNormal, SavingInquiryNormal,
SavingTransferNormal

CheckingInquiryPessimistic, CheckingTransferPessimistic,
SavingInquiryPessimistic, SavingTransferPessimistic

Overdrafts CheckingOverdraft,
SavingOverdraft

Overdraft Optimistic/Simple

Overdraft Normal/Moderate

Overdraft
Pessimistic/Complex

CheckingOverdraftOptimistic, SavingOverdraftOptimistic

CheckingOverdraftOptimistic, SavingOverdraftNormal

CheckingOverdraftOptimistic, SavingOverdraftPessimistic

3 - Requirements Use Case Specification: Name, Trigger, Input Parameters, Output Return,
Precondition/Exception Raised, Postcondition/Exception Raised, Basic/Optimistic Scenario,
Alternative/Pessimistic Scenarios, Business Rules, Test Cases

Use Case Specification for WithdrawFromCheckingAccount Use Case
Use Case Name : WithdrawFromCheckingAccount
Trigger: WithdrawFromCheckingAccount
Input Parameters : sAcctNum, nWithdraw
Output Return: sText
Precondition: ValidAccount = true and nWithdraw <= nCurrentBalance
Precondition Exception Raised: To be determined
Description/Transformation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < nOldBalance
Postcondition Exception: None
Related Use Cases: Generalization, Includes, Extends/Extension Point: None
Basic Scenario/Optimistic Scenario: Text - to be determined; Diagram - see WithdrawFromCheckingAccount -
Optimistic Scenario Sequence Diagram
Alternative Scenarios/Pessimistic Scenario: Text - to be determined - Diagram - see WithdrawFromCheckingAccount
Activity Diagram
Business Rules : ValidAccountRule, AdequateBalanceRule
Test Cases : 1 - Optimistic:Inputs: sAcctNum - BGates001, nWithdraw - 100, nCurrentBalance - 1000 Conditions: None,
Output: "BGates001 withdraw $100 OK and recorded", 2 … To be determined
Input and Output Forms : See below

Input/Output Forms for WithdrawFromCheckingAccount Use Case:

Withdraw Request Form
Customer Account Number __________
Withdraw Amount __________

Button-Submit Button-Clear

Withdraw Response Form
Customer Account Number __________
Withdraw Amount __________
Status ________________________

25

Button-OK

3 - Requirements - Sequence Diagram WithdrawFromCheckingAccount - Optimistic Scenario

 : T e l l e r G U I

 : B a n k A p p

 : B a n k D B
2 : g e t A c c o u n t ()

1 : w i t h d r a w F r o m C h e c k i n g A c c o u n t ()

3 : r eco rdWi thd raw()

4 : d i sp lay ()

R e q u i r e m e n t s - S e q u e n c e D i a g r a m W i t h d r a w F r o m C h e c k i n g A c c o u n t -

Note: getApp required to get the top level application for the first transaction

Rose Sequence Diagram: In Browser Window select Use Case View; Select the Use Case Diagram;
Select a use case; Select Browse - Interaction Diagram - Use Case View - <New>; Select Sequence
Diagram; Enter Diagram Name, e.g. WithdrawFromCheckingAccount-OptimisticScenario; Place
objects representing actors on the diagram; Double-click each object then select the actor name from
the pull-down list; Place one object in the center of the diagram to represent the system; Double-click
the object and enter the system name from the pull-down list; Select Rose Object Message symbol and
drag between actors and the system; Select Tools - Check Model; Select File - Save.

4 - Requirements Activity Diagram for WithdrawFromCheckingAccount Use Case - All
Scenarios

26

CheckWi thdrawalRequest

CheckVal id

CheckBalanceAvai lable

MakeWi thdraw

ent ry : BankDB.recordWi thdraw

[OK] / BankDB.GetAccount

[OK]

[Ba lanceOK]

Initial

w i thdrawFromCheck ingAccount

Termination

[OK] / Tel lerGUI.display

[NotOK] / Te l lerGUI .d isp lay

[NotVal id] / Tel lerGUI.d isp lay

[LowBalance] / Tel lerGUI.d isplay

[NotOK] / Te l lerGUI .d isp lay

Note: getApp required to get the top level application for the first transaction

Rose State - Activity Diagram: In Browser Window select Use Case View; Select the Use Case
Diagram to display the diagram; Select a use case; Select Browse - State Diagram; If “State Diagram”
is grayed out, then go back to the use case diagram and re-select a use case; Place activity states on the
diagram; Place transitions on the diagram by dragging between states; Select Tools - Check Model;
Select File - Save.

5 -Requirements - Product Capabilities: High Reliability, 10 concurrent users, 2 second response
time.

5 - Requirements/Analysis - High Order Concept Model: External Actors: TellerGUI, BankDB
Internal Entities: BankApp, Account, CheckingAccount, SavingsAccount

Te l l e rGUI

(f r o m U s e C a s e V i e w)

B a n k D B

(f r o m U s e C a s e V i e w)

B a n k A p p

C h e c k i n g A c c o u n t

A c c o u n t

S a v i n g s A c c o u n t

t y p e o f

t y p e o f

27

Rose High Level Concept Model Diagram: Recommend do the HOCM with pencil and paper.
Alternatively, create a Rose Class Diagram without attributes and operations.

II - Analysis Model - Rough Sketch
6 - Analysis Class Diagram - Simplest Structure

A c c o u n t

- s C u s t o m e r N a m e

- n M i n i m u m B a l a n c e

- n C u r r e n t B a l a n c e

- s A c c t N u m

+ c r e a t e ()

+ d e p o s i t ()

+ w i t h d r a w ()

+ d o n e ()

B a n k A p p

+ g e t A p p ()

+ d e p o s i t T o C h e c k i n g A c c o u n t ()

+ d e p o s i t T o S a v i n g s A c c o u n t ()

+ w i t h d r a w F r o m C h e c k i n g A c c o u n t ()

+ w i t h d r a w F r o m S a v i n g s A c c o u n t ()

C h e c k i n g A c c o u n t

S a v i n g s A c c o u n t

Rose Class Diagram: See Using Rational Rose

6 - Analysis Package Diagram

L o g i c a l V i e w

g l o b a l

(f r o m C : \ m d l \ B a n k D e s i g n - I m p l . m d l)

B a n k P k g

Rose Package Diagram: In Browser Window select Logical View; Select Browse - Class Diagram -
Logical View - <New>. Enter the Package Diagram Name; Place packages on the diagram; To place a
dependency relationship, select the dependency arrow from the Toolbar then drag from the source
package to the destination package; In the Browser drag each class to the approprate package; Select
Tools - Check Model; Select File - Save.

7 - Analysis Sequence Diagram for WithdrawFromCheckingAccount - Optimistic Scenario

28

A n a l y s i s S e q u e n c e D i a g r a m f o r W i t h d r a w F r o m C h e c k i n g A c c o u n t - O p t i m i s t i c C o u r s e

 : T e l l e r G U I

 : B a n k A p p : C h e c k i n g

A c c o u n t
 : B a n k D B

1 : w i t h d r a w F r o m C h e c k i n g A c c o u n t ()
2 : c r e a t e ()

3 : g e t A c c o u n t ()

4 : w i t h d r a w ()
5 : r e c o r d W i t h d r a w ()

6 : d o n e ()

7 : d i s p l a y ()

Note: getApp required to get the top level application for the first transaction

Rose Sequence Diagram: See Using Rational Rose

8 - Analysis State Diagram for Account Class

29

R e a d y S t a t e

L o w B a l a n c e S t a t e

create [Va l id]

c rea te [No tVa l id]

depos i t

d o n e

w i thd raw [Ba lanceOK]

w i thd raw[LowBa lance]

depos i t

d o n e

wi thdraw

TerminationState

Rose State - Activity Diagram: In Browser Window select Logical View; Select the Class Diagram to
display the diagram; Select a class; Select Browse - State Diagram; If “State Diagram” is grayed out,
then go back to the class diagram and re-select a class; Place states on the diagram; Place transitions on
the diagram by dragging between states; Select Tools - Check Model; Select File - Save.

9 - Analysis - Complex Operations : To be determined - Activity Diagram and/or Operation
Specification for each operation: name, inputs, precondition/exception, transformation,
postcondition/exception, business rules, description

Rose Specifications: Display the class diagram; Select a class; Press the Right Mouse Button to
display the Specification Dialog Box; Select a tab, e.g. Operations Tab; Double-click an operation;
Fill-in the operation information. Select Tools - Check Model; Select File - Save.

III - Design Models - Basis for Coding

10 - Design Processing Environment: Linux Version 6.2, GNU C++ Version 6.2, C++ Standard
Library, CORBA 3.

10 - Design Potential Patterns:
Enterprise: Distributed CORBA Based, components with public interfaces
System (Component to Component): Layered, Session - Entity, Callbacks, Publisher - Subscriber
Component: Application - Document, Controller - Entity - Boundary, Facade
Class Design: UML, Factory, Transaction

30

Java Language: Java Bean, Enterprise Java Bean, Servlet, RMI

11 - Design Package Diagram

L o g i c a l V i e w

g l o b a l

(f r o m C : \ m d l \ B a n k D e s i g n - I m p l . m d l)

B a n k P k g

11 - Design Class Diagram Showing Types and Parameters - Goal is completeness for coding

A c c o u n t

- s C u s t o m e r N a m e : s t r i n g

- n M i n i m u m B a l a n c e : i n t

- n C u r r e n t B a l a n c e : i n t

- s A c c t N u m : s t r i n g

+ c r e a t e (s A c c t N u m : s t r i n g) : b o o l e a n

+ d e p o s i t (n D e p o s i t : i n t) : b o o l e a n

+ w i t h d r a w (n W i t h d r a w : i n t) : b o o l e a n

+ d o n e ()

(f r o m B a n k P k g)

B a n k A p p

+ g e t A p p () : B a n k A p p

+ d e p o s i t T o C h e c k i n g A c c o u n t (s A c c t N u m : s t r i n g , n D e p o s i t : i n t) : b o o l e a n

+ d e p o s i t T o S a v i n g s A c c o u n t (s A c c t N u m : s t r i n g , n D e p o s i t : i n t) : b o o l e a n

+ w i t h d r a w F r o m C h e c k i n g A c c o u n t (s A c c t N u m : s t r i n g , n W i t h d r a w : i n t) : b o o l e a n

+ w i t h d r a w F r o m S a v i n g s A c c o u n t (s A c c t N u m : s t r i n g , n W i t h d r a w : i n t) : b o o l e a n

(f r o m B a n k P k g)

+ t h e A c c o u n t
C h e c k i n g A c c o u n t

+ c r e a t e (s A c c t N u m : s t r i n g) : b o o l e a n

+ d e p o s i t (n D e p o s i t : i n t) : b o o l e a n

+ w i t h d r a w (n W i t h d r a w : i n t) : b o o l e a n

+ d o n e ()

(f r o m B a n k P k g)

S a v i n g s A c c o u n t

+ c r e a t e (s A c c t N u m : s t r i n g) : b o o l e a n

+ d e p o s i t (n D e p o s i t : i n t) : b o o l e a n

+ w i t h d r a w (n W i t h d r a w : i n t) : b o o l e a n

+ d o n e ()

(f r o m B a n k P k g)

T o b e a d d e d : i n t e r f a c e s , e x c e p t i o n s , t h r e a d s ,

t r a n s a c t i o n s , m e s s a g e q u e u e s , t i m e r s , s e c u r i t y , r u l e s

Note: CheckingAccount and SavingsAccount will provide implementation of the polymorphic
operations.

11 - Design Sequence Diagram WithdrawFromCheckingAccount - Optimistic Scenario

31

 : T e l l e r G U I
 : B a n k A p p : C h e c k i n g

A c c o u n t
 : B a n k D B

1 : g e t A p p ()

2 : w i t h d r a w F r o m C h e c k i n g A c c o u n t (s t r i n g , i n t)

3 : c r e a t e (s t r i n g)
4 : g e t A c c o u n t (s t r i n g)

5 : w i thd raw(in t)
6 : r e c o r d W i t h d r a w (s t r i n g , s t r i n g)

7 : d o n e ()

8 : d i s p l a y (s t r i n g)

{ e n d - s t a r t < = 1 0 s e c }

Note: getApp required to get the top level application for the first transaction

11 - Design Collaboration Diagram WithdrawFromCheckingAccount - Optimistic Scenario
In Rational Rose open sequence diagram and press F5 to automatically create collaboration diagram.

 : T e l l e r G U I

 : B a n k

A p p

 : C h e c k i n g

A c c o u n t

 : B a n k D B

1 : g e t A p p ()

2 : w i t h d r a w F r o m C h e c k i n g A c c o u n t (s t r i n g , i n t)

3 : c r e a t e (s t r i n g)

4 : g e t A c c o u n t (s t r i n g)

5 : w i t h d r a w (i n t)

6 : r e c o r d W i t h d r a w (s t r i n g , s t r i n g)

7 : d o n e ()

8 : d i sp lay (s t r i ng)

{ e n d - s t a r t < = 1 0 s e c }

11 - Design Operation Specification for withdraw() in CheckingAccount Class

Use Case Name : withdraw
Trigger:withdraw
Input Parameters : nWithdraw : int
Output Return: boolean
Precondition: nWithdraw <= nCurrentBalance
Precondition Exception Raised: exInsuffientFunds
Description/Transformation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < priorCurrentBalance

32

Postcondition Exception: exIncorrectBalance
Basic Scenario/Optimistic Scenario: See withdrawFromCheckingAccount Sequence Diagram
Alternative Scenarios/Pessimistic Scenario: See withdrawFromCheckingAccount Activity Diagram
Business Rules: ValidAccountRule, AdequateBalanceRule

11 - Design Exception Classes: Exception Superclass with Exception(),Exception(string); Exception
Subclasses: exInsufficientFunds with exInsufficientFunds() and exInsuffientFunds(string);
exIncorrectBalance with exIncorrectBalance() and exIncorrectBalance(string).

11 - Design State Diagram for Checking Account Class

ReadyState

LowBalance

Checking

create / BankDB.getAccount(sAcctNum)

deposit / BankDB.recordDeposit(sAcctNum,nDeposit)

done

withdraw / TellerGUI.display

withdraw[LowBalance]

deposit / BankDB.recordDeposit(sAcctNum,nDeposit)

done

[Valid]

[NotValid]withdraw[BalanceOK] /
BankDB.recordWithdraw(sAcctNum,nWithdraw)

Initial

TerminationState

IV - Implementation Models
12 - Design Processing Environment: UNIX, C++, CORBA

13 - Implementation Component Diagram

33

Implementation Files: TellerGUI.exe, BankApp.exe, BankDB.exe

Component Interface Alternatives: 1) BankApp has single interface IBankApp with all operations
exposed
2) BankApp exposes IBankApp, ICheckingAccount, & ISavingAccount Interfaces
3) BankApp exposes IBankApp, IWithdraw, IDeposit, ICheckingAccount, & ISavingAccount

Interfaces

CORBA IDL/C++ needed to describe interfaces

Rose Component Diagram: In Browser Window select Component View; Rename Main to be
Component Diagram; Double-click the diagram name to display the diagram; Place component and
dependency relationships (drag from the client component to the supplier component) on the diagram;
In the Browser drag each class to the approprate component; Select Tools - Check Model; Select File -
Save.

14 - Implementation Deployment Diagram

WindowsPC AppServerUnix DBServerUnix

TCP/IPTCP/IP

Rose Deployment Diagram: In Browser Window select Deployment View; Double-click to display
the diagram; Place nodes and connection relationships on the diagram; Select Tools - Check Model;
Select File - Save.

//Interface for BankApp System Using CORBA

I B a n k A p p

+ g e t A p p () : I B a n k A p p
+ d e p o s i t T o C h e c k i n g A c c o u n t (s A c c t N u m : s t r i n g , n D e p o s i t : i n t) : b o o l e a n

+ d e p o s i t T o S a v i n g s A c c o u n t (s A c c t N u m : s t r i n g , n D e p o s i t : i n t) : b o o l e a n

+ w i t h d r a w F r o m C h e c k i n g A c c o u n t (s A c c t N u m : s t r i n g , n W i t h d r a w : i n t) : b o o l e a n

+ w i t h d r a w F r o m S a v i n g s A c c o u n t (s A c c t N u m : s t r i n g , n W i t h d r a w : i n t) : b o o l e a n

(f r o m B a n k P k g)

//Sample IDL Interface Code

TellerGUI BankApp BankDB

ITellerGUI
IBankApp IBankDB

34

module BankApp {
interface IBankApp {
 exception exInsuffientFunds;
 IBankApp getApp();
 boolean depositToCheckingAccount (in string sAcctNum, in int nDeposit) ;
 boolean depositToSavingAccount (in string sAcctNum, in int nDeposit) ;
 boolean withdrawFromCheckingAccount (in string sAcctNum, in int nWithdraw)raises (exInsuffientFunds);
 boolean withdrawFromSavingAccount (in string sAcctNum, in int nWithdraw) raises (exInsuffientFunds);
};};

//Sample Java Interface Code Using Remote Method Invocation
import java.rmi.*;
package BankApp;
public interface IBankApp extends java.rmi.Remote {
 boolean depositToCheckingAccount (String sAcctNum, int nDeposit) throws java.rmi.RemoteException ;
 boolean depositToSavingAccount (String sAcctNum, int nDeposit) throws java.rmi.RemoteException ;
 boolean withdrawFromCheckingAccount (String sAcctNum, int nWithdraw) throws java.rmi.RemoteException;
 boolean withdrawFromSavingAccount (String sAcctNum, int nWithdraw) throws java.rmi.RemoteException;
}

//Sample Microsoft IDL Interface Code for COM - Simplified
library BankAppLib {
dispinterface IBankApp {
 IBankApp getApp();
 boolean depositToCheckingAccount (BSTR sAcctNum, int nDeposit) ;
 boolean depositToSavingAccount (BSTR sAcctNum, int nDeposit) ;
 boolean withdrawFromCheckingAccount (BSTR sAcctNum, int nWithdraw);
 boolean withdrawFromSavingAccount (BSTR sAcctNum, int nWithdraw);
};
coclass BankApp {
 dispinterface IBankApp;
}; };
//Sample SOAP (Simple Object Access Protocol) SDL (Service Description Language) with XML - Incomplete
<?xml version='1.0'?>
<serviceDescription name='BankApp'
 xmlns='urn:schemas-xmlsoap-org:sdl.2000-01-25'
 xmlns:dt='http://www.w3.org/1999/XMLSchema'
 xmlns:IBankApp='IBankApp'>
<import namespace='IBankApp' location='#IBankApp'/>
 <soap xmlns='urn:schemas-xmlsoap-org:soap-sdl-2000-01-25'>
 <interface name='IBankApp'>
 <requestResponse name='WithdrawFromCheckingAccount'>
 <request ref='IBankApp:WithdrawFromCheckingAccount'/>
 <response ref='IBankApp:WithdrawFromCheckingAccountResponse'/>
 </requestResponse>
 </interface>
 <service>
 <addresses>
 <address uri='http://myserver/IBankApp.asp'/>
 </addresses>
 <implements name='IBankApp'/>
 </service>
 </soap>
 <IBankApp:schema id='IBankApp' targetNamespace='IBankApp' xmlns='http://www.w3.org/1999/XMLSchema'>
 <element name='WithdrawFromCheckingAccount'>
 </element>
 <element name='WithdrawFromCheckingAccountResponse'>
 <type>
 <element name='return' type='dt:boolean'/>
 </type>
 </element>
 </IBankApp:schema>
</serviceDescription>

V - Construction
Coding/Naming Standards; Interface Code - CORBA IDL; C++ Code; CASE Tool Scripts/VBA for custom reports/code
generation

Rose Code Generation - Requires Rose Professional or Enterprise Version. See Help Topic Code Generation. Basic
Steps: 1 - Check Model 2 - Create Components 3 - Map/assign classes to components 4 - Set Code Generation Properties 5
- Select a class, component, or package 6 - Generate code 7 - Examine generated code.

35

Rose Reverse Engineering - Requires Rose Professional or Enterprise Version. See Help Topic Reverse Engineering.
Use the Model Update Tool.

VI - Testing
Total System/Integration Testing - All Components/Subsystems; Component Testing - Each Component
Unit Testing - Each Class. Test Case Specification:

Test Use Case Name:
Use Case Name:
Use Case Scenario Name:
Trigger:
Input Parameters:
Output Return:
Precondition:
Precondition Exception Raised:
Description/Transformation:
Postcondition:
Postcondition Exception:
Comments:

VII - Model and Construct Other Components
TellerGUI Forms; BankDB Tables: tblWithdraw, tblDeposit, tblSavingAccount, tblCheckingAccount

UML Stereotypes, Tagged-values, and Constraints
O-O
Element

<<Sample Stereotype>> {Sample Tagged value -
property}

{Sample
Constraint}

Actor Human user, machine, interacting software system, device
Use Case Use Cases: abstract, concrete, extension, included, parent,

child; use case relationships : communicates, includes,
extends, specializes

Package Façade, framework, stub, subsystem, system, boundary,
controller, entity, process, category, processor group,
service group, use case group
package relationships : access, import

namespace, package

Class Metaclass, powertype, stereotype, utility, process, thread,
implementationClass, type, interface, class, datatype,
boundary, controller, entity, exception, signal, template,
enumeration, transaction

abstract, interface, parameterized, final,
concrete, leaf, root

Operation Constructor, query, update, destructor abstract, class - static, final - const,
synchronized, native, inline, friend,
isQuery, sequential, guarded,
concurrent, isPolymorphic (may be
overridden)

Parameter In - may not be modified, out – may be modified to
communication information to caller, inout – may be
modified, return

Attribute Read only, write only, read write changeable, addOnly, frozen-final –
const, class - static, derived

Relationship Generalization: implementation, subclass, subtype,
implements interface/realizes; extends (inherits);
Association: association, composition aggregation, shared
aggregation; Dependency between classes/objects : bind,
derive, friend, instanceOf, instantiate, powertype, refine,
uses;

final – const, friend, mutable, not
mutable, navigable, not navigable,
ordered, not ordered

Generalization:
complete, incomplete,
overlapping, disjoint;
Association: implicit,
or, changeable,
addOnly, frozen

State Wait state, action state, activity state, sub-state, initial
state, final state, history state, decision, fork, join

enumerated type, class

36

Event Call event, signal event, change event, time event
Action Call, return, send, create, destroy
Object Interface, boundary, controller, entity, exception, signal

event, utility, thread
transient, persistent ; UML Link End:
association, global, local, parameter,
self; Other: automatic, dynamic, static

new, destroyed,
transient, persistent

Message Call, synchronous, asynchronous, balking, timeout,
periodic; Interaction between objects : become, call, copy

UML Request: broadcast, vote

Component Executable, document, file, library, table, dll,
CORBA/Java Component

Node Processor, device, memory, network; Link between nodes:
TCP-IP, RS-232, 10-T Ethernet, USB

Constraint Invariant, metaclass, precondition, postcondition,
powertype

Sample tagged values for all elements: documentation, location, semantics

O-O Goodness Guidelines for All Modeling
Elements

Guidelines may be found in Grady Booch’s Object Solutions - Managing the Object-Oriented Project . C++ coding
guidelines may be found in Scott Meyer’s Effective C++ - 50 Ways to Improve Your Programs and Designs and in Arthur
Riel’s Object-Oriented Design Heuristics .

- Simplest possible - Clear meaningful name
- Complete Specification including stereotype, property, and constraints
- Consistent name and semantics between diagrams
- Supports weak coupling between elements and strong cohesion within an element
- Distribute processing (intelligence) rather than centralize processing (intelligence)
- Supports use of patterns and reusable elements

O-O Element O-O Goodness Guideline
System Has a well-defined layered architecture

Use reusable patterns (architecture, design, idioms)
Actor Represents a role
Use Case Represents a use/function of the system; May have optimistic, normal, and pessimistic scenarios; All concrete use

cases identified; Each use case has an activity diagram showing all paths; Largely independent use case increments
identified;

Package Is the primary element in large systems; Classes in the package are highly cohesive
Class Provides a single abstraction of something in the problem or solution domain

Has a well-defined set of 3 - 5 responsibilities
Is simple, understandable, extensible, and adaptable
Exposes minimum functionality
Is dependent upon as few other classes as possible (weak coupling)
Attributes and operation are cohesive
Has operations for object creation, copy, assignment, equality check, etc

Attribute Has private or protected visibility
Cohesive – supports the basic purpose of the class
Is initialized. Has accessor operations if required

Operation Has appropriate visibility - private, protected, public
Implemented with a small number of lines of code
Has few number of parameters
If complex has preconditions/thrown exceptions and postconditions/thrown exceptions
Subclass preconditions should be equal to or weaker than superclass preconditions
Subclass postconditions should be equal to or stronger than superclass postconditions
Cohesive – supports the basic purpose of the class
Operation may be sequential or concurrent (thread)

Generalization Superclass/subclasses have interface (behavioral) inheritance with polymorphic operations
Polymorhic operations have identical signatures (simplest) or conforming signatures (more complex)
Superclass/subclass levels should not exceed 5 - 6 levels
Superclasses should be abstract - No recursive generalization

37

Realization Implementing class implements all operations specified in the interface; Prefer interfaces to multiple inheritance;
Prefer interfaces to multiple inheritance

Association &
Aggregation-
Composition
Relationships

Has private or protected visibility; Has a role name to be used in coding
Minimum number of relationships for weak coupling
Minimum inverse - 2 way relationships for weak coupling
Class with association has public accessor operations to get/set/modify associated objects - Class with association
does not create, copy, or destroy associated objects
Aggregate (whole) class has no public accessor operations to get/set/modify part objects
Aggregate (whole) class creates, copies, and destroys part objects
Aggregation-composition may have an inverse association but not an inverse aggregation-composition
Favor aggregation-composition over inheritance

State State has a class; Part States with the same transitions into a composite state
Initial and Final States are shown

Transition Each event has an operation in a class or there is a processEvent(Event) operation; Transitions show all possible
combinations of events, conditions, and actions including all paths in an activity diagram.

Object Object is an instance of a class; Object is sequential or concurrent (active object) with wait semantics
Message Message invokes an operation defined a class

Message may be sequential call or concurrent (synchronous, asynchronous, balking, timeout)
Component Exports one or more interfaces (set of operations)
Node Represents a physical processor, device, or other hardware; Provides a crisp abstraction of something drawn from

the vocabulary of the hardware; Directly deploys a set of components that reside on the node; Exposes the
minimum attributes and operations that are relevant; Is connected to other nodes that reflects the topology of the
system

All Elements Simplest possible - Clear meaningful name
Complete Specification including Stereotype, tagged value - property, and constraints
Consistent name and semantics between diagrams
Supports weak coupling between elements and strong cohesion within an element
Distribute processing (intelligence) rather centralize processing (intelligence)
Supports use of patterns and reusable elements

Requirements Model Checklist
Category Check Comment
Project Plan Documents the development project in terms of cost/schedule/performance,

Major risks/workarounds,
QA factors (reliability, correctness, extensibility, etc),
Reuse plan (patterns, components, classes, operations/utilities),
Documentation plan (user manual, help system, tutorials),
Staffing for overall project (project manager, architect, client/user,
methodologist/toolsmith, Business/System Analyst, developer/programmer, tester,
reusable component/class librarian, technical documentor),
Staff for 10 - 12 member development teams,
O-O roadmap (diagrams, specifications, code),
tools (requirements tracing, CASE, compiler, code analyzers, testing),
policies (standard library, threads, exceptions, etc),
training/help desk,
sample project documentation provided

Requirements
Statement

Sufficient to identify system use cases, system operations and the system boundary in
terms of use cases, system in messages, system out messages, system input objects/data,
and system output objects/data

UML Diagram
and
Specification
Checks

Use case diagram shows use cases for major system operations in Requirements
Statement; System sequence diagram exists for each use case scenario for optimistic,
normal, pessimistic, and other circumstances

System collaboration diagram shows the system, actors, system in messages, system out
messages, system input objects/data, and system output objects/data

Use case specification show preconditions/thrown exceptions, transformation, and
postconditions

38

Activity diagram for each use case shows all scenarios/paths for the use case
UML Element
Checks

System - Has a well-defined layered architecture; Use reusable patterns (architecture, design,
idioms)
Actor - Represents a role
Use Case - Represents a use/function of the system; May have optimistic, normal, and pessimistic
scenarios; All concrete use cases identified; Each use case has an activity diagram showing all
paths; Largely independent use case increments identified;

CASE tool
check

Shows no major diagram/specification inconsistencies

Walkthrough
(role play) -
Optional

Each use case scenario with a person assigned to each actor and the system

Documentation
Review

All required documents are up to date

Analysis Model Checklist
Category Check Comment
UML Diagrams
and
Specifications

- Class Diagram - Each class has 2 or more attributes and 2 or more operations. Classes
with a common purpose are grouped together in a package
- Sequence diagram showing objects and messages for each use case scenario. Each
message invokes an operation shown in a class on the class diagram. Each object is an
instance of a class on the class diagrams
- Statechart shows state based behavior for a class on the class diagram. Each event
invokes an operation shown in a class on the class diagram. Each event is shown as a
message on the sequence diagram
- Operation specification for complex operations show preconditions/thrown exceptions,
transformation, and postconditions

UML Element
Checks

Package - Is the primary element in large systems; Classes in the package are highly cohesive
Class - Provides a single abstraction of something in the problem or solution domain
Has a well-defined set of 3 - 5 responsibilities
Is simple, understandable, extensible, and adaptable
Exposes minimum functionality
Is dependent upon as few other classes as possible (weak coupling)
Attributes and operation are cohesive
Has operations for object creation, copy, assignment, equality check, etc
Attribute - Has private or protected visibility
Cohesive – supports the basic purpose of the class
Is initialized. Has accessor operations if required
Operation - Has appropriate visibility - private, protected, public
Implemented with a small number of lines of code
Has few number of parameters
If complex has preconditions/thrown exceptions and postconditions/thrown exceptions
Subclass preconditions should be equal to or weaker than superclass preconditions
Subclass postconditions should be equal to or stronger than superclass postconditions
Cohesive – supports the basic purpose of the class
Operation may be sequential or concurrent (thread)
Generalization - Superclass/subclasses have interface (behavioral) inheritance with polymorphic
operations
Polymorphic operations have identical signatures (simplest) or conforming signatures (more
complex)
Superclass/subclass levels should not exceed 5 - 6 levels
Superclasses should be abstract - No recursive generalization
Realization - implementing class implements all operations specified in the interface; Prefer
interfaces to multiple inheritance
Association & Aggregation-Composition Relationships
Has private or protected visibility; Has a role name to be used in coding
Minimum number of relationships for weak coupling
Minimum inverse - 2 way relationships for weak coupling

39

Class with association has public accessor operations to get/set/modify associated objects - Class
with association does not create, copy, or destroy associated objects
Aggregate (whole) class has no public accessor operations to get/set/modify part objects
Aggregate (whole) class creates, copies, and destroys part objects
Aggregation-composition may have an inverse association but not an inverse aggregation-
composition
Favor aggregation-composition over inheritance
State - State has a class; Part States with the same transitions into a composite state
Initial and Final States are shown
Transition - Each event has an operation in a class or there is a processEvent(Event) operation;
Transitions show all possible combinations of events, conditions, and actions including all paths in
an activity diagram.
Object - Object is an instance of a class; Object is sequential or concurrent (active object) with wait
semantics
Message - Message invokes an operation defined a class
Message may be sequential call or concurrent (synchronous, asynchronous, balking, timeout)

Walkthrough
(role play) -
optional

Check each use case scenario with a person assigned to each object

CASE tool
check

Check shows no major diagram/specification inconsistencies

Documentation
Review

All required documents are up to date

Design Model Checklist
Category Check Comment
UML Diagrams and
Specifications

All class/object level analysis models (diagrams and specifications) are updated
for the H/W and S/W Configuration List and are sufficiently detailed to generate
code or manually create code

 - See Analysis Model Checks
UML Elements See Analysis Model Checks

Walkthrough (role play) -
optional

Check each use case scenario with a person assigned to each object

CASE tool check Check shows no major diagram/specification inconsistencies
Documentation Review All required documents are up to date

Implementation Model Checklist - Includes Code
Category Check Comment
UML Diagrams and
Specifications

H/W and S/W Configuration List sufficiently shows the required components to
implement the classes, objects, and other elements in the problem domain,
graphic user interfaces/external interfaces, persistence, and distribution
- Component Diagram shows all system executable and other executable
components that a user requires
- Deployment Diagram shows the physical elements that has the system and other
executable components
- All system level analysis models (diagrams and specifications) are updated for
the H/W and S/W Configuration List

UML Elements Component - Exports one or more interfaces (set of operations)
Node - Represents a physical processor, device, or other hardware; Provides a crisp
abstraction of something drawn from the vocabulary of the hardware; Directly deploys a
set of components that reside on the node; Exposes the minimum attributes and operations

40

that are relevant; Is connected to other nodes that reflects the topology of the system
CASE tool check Shows no major diagram/specification inconsistencies
CASE tool scripts Written to generate code for the coding standard
Generated code Compiles without errors or major warnings
Reverse Engineering
Diagrams

Class diagrams accurately reflect the source code

Code Inspection/Code
Analyzer

Check that production execution code implements the required use case scenarios
and meets Coding Standard guidelines

Build/Release Code
Inspection

Tests system operations with reconditions/transformations/postconditions/thrown
exceptions, system in messages, system out messages, system input objects/data,
system states, etc for all use cases.

Documentation Review All required documents are up to date

Test Model Checklist
Category Check Comment
Test Plan Test Plan up to date
UML Diagrams and
Specifications

N/A

UML Elements N/A
CASE tool check N/A
Test Cases All unit tests complete

All integration tests complete
All system tests complete
Other planned tests complete: benchmark, configuration, function, installation, integrity,
load, performance, stress
All acceptance tests complete

Documentation Review All required documents are up to date

Code Inspection Checklist
 (adapted from PSE 2000 http://www.iam.unibe.ch/~scg/Archive/Lectures/PSE2000/WWW/)

This checklist is aimed at reviews of the maintainability aspect of source code. It is geared towards Java code but can
probably be adapted easily for other languages.

This checklist is to be used in conjunction with reverse engineered class diagrams . Reverse engineering is the process to
use a CASE tool to read source code and to create the class diagram or other diagram from the source code.

The following quote details how the checklist is to be used:

To do the inspection, go through the code line by line, attempting to fully understand what you are reading. At
each line or block of code, skim through the inspection checklist, looking for questions which apply. For each
applicable question, find whether the answer is "yes." A yes answer means a probable defect. Write it down. You
will notice that some of the questions are very low-level and concern themselves with syntactical details, while
others are high-level and require an understanding of what a block of code does. Be prepared to change your
mental focus. See http://www.ics.hawaii.edu/~johnson/FTR/Bib/Baldwin92.html.

The Code Inspection Protocol can be used to record the defects that are found.
The defect types listed here have been assigned a severity level. The meaning of this levels are the following:

Level Meaning

Severe (S)
This type of defect strongly hinders maintenance and evolution of the software system by introducing
inflexible structures.

41

Dangerous
(D)

This type of defect heightens the likeliness that maintenance programmers unwillingly introduce
errors when changing the system.

Impedimenta
l (I) This type of defect makes the code harder to read and understand.

As cosmetic defects we consider things that can be improved automatically, e.g. by a pretty printer. These defects are thus
not taken into account and also not in the checklist.

The Checklist
The checklist is grouped into the following sections:
· Comments
· Names
· Variable Names
· Method Names
· Aliases
· Coding
· Design
· Object-oriented Design
· Code Layout
· Code Duplication

Defect Type Defect Detecting Question Examples
Severity Com

ment
Comments

1.
Do the comments fail to accurately explain
what the code does?

I

2. Are the comments superfluous?
The classic bad guy:
 i++; /* add 1 to i */

I

3.

Are variables (global, local and instance
variables) uncommented?
Example facts to comment on:
Usage
Units of measure
Bounds, Legal values
Implied/displayed number of decimal
points
Display format
Data entry rules (e.g. must enter)

I

4.
Does a method definition comment fail to
document which of its parameters the
method is going to change?

D

Names

5.
Are acronyms used instead of spelling
names out?

cntBkr instead of centralBanker I

6.
Are different spellings used for the same
word?

colors, colours, and kulerz I

7.
Are different names used for same-valued
variables or methods of the same
functionality?

display, show, present used for
the same action

I

8.
Are variable names used that have a
typographically similar spelling?

Easily misinterpreted names: ilI1|
and oO08
Easily confused: parselnt and
parseInt

D

9.
Are names built using abstract, cloudy
words?

Examples of unclear vocabulary:
it, everything, data, handle, stuff
do, routine, perform
PerformDataFunction, DoIt,
HandleStuff

I

42

10.

Are naming conventions ignored:
Do class names start with lower case
letters?
Do variable names start with upper case
letters?
Do names of constants contain lower case
letters?

I

11.

Does capitalization of internal words
change in variable names?
(When variable names are constructed by
gluing words directly together, e.g.
singingInTheRain, all but the first
words are called internal words. They are
distinguished by capitalizing the initial
letter)

inputFileName := "foo.in"
outputFilename := "foo.out"

I

Method Names

12.
Does the method name fail to mention the
side effects the method effectuates?

A method named isValid(x) as a
side effect converts x to binary and
stores the result in a database.

D

13.
Is the class name used for methods other
than constructors?
(Possible in Java!)

I

Variable Names

14.
Do labels of fields on a GUI have different
names from the variables that are
displayed/entered there?

the field labeled "Postal Code" feeds
the associated variable "zip"

D

15.
Are the loop variable names i and j used
for conceptually different (non-integer)
values?

i := 3.1415;
j := "HelloDolly";

D

Aliases

16.
Are constant parameters literally inserted
into the code?

100 instead of MAXBUFFER
open("/home/user/project/l
og.txt") instead of
open(logFilename)

D-S

17.
Are constant names used interchangeably
with the literal value?

while(items <= MAXBUFFER) {
 if(items = 100) { ...

D

18.
Are dependencies between constant
parameters hidden?

 UPPERBOUND := 100;
 LOWERBOUND := 50;
instead of
 UPPERBOUND := 100;
 LOWERBOUND :=
UPPERBOUND/2;

I

Coding

19.
Are temporary variables used for two
unrelated purposes?

int i;
for(i=0;i<n;i++) { ... }
...
i := euclidDistance(v,w);

D

20.
Are variables defined at scopes that are
wider than they could be?

Instance variables defined instead of
local variables
Global variables defined instead of
local variables

D

Design

21.

For data that can be converted into
different formats: Is one format chose to
do all computations in and do the
conversions only right after input or before
output?

Domains which have frequently
converted data:
Currencies, temperature, length, weight

S

43

Object-oriented
Design

22. Is the encapsulation principle violated?

Instance variables are defined public
Implementation revealing methods
appear in the public interface of the
class

S

23. Is polymorphism simulated?

Type tests in conjunction with case
statements:
switch(p.phoneType()) {
 case POTSPhone: ... break;
 case ISDNPhone: ... break;
 default: ...
}

S

24.
Is instance data stored in class (static)
variables?

This could be the case when the author
implicitly assumed that the class will
only have one instance at runtime.

S

25.

Are multiple conceptually identical
methods used where an enumerated
constants as parameter would suffice to
have only one method?

Having there methods
setLeftAlignment
setRightAlignment
setCenterAlignment
instead of writing only
setAlignment(int
alignment)
where alignment can have the values
left, right, center

S

Code Layout

26.
Is more than one statement written per
line?

This practice can save temporary
variables but makes the code harder to
read

I

27.
Are if/else blocks missing the enclosing {
} if it is not syntactically necessary?

This can lead to deceptive layouts:
if (a)
 if (b) x = y;
else x = z;

D

28.
Is the nesting level of () exceeding 5?
(The number 5 is arbitrary, readability can
already be lost at lower levels)

D

29.

Is the nesting level of { } blocks exceeding
7?
(The number 7 is arbitrary, readability can
already be lost at lower levels)

D

30.
Are methods longer than 200 lines?
(The number 200 is arbitrary, the overview
can already be lost at lower line counts)

FAMOOS anecdotical evidence: while
investigating a real industrial software
system, a method was found which was
5000 lines long and was named
createButton().

D

Code Duplication

31. Is code duplicated?

parts of methods
entire methods
parts of classes (missing
polymorphism)

S

This checklist is partly based on How To Write Unmaintainable Code from http://mindprod.com/.

UML Glossary

44

This glossary defines the terms that are used to describe the Unified Modeling Language (UML) and the Meta Object
Facility (MOF). In addition to UML and MOF specific terminology, it includes related terms from OMG standards and
object-oriented analysis and design methods, as well as the domain of object repositories and meta data managers. Glossary
entries are organized alphabetically and MOF specific entries are identified as ‘[MOF]’.

Notation Conventions
The entries in the glossary usually begin with a lowercase letter. An initial uppercase letter is used when a word is usually
capitalized in standard practice. Acronyms are all capitalized, unless they traditionally appear in all lowercase. When one
or more words in a multi-word term is enclosed in brackets, it indicates that those words are optional when referring to the
term. For example, use case [class] may be referred to as simply use case.

The following conventions are used in this glossary:

• Contrast: <term> Refers to a term that has an opposed or substantively different meaning.

• See: <term> Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term> Indicates that the term has the same meaning as another term, which is referenced.

• Acronym: <term> Indicates that the term is an acronym. The reader is usually referred to the spelled-out term for the
definition, unless the spelled-out term is rarely used.

abstract class A class that cannot be directly instantiated. Contrast: concrete class .
abstraction The essential characteristics of an entity that distinguish it from all other kinds of entities. An abstraction defines a
boundary relative to the perspective of the viewer.
action The specification of an executable statement that forms an abstraction of a computational procedure. An action typically results
in a change in the state of the system, and can be realized by sending a message to an object or modifying a link or a value of an attribute.
action sequence An expression that resolves to a sequence of actions.
action state A state that represents the execution of an atomic action, typically the invocation of an operation.
activation The execution of an action.
active class A class whose instances are active objects. See: active object.
active object An object that owns a thread and can initiate control activity. An instance of active class. See: active class, thread.
activity graph A special case of a state machine that is used to model processes involving one or more classifiers. Contrast: statechart
diagram.
actor [class] A coherent set of roles that users of use cases play when interacting with these use cases. An actor has one role for each
use case with which it communicates.
actual parameter Synonym: argument.
aggregate [class] A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.
aggregation A special form of association that specifies a whole-part relationship between the aggregate (whole) and a component part.
See: composition.
analysis The part of the software development process whose primary purpose is to formulate a model of the problem domain. Analysis
focuses what to do, design focuses on how to do it. Contrast: design.
analysis time Refers to something that occurs during an analysis phase of the software development process. See: design time,
modeling time.
architecture The organizational structure and associated behavior of a system. An architecture can be recursively decomposed into
parts that interact through interfaces, relationships that connect parts, and constraints for assembling parts. Parts that interact through
interfaces include classes, components and subsystems.
argument A binding for a parameter that resolves to a run-time instance. Synonym: actual parameter. Contrast: parameter.
artifact A piece of information that is used or produced by a software development process. An artifact can be a model, a description, or
software. Synonym: product.
association The semantic relationship between two or more classifiers that specifies connections among their instances.
association class A model element that has both association and class properties. An association class can be seen as an association
that also has class properties, or as a class that also has association properties.
association end The endpoint of an association, which connects the association to a classifier.
attribute A feature within a classifier that describes a range of values that instances of the classifier may hold.
behavior The observable effects of an operation or event, including its results.
behavioral feature A dynamic feature of a model element, such as an operation or method.
behavioral model aspect A model aspect that emphasizes the behavior of the instances in a system, including their methods,
collaborations, and state histories.
binary association An association between two classes. A special case of an n-ary association.
binding The creation of a model element from a template by supplying arguments for the parameters of the template.
boolean An enumeration whose values are true and false.
boolean expression An expression that evaluates to a boolean value.
cardinality The number of elements in a set. Contrast: multiplicity.

45

child In a generalization relationship, the specialization of another element, the parent. See: subclass, subtype. Contrast: parent.
call An action state that invokes an operation on a classifier.
class A description of a set of objects that share the same attributes, operations, methods, relationships, and semantics. A class may use
a set of interfaces to specify collections of operations it provides to its environment. See: interface.
classifier A mechanism that describes behavioral and structural features. Classifiers include interfaces, classes, datatypes, and
components.
classification The assignment of an object to a classifier. See dynamic classification, multiple classification and static classification.
class diagram A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their contents and
relationships.
client A classifier that requests a service from another classifier. Contrast: supplier.
collaboration The specification of how an operation or classifier, such as a use case, is realized by a set of classifiers and associations
playing specific roles used in a specific way. The collaboration defines an interaction. See: interaction.
collaboration diagram A diagram that shows interactions organized around the structure of a model, using either classifiers and
associations or instances and links. Unlike a sequence diagram, a collaboration diagram shows the relationships among the instances.
Sequence diagrams and collaboration diagrams express similar information, but show it in different ways. See: sequence diagram.
comment An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.
compile time Refers to something that occurs during the compilation of a software module. See: modeling time, run time.
component A physical, replaceable part of a system that packages implementation and provides the realization of a set of interfaces. A
component represents a physical piece of implementation of a system, including software code (source, binary or executable) or
equivalents such as scripts or command files.
component diagram A diagram that shows the organizations and dependencies among components.
composite [class] A class that is related to one or more classes by a composition relationship. See: composition.
composite aggregation Synonym: composition.
composite state A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates. See: substate.
composition A form of aggregation association with strong ownership and coincident lifetime as part of the whole. Parts with non-
fixed multiplicity may be created after the composite itself, but once created they live and die with it (i.e., they share lifetimes). Such
parts can also be explicitly removed before the death of the composite. Composition may be recursive. Synonym: composite aggregation.
concrete class A class that can be directly instantiated. Contrast: abstract class.
concurrency The occurrence of two or more activities during the same time interval. Concurrency can be achieved by interleaving or
simultaneously executing two or more threads. See: thread.
concurrent substate A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.
constraint A semantic condition or restriction. Certain constraints are predefined in the UML, others may be user defined. Constraints
are one of three extensibility mechanisms in UML. See: tagged value, stereotype.
container 1. An instance that exists to contain other instances, and that provides operations to access or iterate over its contents. (for
example, arrays, lists, sets). 2. A component that exists to contain other components.
containment hierarchy A namespace hierarchy consisting of model elements, and the containment relationships that exist between
them. A containment hierarchy forms a graph.
context A view of a set of related modeling elements for a particular purpose, such as specifying an operation.
datatype A descriptor of a set of values that lack identity and whose operations do not have side effects. Datatypes include primitive
pre-defined types and user-definable types. Pre-defined types include numbers, string and time. User-definable types include
enumerations.
defining model [MOF] The model on which a repository is based. Any number of repositories can have the same defining model.
delegation The ability of an object to issue a message to another object in response to a message. Delegation can be used as an
alternative to inheritance. Contrast: inheritance.
dependency A relationship between two modeling elements, in which a change to one modeling element (the independent element)
will affect the other modeling element (the dependent element).
deployment diagram A diagram that shows the configuration of run-time processing nodes and the components, processes, and
objects that live on them. Components represent run-time manifestations of code units. See: component diagrams .
derived element A model element that can be computed from another element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic information.
design The part of the software development process whose primary purpose is to decide how the system will be implemented. During
design strategic and tactical decisions are made to meet the required functional and quality requirements of a system.
design time Refers to something that occurs during a design phase of the software development process. See: modeling time. Contrast:
analysis time.
development process A set of partially ordered steps performed for a given purpose during software development, such as
constructing models or implementing models.
diagram A graphical presentation of a collection of model elements, most often rendered as a connected graph of arcs (relationships)
and vertices (other model elements). UML supports the following diagrams: class diagram, object diagram, use case diagram, sequence
diagram, collaboration diagram, state diagram, activity diagram, component diagram, and deployment diagram.
disjoint substate A substate that cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.
distribution unit A set of objects or components that are allocated to a process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.
domain An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in that area.

46

dynamic classification A semantic variation of generalization in which an object may change its classifier. Contrast: static
classification.
element An atomic constituent of a model.
entry action An action executed upon entering a state in a state machine regardless of the transition taken to reach that state.
enumeration A list of named values used as the range of a particular attribute type. For example, RGBColor = {red, green, blue}.
Boolean is a predefined enumeration with values from the set {false, true}.
event The specification of a significant occurrence that has a location in time and space. In the context of state diagrams, an event is an
occurrence that can trigger a transition.
exit action An action executed upon exiting a state in a state machine regardless of the transition taken to exit that state.
export In the context of packages, to make an element visible outside its enclosing namespace. See: visibility. Contrast: export [OMA],
import.
expression A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)” evaluates to a value of type
number.
extend A relationship from an extension use case to a base use case, specifying how the behavior defined for the extension use case
augments (subject to conditions specified in the extension) the behavior defined for the base use case. The behavior is inserted at the
location defined by the extension point in the base use case. The base use case does not depend on performing the behavior of the
extension use case. See extension point, include.
facade A stereotyped package containing only references to model elements owned by another package. It is used to provide a ‘public
view’ of some of the contents of a package.
feature A property, like operation or attribute, which is encapsulated within a classifier, such as an interface, a class, or a datatype.
final state A special kind of state signifying that the enclosing composite state or the entire state machine is completed.
fire To execute a state transition. See: transition.
focus of control A symbol on a sequence diagram that shows the period of time during which an object is performing an action, either
directly or through a subordinate procedure.
formal parameter Synonym: parameter.
framework 1. A stereotyped package consisting mainly of patterns. See: pattern. 2. An architectural pattern that provides an extensible
template for applications within a specific domain.
generalizable element A model element that may participate in a generalization relationship. See: generalization.
generalization A taxonomic relationship between a more general element and a more specific element. The more specific element is
fully consistent with the more general element and contains additional information. An instance of the more specific element may be used
where the more general element is allowed. See: inheritance.
guard condition A condition that must be satisfied in order to enable an associated transition to fire.
implementation A definition of how something is constructed or computed. For example, a class is an implementation of a type, a
method is an implementation of an operation.
Implementation inheritance The inheritance of the implementation of a more specific element. Includes inheritance of the interface.
Contrast: interface inheritance.
import In the context of packages, a dependency that shows the packages whose classes may be referenced within a given package
(including packages recursively embedded within it). Contrast: export.
include A relationship from a base use case to an inclusion use case, specifying how the behavior for the base use case contains the
behavior of the inclusion use case. The behavior is included at the location which is defined in the base use case. The base use case
depends on performing the behavior of the inclusion use case, but not on its structure (i.e., attributes or operations). See extend.
inheritance The mechanism by which more specific elements incorporate structure and behavior of more general elements related by
behavior. See generalization.
instance An entity to which a set of operations can be applied and which has a state that stores the effects of the operations. See: object.
interaction A specification of how stimuli are sent between instances to perform a specific task. The interaction is defined in the
context of a collaboration. See collaboration.
interaction diagram A generic term that applies to several types of diagrams that emphasize object interactions. These include
collaboration diagrams and sequence diagrams.
interface A named set of operations that characterize the behavior of an element.
interface inheritance The inheritance of the interface of a more specific element. Does not include inheritance of the implementation.
Contrast: implementation inheritance.
internal transition A transition signifying a response to an event without changing the state of an object.
layer The organization of classifiers or packages at the same level of abstraction. A layer represents a horizontal slice through an
architecture, whereas a partition represents a vertical slice. Contrast: partition.
link A semantic connection among a tuple of objects. An instance of an association. See: association.
link end An instance of an association end. See: association end.
message A specification of the conveyance of information from one instance to another, with the expectation that activity will ensue. A
message may specify the raising of a signal or the call of an operation.
metaclass A class whose instances are classes. Metaclasses are typically used to construct metamodels.
meta-metamodel A model that defines the language for expressing a metamodel. The relationship between a meta-metamodel and a
metamodel is analogous to the relationship between a metamodel and a model.
metamodel A model that defines the language for expressing a model.
metaobject A generic term for all metaentities in a metamodeling language. For example, metatypes, metaclasses, metaattributes, and
metaassociations.
method The implementation of an operation. It specifies the algorithm or procedure associated with an operation.

47

Model [MOF] An abstraction of a physical system, with a certain purpose..See: physical system. Usage note: In the context of the MOF
specification, which describes a meta-metamodel, for brevity the meta-metamodel is frequently to as simply the model.
model aspect A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural model
aspect emphasizes the structural qualities of the metamodel.
model elaboration The process of generating a repository type from a published model. Includes the generation of interfaces and
implementations which allows repositories to be instantiated and populated based on, and in compliance with, the model elaborated.
model element [MOF] An element that is an abstraction drawn from the system being modeled. Contrast: view element. In the MOF
specification model elements are considered to be metaobjects.
modeling time Refers to something that occurs during a modeling phase of the software development process. It includes analysis time
and design time. Usage note: When discussing object systems, it is often important to distinguish between modeling-time and run-time
concerns. See: analysis time, design time. Contrast: run time.
module A software unit of storage and manipulation. Modules include source code modules, binary code modules, and executable code
modules. See: component.
multiple classification A semantic variation of generalization in which an object may belong directly to more than one classifier. See:
static classification, dynamic classification.
multiple inheritance A semantic variation of generalization in which a type may have more than one supertype. Contrast: single
inheritance.
multiplicity A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifications may be given for
roles within associations, parts within composites, repetitions, and other purposes. Essentially a multiplicity is a (possibly infinite) subset
of the non-negative integers. Contrast: cardinality.
multi-valued [MOF] A model element with multiplicity defined whose Multiplicity Type:: upper attribute is set to a number greater
than one. The term multi-valued does not pertain to the number of values held by an attribute, parameter, etc. at any point in time.
Contrast: single-valued.
n-ary association An association among three or more classes. Each instance of the association is an n-tuple of values from the
respective classes. Contrast: binary association.
name A string used to identify a model element.
namespace A part of the model in which the names may be defined and used. Within a namespace, each name has a unique meaning.
See: name.
node A node is classifier that represents a run-time computational resource, which generally has at least a memory and often processing
capability. Run-time objects and components may reside on nodes.
object An entity with a well-defined boundary and identity that encapsulates state and behavior. State is represented by attributes and
relationships, behavior is represented by operations, methods, and state machines. An object is an instance of a class. See: class, instance.
object diagram A diagram that encompasses objects and their relationships at a point in time. An object diagram may be considered a
special case of a class diagram or a collaboration diagram. See: class diagram, collaboration diagram.
object flow state A state in an activity graph that represents the passing of an object from the output of actions in one state to the input
of actions in another state.
object lifeline A line in a sequence diagram that represents the existence of an object over a period of time. See: sequence diagram.
operation A service that can be requested from an object to effect behavior. An operation has a signature, which may restrict the actual
parameters that are possible.
package A general purpose mechanism for organizing elements into groups. Packages may be nested within other packages.
parameter The specification of a variable that can be changed, passed, or returned. A parameter may include a name, type, and
direction. Parameters are used for operations, messages, and events. Synonyms: formal parameter. Contrast: argument.
parameterized element The descriptor for a class with one or more unbound parameters. Synonym: template.
parent In a generalization relationship, the generalization of another element, the child. See: subclass, subtype. Contrast: child.
participate The connection of a model element to a relationship or to a reified relationship. For example, a class participates in an
association, an actor participates in a use case.
partition 1. activity graphs: A portion of an activity graphs that organizes the responsibilities for actions. See: swimlane. 2. architecture:
A set of related classifiers or packages at the same level of abstraction or across layers in a layered architecture. A partition represents a
vertical slice through an architecture, whereas a layer represents a horizontal slice. Contrast: layer.
pattern A template collaboration.
persistent object An object that exists after the process or thread that created it has ceased to exist.
postcondition A constraint that must be true at the completion of an operation.
precondition A constraint that must be true when an operation is invoked.
primitive type A pre-defined basic datatype without any substructure, such as an integer or a string.
process 1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which includes heavyweight and
lightweight processes. If necessary, an implementation distinction can be made using stereotypes. 2. A software development process—
the steps and guidelines by which to develop a system. 3. To execute an algorithm or otherwise handle something dynamically.
projection A mapping from a set to a subset of it.
property A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are predefined in
the UML; others may be user defined. See: tagged value.
pseudo-state A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states include initial and
history vertices.
physical system 1. The subject of a model. 2. A collection of connected physical units, which can include software, hardware and
people, that are organized to accomplish a specific purpose. A physical system can be described by one or more models, possibly from
different viewpoints. Contrast: system.

48

published model [MOF] A model which has been frozen, and becomes available for instantiating repositories and for the support in
defining other models. A frozen model’s model elements cannot be changed.
qualifier An association attribute or tuple of attributes whose values partition the set of objects related to an object across an association.
realization A relationship between classifiers, in which one classifier specifies a contract that another classifier guarantees to carry out.
receive [a message] The handling of a stimulus passed from a sender instance. See: sender, receiver.
receiver [object] The object handling a stimulus passed from a sender object. Contrast: sender.
receive signal event - a signal (asynchronous stimulus) that is handled by the receiver entity.
reception A declaration that a classifier is prepared to react to the receipt of a signal.
reference 1. A denotation of a model element. 2. A named slot within a classifier that facilitates navigation to other classifiers.
Synonym: pointer.
refinement A relationship that represents a fuller specification of something that has already been specified at a certain level of detail.
For example, a design class is a refinement of an analysis class.
relationship A semantic connection among model elements. Examples of relationships include associations and generalizations.
repository A facility for storing object models, interfaces, and implementations.
requirement A desired feature, property, or behavior of a system.
responsibility A contract or obligation of a classifier.
reuse The use of a pre-existing artifact.
role The named specific behavior of an entity participating in a particular context. A role may be static (e.g., an association end) or
dynamic (e.g., a collaboration role).
run time The period of time during which a computer program executes. Contrast: modeling time.
scenario A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an interaction or the execution of
a use case instance. See: interaction.
schema [MOF] In the context of the MOF, a schema is analogous to a package which is a container of model elements. Schema
corresponds to an MOF package. Contrast: metamodel, package.
semantic variation point A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.
send [a message] The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.
send signal event is a signal (asynchronous stimulus) that is created by a sender entity and sent to a receiver entity.
sender [object] The object passing a stimulus to a receiver object. Contrast: receiver.
sequence diagram A diagram that shows object interactions arranged in time sequence. In particular, it shows the objects
participating in the interaction and the sequence of messages exchanged. Unlike a collaboration diagram, a sequence diagram includes
time sequences but does not include object relationships. A sequence diagram can exist in a generic form (describes all possible
scenarios) and in an instance form (describes one actual scenario). Sequence diagrams and collaboration diagrams express similar
information, but show it in different ways. See: collaboration diagram.
signal The specification of an asynchronous stimulus communicated between instances. Signals may have parameters.
signature The name and parameters of a behavioral feature. A signature may include an optional returned parameter.
single inheritance A semantic variation of generalization in which a type may have only one supertype. Synonym: multiple
inheritance [OMA]. Contrast: multiple inheritance.
single valued [MOF] A model element with multiplicity defined is single valued when its Multiplicity Type:: upper attribute is set to
one. The term single-valued does not pertain to the number of values held by an attribute, parameter, etc., at any point in time, since a
single-valued attribute (for instance, with a multiplicity lower bound of zero) may have no value. Contrast: multi-valued.
specification A declarative description of what something is or does. Contrast: implementation.
state A condition or situation during the life of an object during which it satisfies some condition, performs some activity, or waits for
some event. Contrast: state [OMA].
statechart diagram A diagram that shows a state machine. See: state machine.
state machine A behavior that specifies the sequences of states that an object or an interaction goes through during its life in response
to events, together with its responses and actions.
static classification A semantic variation of generalization in which an object may not change classifier. Contrast: dynamic
classification.
stereotype A new type of modeling element that extends the semantics of the metamodel. Stereotypes must be based on certain existing
types or classes in the metamodel. Stereotypes may extend the semantics, but not the structure of pre-existing types and classes. Certain
stereotypes are predefined in the UML, others may be user defined. Stereotypes are one of three extensibility mechanisms in UML. See:
constraint, tagged value.
stimulus The passing of information from one instance to another, such as raising a signal or invoking an operation. The receipt of a
signal is normally considered an event. See: message.
string A sequence of text characters. The details of string representation depend on implementation, and may include character sets that
support international characters and graphics.
structural feature A static feature of a model element, such as an attribute.
structural model aspect A model aspect that emphasizes the structure of the objects in a system, including their types, classes,
relationships, attributes, and operations.
subactivity state A state in an activity graph that represents the execution of a non-atomic sequence of steps that has some duration.
subclass In a generalization relationship, the specialization of another class; the superclass. See: generalization. Contrast: superclass .
submachine state A state in a state machine which is equivalent to a composite state but its contents is described by another state
machine.
substate A state that is part of a composite state. See: concurrent state, disjoint state.

49

subpackage A package that is contained in another package.
subsystem A grouping of model elements that represents a behavioral unit in a physical system. A subsystem offers interfaces and has
operations. In addition, the model elements of a subsystem can be partitioned into specification and realization elements. See package.
See: physical system.
subtype In a generalization relationship, the specialization of another type; the supertype. See: generalization. Contrast: supertype.
superclass In a generalization relationship, the generalization of another class; the subclass. See: generalization. Contrast: subclass .
supertype In a generalization relationship, the generalization of another type; the subtype. See: generalization. Contrast: subtype.
supplier A classifier that provides services that can be invoked by others. Contrast: client.
swimlane A partition on a activity diagram for organizing the responsibilities for actions. Swimlanes typically correspond to
organizational units in a business model. See: partition.
synch state A vertex in a state machine used for synchronizing the concurrent regions of a state machine.
system A top-level subsystem in a model. Contrast: physical system.
tagged value The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as the tag. Certain tags
are predefined in the UML; others may be user defined. Tagged values are one of three extensibility mechanisms in UML. See:
constraint, stereotype.
template Synonym: parameterized element.
thread [of control] A single path of execution through a program, a dynamic model, or some other representation of control flow.
Also, a stereotype for the implementation of an active object as lightweight process. See process .
time event An event that denotes the time elapsed since the current state was entered. See: event.
time expression An expression that resolves to an absolute or relative value of time.
timing mark A denotation for the time at which an event or message occurs. Timing marks may be used in constraints.
top level A stereotype of package denoting the top-most package in a containment hierarchy. The topLevel stereotype defines the outer
limit for looking up names, as namespaces “see” outwards. For example, TopLevel subsystem represents the top of the subsystem
containment hierarchy.
trace A dependency that indicates a historical or process relationship between two elements that represent the same concept without
specific rules for deriving one from the other.
transient object An object that exists only during the execution of the process or thread that created it.
transition A relationship between two states indicating that an object in the first state will perform certain specified actions and enter
the second state when a specified event occurs and specified conditions are satisfied. On such a change of state, the transition is said to
fire.
type A stereotype of class that is used to specify a domain of instances (objects) together with the operations applicable to the objects. A
type may not contain any methods. See: class, instance. Contrast: interface.
type expression An expression that evaluates to a reference to one or more types.
uninterpreted A placeholder for a type or types whose implementation is not specified by the UML. Every uninterpreted value has a
corresponding string representation. See: any [CORBA].
usage A dependency in which one element (the client) requires the presence of another element (the supplier) for its correct functioning
or implementation.
use case [class] The specification of a sequence of actions, including variants, that a system (or other entity) can perform, interacting
with actors of the system. See: use case instances.
use case diagram A diagram that shows the relationships among actors and use cases within a system.
use case instance The performance of a sequence of actions being specified in a use case. An instance of a use case. See: use case
class .
use case model A model that describes a system’s functional requirements in terms of use cases.
utility A stereotype that groups global variables and procedures in the form of a class declaration. The utility attributes and operations
become global variables and global procedures, respectively. A utility is not a fundamental modeling construct, but a programming
convenience.
value An element of a type domain.
vertex A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-state. See: state, pseudo-state.
view A projection of a model, which is seen from a given perspective or vantage point and omits entities that are not relevant to this
perspective.
view element A view element is a textual and/or graphical projection of a collection of model elements.
view projection A projection of model elements onto view elements. A view projection provides a location and a style for each view
element.
visibility An enumeration whose value (public, protected, or private) denotes how the model element to which it refers may be seen
outside its enclosing namespace.

UML Process Terms
UML - The Unified Modeling Language is a standard modeling language for software - a language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system.
UML Process - a software development process that is based upon the UML that is iterative, architecture-centric, use-case driven, and
risk-driven. It is organized around the workflows (phases) of requirements, analysis, design, implementation, construction, testing. The
process is a set of steps intended to reach a goal, e.g. to efficiently and predictably deliver a software product to meet the needs of your
organization.
Increment - a set of use cases that represent a complete subset of business functionality largely independent of other increments.

50

Iteration - a complete pass through all phases of the software development, e.g. Requirements, Analysis, Design, Implementation,
Coding for a use case increment.
Architecture - The organizational structure of a system, including its decomposition into parts, their connectivity, interaction
mechanisms, and the guiding principles that inform the design of a system.
Business Model - The set of documents that describe a business or enterprise at a very high level.
Component-based development (CBD) - The creation and deployment of software-intensive systems assembled from components, as
well as the development and harvesting of such components.

Middleware and Enterprise Java Bean Glossary
Application server - A server program that allows the installation of application specific software components, in a manner so that they
can be remotely invoked, usually by some form of remote object method call.
Bean-managed persistence - When an Enterprise JavaBean performs its own long-term state management.
Bytecode - In the context of Java, bytecode is the platform-independent executable program code.
Clustering - Aggregating multiple servers together to form a service pool of some kind, usually for achieving redundancy or improving
performance.
Component standard - A definition of how software components cooperate, and in particular the roles and interfaces of each. In the
context of Java middleware, component standards usually include specifications of the middleware interfaces exposed to the components,
and the component interfaces required by the middleware.
Container managed persistence - When an Enterprise JavaBean server manages a bean's long-term state.
CORBA - Standard maintained by the Object Management Group (OMG), called the Common Object Request Broker Architecture.
COS Naming - CORBA standard for object directories.
Data source - This is the term used by the JTA and JDBC specifications to refer to persistent repository of data. It usually represents a
database. It also may refer to an object that makes database connections available (i.e. a driver).
DCOM - Microsoft's Distributed Component Object Model.
Enterprise JavaBeans (EJB) - A server component standard developed by Sun Microsystems.
Entity bean - An Enterprise JavaBean that maintains state across sessions, and may be looked up in an object directory by its key value.
Failover - The ability to respond resiliently to a component failure by switching to another component.
IDL - interface description language, CORBA's syntax for defining object remote interfaces.
IIOP - Internet Inter-ORB Protocol, CORBA's wire protocol for transmitting remote object method invocations.
ISAPI - Microsoft's C++ API for coding application extensions for its Internet Information Server.
Java Naming and Directory Interface - The Java standard API for accessing directory services, such as LDAP, COS Naming, and
others.
Java Transaction API - Java API for coding client demarcated transactions, and for building transactional data source drivers.
JNDI - Java Naming and Directory Interface.
JTA - Java Transaction API.
JTS - The Java Transaction Service, which in the Java binding for the CORBA Transaction Service. Provides a way for middleware
vendors to build interoperable transactional middleware.
JVM - Java virtual machine.
LDAP - Lightweight Directory Access Protocol, a protocol for directory services, derived from X.500.
Middleware - Software that runs on a server, and acts as either an application processing gateway or a routing bridge between remote
clients and data sources or other servers, or any combination of these.
NSAPI - Netscape's C language API for adding application extensions to their Web servers.
OMG - Object Management Group, an organization that defines and promotes object oriented programming standards.
OODB - object-oriented database.
OODBMS - object-oriented database management system.
ORB - object request broker, the primary message routing component in a CORBA product.
Passivate - To place an object in a dormant state when it is not being accessed, such that it can later be returned to an active and usable
state.
Persistence - Maintaining state over a long time, especially across sessions.
Pooling - Maintaining a collection of objects, servers, connections, or other resources for ready access, so that one does not need to be
created anew each time one is needed.
RMI - Remote Method Invocation, the Java standard technology for building distributed objects whose methods can be invoked remotely
across a network.
RMI over IIOP - Using the CORBA IIOP wire protocol from an RMI API.
Servlet - An application extension to a Java Web server.
Session bean - An Enterprise JavaBean that does not maintain its state from one session to the next. Appears to the client as if the bean
was created just for that client.
Skeleton - A server-side software component that serves to relay remote calls from a client to the methods of a servant running in a
server. Usually a skeleton is automatically generated by a special compiler.
SOAP - Simple Object Access Protocol for passing XML documents between distributed applications.
SQLJ - An extended Java syntax for embedding SQL-like commands in a Java program.
Stub - A client-side software component that serves to forward remote calls to a remote server, and receive the subsequent responses.
Usually automatically generated by a special compiler.
Three-tier - An architecture in which a remote client accesses remote data sources via an intervening server.

51

Transaction manager - A software component that coordinates the separate transactions of multiple data sources, so that they behave as
a single unified transaction. Requires data source drivers that can participate in this kind of coordination. Also usually provides the ability
to monitor transactions and provide statistics.
Transactional - When an operation has the property that it either completes, or if it does not complete due to a failure, it either undoes its
own effects or has the ability to complete at a later time when the failure is repaired.

References
UML References

The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language
Reference Manual by James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Software Development Process by Ivar Jacobson,
Grady Booch, and James Rumbaugh, The Complete UML Training Course by Grady Booch, James Rumbaugh, Ivar Jacobson; UML
in a Nutshell by Sinan Si Alhir, The Object Constraint Language by Jos Warmer and Anneke Kleppe, Applying Use Cases by Geri
Schneider and Jason P. Winters, The Rational Unified Process An Introduction Second Edition by Krutchen, Object Solutions Managing
the Object-Oriented Project by Grady Booch, Objects, Components, and Frameworks with UML - The Catalysis Approach by Desmond
D’Souza and Alan Wills, Use Case Driven Object Modeling with UML - A Practical Approach by Doug Rosenberg; Use Case:
Requirements in Context by Daryl Kulak, Business Modeling with UML Business Patterns at Work by Hans-Eric Eriksson and Magnus
Penker, Analysis Patterns Reusable Object Models by Martin Fowler, Building Object Applications That Work (SIGS Books, 1997) by
Scott Ambler; Object-Oriented Software Metrics by Lorenz and Kidd

Patterns References
Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Patterns in Java Vol 1 and 2 by Mark Grand
A System of Patterns by Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal

Enterprise Java References
Developing Java Enterprise Applications by Stephen Asbury and Scott R. Weiner, Client/Server Programming with Java and CORBA by
Robert Orfali and Dan Harkey, Java Application Frameworks by Asbury and Giovani, Enterprise Java Beans by Valeski
Key Web Sites - www.rational.com.com, www.omg.org, www.cetus-links.org , www.sema4usa.com, Free Magazines- Software
Development - www.sdmagazine.com/sdonline/fr_subs.html; Distributed Computing - www.distributedcomputing.com; Application
Development Trends - www.adtmag.com

Richard Felsinger, 960 Scottland Dr, Mt Pleasant, SC 29464 843-881-3648 dfelsinger@home.com 1/29/2001

