UML Project Plan

Richard Felsinger, 960 Scottland Drive, Mt Pleasant, SC 29464 dick @felsinger.com843-881-3648 1/29/2001

The purpose of this project planisto provide atemplate for your project. There are alarge number of templates and tables
which you should fill-in with your project information, estimates, etc. The single most important referencein thisplanis
The Rational Unified Process An Introduction Second Edition by Philippe Kruchten. A sample UML model - Simplified Bank
Account exampleis provided in the appendix to show examples of UML diagrams and specifications. To update this plan
for your project:

- change the name OOProject to your project name,

- fill-in the various templ ate forms with your project information,

- update this document to reflect your project plans and policies,

- get project team member feedback, approve, then place the updated project plan in a shared directory,

- execute the plan and monitor the project.

Our goal isthat this project plan shall assist al project team members to work toward the successful completion of the
project and to create a defect-free software product.

| ntroduction

An OO Project is a sequence of unique, complex, and connected activities having one goal or purpose, and that must be
completed by a specific time, within budget, and according to specification. Key aspects of a project are shown below.
Increasing " Scope and Quality" in the middle of the triangle will increase the " Cost", "Time", and "Resources'.

Cost Scope ahd Quality Time
(SW,HW,Services) (Iferations,- Features) (Weeks per Iteration)

Resources
(Staff,Tools)

Key aspects of OO Project Management compared to a non-OO Project Management are:

- planning and monitoring at various levels of scale/abstraction: Enterprise - Business Level, Project - System Level,
Build/Release Level,

- using the Unified Process Phases: Inception - Definition, Elaboration - Planning, Construction - Modeling/Coding,
Transition - Deployment to end users,

- using the Unified Process create the following models: Requirements, Analysis, Design, Implementation, and Testing for
each Build/Release.

- using Unified Modeling Language elements and semantics,

- using Object-oriented size, complexity, and quality measures.

Grady Booch in Object-Solutions - Managing the Object-Oriented Project states “ The central task of the software
management team isto balance a set of incomplete, inconsistent, and shifting technical and non-technical requirements, to
produce a system that is optimal for its essential minimal characteristics.” Booch states"A successful software project is
one whose deliverables satisfy and possibly exceed the end user's expectations, was devel oped in atimely and economical
fashion, and is resilient to change and adaptation." Project management consists of planning, scheduling, staffing, resource
alocation, and monitoring to create a defect free system “better, faster, cheaper”.

Grady Booch in Object-Solutions - Managing the Object-Oriented Project states “ The five habits of a successful object-
oriented project include:

- A ruthless focus on the devel opment of a system that provides a well-understood collection of essential minimal
characteristics.

- The existence of aculture that is centered on results, encourages communication, and yet is not afraid to fail.

- The effective use of object-oriented modeling.

- The existence of astrong architectural vision.



- The application of awell-managed iterative and incremental development life cycle.”

Philippe Kruchten in The Rational Unified Process An Introduction Second Edition provides suggestions to support
effective software engineering:
- Develop software iteratively.

- Manage requirements.

- Use component-based architectures.

- Verify software quality.

- Control changes to software.

Thefollowing are the recommended texts for the project:

The Unified Modeling Language User Guideby Grady Booch, James Rumbaugh, and Ivar Jacobson,

The Unified Modeling Language Reference Manual by James Rumbaugh, Ivar Jacobson, and Grady Booch,

The Unified Software Development Process by Ivar Jacobson, Grady Booch, and James Rumbaugh,
The Rational Unified Process An Introduction Second Edition by Kruchen.

Other referencesarelisted at the end of the plan.

The following are the recommended standards:;
The Unified Modeling Language - www.omg.org

Coding Standards - http://java.sun.com/docs/codeconv/index.html or http://gee.cs.oswego.edu/dl/html/javaCodingStd.html.

Enterprise Planning and

Monitoring

The OOProject System should be modeled in terms of the level of scale/abstraction as shown below. It isimportant to
know where the OOProject isin terms of the overall enterprise.

L evels of Scale/Abstraction

Level Definition UML Example OOProject
Global Concerns languages, Internet - ANSI and
standards, policies that |IEEE Standards
affect multiple
enterprises
Enterprise Organization with XYZ Company
systems
Overall System - Group | Requirements View: Requirements: Actor + Office 2000 Overall
of Applications/ actors and the system System System
Implementation View: Implementation: including
components Components OOProject
System/Subsystem/Com | Group of classes that System Package or Word 2000 OOProject
ponent - Application operate together asa Component System
system or application
Package Group of classes Package - tabbed box
Collaboration Group of classesthat act | Collaboration - dashed
together for a specific oval
purpose - implements a
pattern
Class Defines a group of Class Document

objects

Attribute - Operation

Attribute - Values;
Operation - Service

Attribute - Operation

Document.Name -
Document.Open()




It isdesirable to show the OOProject System as a component in the larger system for the following reasons:
- setsthe boundary of the OOProject System,

- facilitates accurate communications to know the level of scale/abstraction,

- facilitates assigning responsibility for the OOProject System and interacting components,

- speeds development if component interfaces (set of operations) are clearly defined.

Enterprise Business Modeling

Business Modelingisto model the enterprise asawhole. It isimportant for the OOProject to support Enterprise short-
term and long-term goals and to properly fit-into the Enterprise.

The Business Model provides the following: Vision Document, Organization Chart, Business Events and Processes (Use
Cases), Business Actors, Workers, and Entities (Domain Model), Business Rules Catalog, Business I nterfaces (Set of
Operations), Business Patterns, Business Systems Architecture - Component Diagram, Glossary. See The Rational Unified
Process An Introduction Second Edition by Krutchen and Business Modeling with UML by Eriksson and Penker.

Business M odel
Key UML Elements Business Processes (Use Cases), Business Domain Objects
Key Concern Model Business
Objective Sufficient Business/Enterprise information
Static/Structural Diagrams Business Domain Objects
Dynamic/Time Based Diagrams Business Processes (Use Cases)
Tools UML CASE, Requirements Tracking
Key Team Players Business/System Analysts, Architect
Model Sign-off Project Manager, Architect, Client/User

The following is a sample status table for the Enterprise Business Model:

Enterprise Business M odel

Location - Reference | Number | Comment

Business Model

Business Events

Business Actors, Workers, Entities

Business I nterfaces

Business Patterns

Business Glossary

Architecture - Components

Benefits of Business Modeling are:

- supports defining good requirements leading to rapid, effective system development,
- supports creating a system that is correct, reliable, extensible, and reusable,

- supports communication, consistency and reduces redundancy.

System Architecturefor CBD - Component-Based
Development

The OOProject System is apart of alarger enterprise system consisting of components. Component-based development
(CBD) isthe creation and deployment of software-intensive systems assembled from components, aswell asthe
development and harvesting of such components. It is desirable to have alayered ar chitecture of components - an
ordered set of virtual worlds, each built in terms of the ones below it and providing the basis of implementation for the ones
aboveit.




Kruchen in The Rational Unified Process An Introduction Second Edition defines architecture asfollows: "Architecture
encompasses significant decisions about the following:

- The organization of a software system.

- The selection of structural elements and their interfaces by which the system is composed, together with their behavior as
specified in the collaboration among those elements.

- The composition of these elementsinto progressively larger subsystems.

- The architectural style that guides this organization, these elements and their interfaces, their collaborations, and their
composition."

Architecturerefersto the organizational structure of a system, including its decomposition into parts, their connectivity,
interaction mechanisms, and the guiding principles that inform the design of asystem. The UML component diagram
shown below has components with lollipops (interfaces). Aninterfaceis aset of operations without implementation.

-

Benefits of Component Based Development are:

- supports developing highly upgradable, modifiable systems with plug-in replacement components,
- supports communications by defining components with well-defined interfaces (set of operations),
- supports reusability by defining reusable components,

- supports ahighly resilient system architecture,

- supports using standardized component frameworks, e.g. COM+, CORBA, EJB, €tc,

- supports using commercially available components,

- provides a natural basis for configuration management and versioning.

Project Planning and Monitoring

Project Objectivesand Overview

The OOProject shall design, construct, and deploy the OOProject System in accordance with the OOProject Requirements.
The objectiveisto create a system that is correct, reliable, understandable, extensible, and reusable. The system must meet
al functional requirements, e.g. features (modeled with use cases). The system must meet non-functional requirements:
usability, reliability, performance, and supportability.

Description or Location Comment

Project Name

Project Description

Project Objectives

Project Functional Requirements Document

Project Non-Functional Requirements Document

Project Constraints

Project Assumptions

Project Standards

UML, Coding Standards, Other (exceptions, threads)

Enterprise Business Model

Project Goodness Guidelines See Appendix
Project Stereotypes, Tagged Values, and Constraints | See Appendix
Sample Project UML Model See Appendix

Project Documentation

See Summary of Artifacts (Appendix B) in The
Rational Unified Process An Introduction Second
Edition by Kruchen

Project Tools

Tutorials, Tapes, CDs, Books, Training Sessions

Project Glossary

Project Reuse Libraries

Component, Class, Operation, Pattern-UML




Collaboration

Project UML Model Review Bi-weekly or at completion of each iteration

Benefits of defining project objectives are:

- supports communications by getting team members, the client, and others "on the same page”,

- supports measurement of plan versus actual to monitor progress and identify potential problems,
- supports efficiency by getting team members focused on meeting the project objectives,

- supports setting effective planning and prioritization of activities to meet the project objectives.

Project Risks

Risk isan ongoing or impending concern that has a significant probability of adversely affecting the success of major
milestones. If the risk occurs then there may be significant adverse affect on the project in terms of cost, schedule, and
features.

Booch in Object Solutions states "What are the most serious risks factors that face any real project?
- Inaccurate metrics

- Inadequate measurement

- Excessive schedul e pressure
- Management malpractice

- Inaccurate cost estimating

- Silver bullet syndrome

- Creeping user requirements
- Low quality

- Low productivity

- Canceled projects”

To ensure that we meet project objectives, the OOProject shall identify and monitor al major risks. We must prepare for
and avoid catastrophic "surprises’ and unexpected events. The projected risks for the OOProject is shown below.

Risk Name | Description | Probability of Impact if Occurs | Avoidance Plan | Contingency Plan | Comment
Occurrence if Occurs

Database 10% Delay of Project | Monitor

not Monthly

delivered

on schedule

Benefits of defining project risks are:

- supports effective planning to avoid "surprises”,

- greatly increases the probability for a successful project,

- supports effective decision making for a successful project.

Project Phases and Scheduling

The OOProject shall follow the following the Unified Software Devel opment Process as documented in The Unified
Software Development Process by Ivar Jacobson, Grady Booch, and James Rumbaugh and The Rational Unified Process
An Introduction Second Edition by Krutchen. Thisisan incremental iterative development process that emphasizes the
delivery of progressively more complex software builds/releases. A phaseisthe span of time between two major

milestones of a development process, e.g. inception, elaboration, construction, transition. The phases are described below.

Unified Process Phases

Source: The Rational Unified Process An Introduction Second Edition by Krutchen
With Number of Projected Weeks per Phase for a52 Week Project

| Inception Phase - | Elaboration Phase - | Construction Phase - | Transition Phase -




5 weeks

16 weeks

26 weeks

5 weeks

Description Define the scope of | Plan the project, Build the product. the software is
the project and specify features, and Software is brought turned into the
develop business baseline the from an executable hands of the user
case architecture architectural baselineto | community

the point whereitis
ready to be transitioned
to the user community

Products Vision document, Use case model, non- UML model Software product
use caselist, functional (requirements, analysis, | rollout to marketing,
project glossary, requirements, software | design, distribution, and
business case architecture, implementation, salesteams
(context, success architectural prototype, | testing) and
criteria, financial iteration plan, build/release for each

forecast), risk
assessment, project

development process,
preliminary user

iteration

plan, business manual
model
Estimated Time for 52 10% - 5 weeks 30% - 16 weeks 50% - 26 weekswith 2 | 10% - 5 weeks
week project -3 week iteration
Estimated 5% 20% 65% 10%
Effort/Resources
Key Personnel Roles Project Manager, Project Manager, Project Manager, Project Manager,
Architect, Architect, Architect, Architect
Business/System Business/System Business/System
Analyst Analyst Analyst,

Devel oper/Programmer
, QA Tester

Milestoneto be
Achieved at end of
Phase - Project Manager
Sign-off

Lifecycle Objective
Milestone

Lifecycle Architecture
Milestone

Initial Operational
Capability Milestone

Product Release
Milestone

Benefits of having well-defined project phases are:
- supports having awell-managed project,
- supports communications so that the client and team members know the progression of the project,

- supports measurement of planned versus actual to identify problems early.

Project Staffing

The OOProject shall be staffed with person filling the following roles: Project Manager, Architect,
M ethodol ogist/Toolsmith, User, Business/System Analyst, Devel oper/Programmer, QA Tester, and others as required. The
description of each role are;

Project Manager - manages all aspects of the project including schedules, resources, staffing, etc to meet the project
objectives and to effect the project build/rel ease software products.

Architect - oversees the technical aspects of the project including the overall system architecture of components, their
interfaces (set of operations), and their communications. Responsible for the development and deployment infrastructure.
Provides the Processing Environment (HW and SW Configuration List) and Implementation Model (component diagram

and deployment diagram).

M ethodologist/Toolsmith - oversees the use of UML and the Unified Process. Responsible to ensure the correctness and
completeness of UML models. Providesthe UML, Unified Process, and tools help desk. Creates CASE tool scriptsfor
reporting and code generation.




Client/User - provides the user point of view and acts as the domain expert.

Business/System Analyst - leads and coordinates the requirements gathering, use case modeling, and class modeling in the
Business Modeling, Requirements, and Analysis Models.

Developer/Programmer - creates all diagrams, specifications, and code in the Design Model.

QA Tester - creates the test plan, test cases, test procedures, and related testing documentation. Conducts tests and
providestest case results.

Number Assigned Staff - Names/TBD - to be determined

With Number of Projected Weeks per Phase for a52 Week Project

Roles Inception Phase | Elaboration Phase | Construction Transition
- 5 weeks - 16 weeks Phase - 26 weeks Phase - 5 weeks

Project Manager 1 - John Smith 1 - John Smith 1 - John Smith 1 - John Smith
Architect 1-77? 1-77? 1-?77 1-?27?
Client/User 1-77? 1-77? 1-?77 1-?27?
Business/System 3-7, 7,77 | 3-?772,772,?77 3-772, 7,77 0
Analysts
Developer/Programmer | O 3-7, 7, 777 3-77, 77, 77 1-77?
QA Tester 0 1-77? 1-?77 1-77?
Other TBD TBD TBD TBD
Total Assigned 6 10 10 5

Benefits of having well-defined roles for team members are:

- supports effective planning and decision making for a successful project,

- supports communication so that team members know their responsibilities,

- supports creating a quality system with different team members working on the system from different points of view.

Proj ect Resour ces

Resources must be identified, budgeted, and controlled - both personnel and other resources, e.g. tools, equipment,
services, etc.
Resour ces - Requested/Authorized/Used in each cell
With Number of Projected Weeks per Phase for a 52 Week Project

Resource Category

Inception Phase - 5
weeks

Elaboration Phase - 16
weeks

Construction Phase - 26
weeks

Transition Phase- 5
weeks

Personnel

Services

Software

Equipment

Travel

Other

Total

Benefits of having well-defined roles for team members are:

- supports effective planning and decision making for a successful project,
- supports communication to identify required resources,

- supports creating a quality system and a satisfied customer.

Project Configuration Management and Versioning

The goal of project configuration management is to track and maintain the integrity of evolving project assets. These assets
must be available for reuse. There are three independent functions:

- configuration management deals with the issue of artifact (asset/document) identification, versions, and dependencies;

- change request management deal s with the capture and management of requested changesin artifacts (asset/document);

- status and measurement deal s with project control information.




Project Assetsand Documents

Artifact (asset/document) | Responsibility [ Location | Current Version/Date | Tool | Comment

Benefits of having configuration management and versions are:

- supports communication so that team members are working on the latest version,
- supports efficiency by reducing redundant efforts,

- supports creating a quality system in which all partsfit together.

Project Requirements

The OOProject shall maintain an up-to-date requirements document and a Requirements Traceability Table shown below.

Requirements Traceability Table (Partial)

Require | Requirement Reference | Use Case UML Test Case | Description | Responsibility
ment Name Name Element
Number
11 DepositToSavings DepositToSavi
Account ngsA ccount

Benefits of having well-defined project requirements are:

- supports communication so that team members are working to meet the requirements,

- supports defining use cases, use case increments (group of use cases) and build/rel ease iterations (use case scenarios
within an increment),

- supports identifying and resolving inconsistencies in requirements,

- supports creating a quality system in which the client requirements are fully met.

|teration Planning and Monitoring

The OOProject shall use an incremental and iterative software development approach as documented in the Unified
Process. A Use Case Incrementisaset of use cases that represent a complete subset of business functionality largely
independent of other increments. A Use Case Scenario is aset of interactions for a use case, e.g. optimistic(simple),
normal (moderate), or pessimistic (complex) scenario. Aniteration isasequence of activitieswith an established plan and
evaluation criteria, resulting in an executable release. It isacomplete pass through all phases of the software development,
e.g. Requirements, Analysis, Design, Implementation, Testing for a use case increment leading to an executablerelease. A
product releaseis acomplete and consistent set of artifacts and includes a softwar e build(an executable version of the
system).

Use Case | ncrements and Build/Release Iterations

The OOProject anumber of use caseincrements. Each use case increment has a number of build/release iterations
generally requiring 3 - 4 weeks of effort depending upon the size of the build/rel ease.




Project

Increment 1 Increment 2
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6
Time
>
These are the steps:

1 - Identify all use cases (name only)

2 - Group use cases together to identify use case increments

3 - In each use case increment, identify build/release iterations
4 - In each build/release iteration, identify all use case scenarios (name only)

OOProject Increment/Iteration Plan (3 - 4 Week Iteration)

Increment Use Cases Build/Release Iterations Use Case Scenarios

Name

Increment 1 UseCasel,2,3 Iteration 1 Optimistic/Simple, Iteration 1 Optimistic/Simple: UC1O0pt, UC20pt, UC30pt
Iteration 2 Normal/M oderate, Iteration 2 Normal/Moderate: UC1Nor, UC2Nor, UC3Nor
Iteration 3 Pessimistic/Complex Iteration 3 Pessimistic/Complex:UC1Pess, UC2Pess, UC3Pess

Increment 2 UseCase3,4,5 Iteration 4 Optimistic/Simple, Iteration 4 Optimistic/Simple:UC40pt, UC50pt, UC60pt
Iteration 5 Normal/Moderate, Iteration 5 Normal/Moderate: UC4Nor, UC5Nor, UC6Nor
Iteration 6 Pessimistic/Complex Iteration 6 Pessimistic/Complex:UC4Pess, UC5Pess, UC6Pess

Below is asample Increment/Iteration Plan Except from Appendix A

Increment Use Cases Build/Release Iterations Use Case Scenarios
Name
Deposits and Checking Deposit, Deposit and Withdraw CheckingDepositOptimistic, CheckingWithdrawvOptimistic,
Withdraws Checking Optimistic/Simple, SavingDepositOptimistic, SavingWithdrawOptimistic
Withdraw, Saving
Deposit, Saving Deposit and Withdraw CheckingDepositNormal, CheckingWithdrawNormal, SavingDepositNormal,
Withdraw Normal/Moderate, SavingWithdrawNormal
Deposit and Withdraw CheckingDepositPessimistic, CheckingWithdrawPessimistic,
Pessimi stic/Complex SavingDepositPessimistic, SavingWithdrawPessimistic
Inquiriesand Checking Inquiry, Inquiriesand Transfers CheckinglnquiryOptimistic, CheckingTransferOptimistic,
Transfers Checking Transfer, | Optimistic/Simple, SavinglnquiryOptimistic, SavingTransferOptimistic
Saving Inquiry,
Saving Transfer Inquiriesand Transfers CheckinglnquiryNormal, CheckingTransferNormal, SavinglnquiryNormal,
Normal/Moderate, SavingTransferNormal
Inquiriesand Transfers CheckinglnquiryPessimistic, CheckingTransferPessimistic,
Pessimistic/Complex SavinglnquiryPessimistic, SavingTransferPessmistic
Overdrafts CheckingOverdraft, | Overdraft Optimistic/Simple CheckingOverdraftOptimistic, SavingOverdraftOptimistic
SavingOverdraft

Overdraft Normal/Moderate

Overdraft
Pessimistic/Complex

CheckingOverdraftOptimistic, SavingOverdraftNormal

CheckingOverdraftOptimistic, SavingOverdraftPessimistic

For each Build/Release Iteration, the following is scheduling and monitoring table. The UML Model isthe current model
location, e.g. XY Z\F:UMLModels\Iteration1Model.mdl.




OOProject Schedule Status

Iteration 1 - Iteration 2 - Iteration 3 -
Optimistic/Simple Normal/Moderate Pessi mistic/Complex
UML Model
Planned Start
Revised Start
Actual Start

Planned Compl etion

Revised Completion

Actual Completion/Review

%Complete

Model Review Date

Date Build Approved

Comment

UML Model reviews are scheduled bi-weekly or at the end of each iteration. Periodically, we may schedule UML Model
reviews within an iteration for Requirements, Analysis, Design, and/or Implementation. All the applicable UML diagrams
and specifications shall be placed in the Project Directory available for project staff review and comments. Source code
and test results for the iteration shall be available for staff review and comments. The model review shall consist of a brief
presentation of major UML diagrams and issues.

Benefits of having using use case increments and build/rel ease iterations are:

- supports effective planning and decision making with a"little by little" rather than "do it all at once - big bang"
devel opment approach

- reduces project risks because the client sees tangible results,

- supports effective change-management,

- supports creating a quality system with phased deliveries.

Requirements Use Case Specification

The Use Case Specification is one of the major specifications to document OOProject Requirements. For each OOProject
Use Case, collect the following information: Name, Trigger, Input Parameters, Output Return, Precondition/Exception
Raised, Postcondition/Exception Raised, Basic/Optimistic Scenario, Alternative/Pessimistic Scenarios, Business Rules,
Test Cases. Thefollowing is asample Use Case Specification.

Use Case Specification for WithdrawFromCheckingAccount Use Case
Use Case Name: WithdrawFromCheckingA ccount
Trigger: WithdrawFromCheckingA ccount
Input Parameters: sAcctNum, nWithdraw
Output Return: sText
Precondition: ValidAccount = true and nWithdraw <= nCurrentBalance
Precondition Exception Raised To be determined
Description/Transfor mation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < nOldBalance
Postcondition Exception: None
Basic Scenario/Optimistic Scenario: Text - to be determined; Diagram - see WithdrawFromCheckingAccount -
Optimistic Scenario Sequence Diagram
Alter native Scenarios/Pessimistic Scenario: Text - to be determined - Diagram - see WithdrawFromCheckingA ccount
Activity Diagram
Business Rules: ValidAccountRule, AdequateBalanceRule
Test Cases: 1 - Optimistic:Inputs: sAcctNum - BGates001, nWithdraw - 100, nCurrentBalance - 1000 Conditions: None,
Output: "BGates001 withdraw $100 OK and recorded”, 2 ... To be determined
Input and Output Forms: See below

I nput/Output Forms for WithdrawFromCheckingAccount Use Case:

10




Withdraw Request Form
Customer Account Number
Withdraw Amount

Button-Submit Button-Clear

Withdraw Response Form
Customer Account Number
Withdraw Amount
Status

Button-OK

Benefits of having awell-defined use case specification form are:

- supports consistency in modeling use cases,

- supports completeness especially to identify precondition, postconditions, and business rules,
- isuseful to interview domain experts.

Unified Process Modelsin Construction Phase

In the construction phase, we create the major UML diagrams and specificationsin the Unified Process are shown below:

System/Subsystem/Component Package/Class/Obj ect
| — Requirements Il - Analysis
Requirements Statement/Product Capabilites ———————» Class Diagram
_ Class Name ) ) Class Name
- - Relationship -
Attributes Attributes
Operations Operations
Use Case Diagram for All Use Cases Package Diagram
1 1
—
—d— Package Package
Sequence Diagram for Each Use Case Course Sequence and/or Collaboration Diagram
—
[ O

Acéivity Diagram for Each Use Case All Courses Activity Diagram & Statechart

(__Activity State ) (__Activity State )

( Activity State ) (__Activity State )
IV - Implementation 44— 11l - Design
Processing Environment HW & SW Processing Environment HW & SW
Component Diagram & Deployment Diagram Updated Class/Package/Sequence/
& Code Collaboration/Activity/Statecharts

1



10, &5 O
V Testing/Deploymept——p

Key aspects of these modelsin the Unified Process - Construction Phase are shown below. Thekey isto create all
diagramsin these models for each build/release iteration (3 - 4 weeks).

Requirements Analysis Design I mplementation Testing
Model M odel M odel Model Model
Key UML System, Actor, Business Package, | HW & SW Component, Node, | Test Plan and
Elements Use Case, Class, Object, Configuration, Code Test Cases
Interaction Message Package, Class
Object, Message
Key Concern Model System as | Model Business Update Analysis Model physical Unit
aBlack Box Elementsin the Diagrams/Specificatio | elementsfor the (Class/Opera
Problem Domain nsfor aspecific distributed tion) Tests,
with no implementation, e.g. environment; Code | Integration/O
implementation HW & SW to meet all verall System
details Configuration. requirements Tests
Objective - Sufficient Simplest Sufficient information | Optimum Sufficient
weak coupling- [ information on Business/Problem | to generate maximum | Component Testing that
strong cohesion | all use Domain Model to code or manually code | Architecture - code meets
among elements | cases/scenarios. | meet requirements Network friendly; al
All Codethat meetsall | requirements
increments/iterat reguirements
ions planned.
Static/Structural | Block Diagram Package/Class Package/Class Component and -
Diagrams and Use Case Diagram Diagram Deployment
Diagram Diagrams;
Showing Actors Reversed Class
Diagrams
Dynamic/Time Use Case Seguence Diagram | Sequence Diagram for | Optionally update -
Based Diagrams | Diagram, for each use case each use case sequence diagrams
Sequence scenario, scenario, Statechart showing distributed
Diagram for Statechart for each | for each state-based messages
each use case state-based class, class, Activity
scenario, Activity Diagram Diagram for each
Activity for each complex complex operation
Diagram for operation
each use case
Tools UML CASE, UML CASE, UML CASE, UML CASE, ™M
Requirements Requirements Requirements Requirements
Tracking, CM Tracking, CM Tracking, CM Tracking, CM,
Testing
Key Team Business/System | Business/System Developer Architect, Developer/T
Players Analysts Analyst Developer ester
Model Sign-off | Project Manager, | Project Manager, Project Manager, Project Manager, Project
Architect, Architect, Architect Architect Manager,
Client/User Client/User Architect,
Client/User
for




| Acceptance

Metrics and Monitoring

Metrics provide a quantitative measure to monitor progress, make estimates, identify risks, and to identify high risk
complex entities. Metrics contribute to effective project management and creating quality systems. There should be
automated metric collection with the CASE tool and code analyzers. “If you can’t measureit, it’s not engineering.”

Management Metrics provide information on project schedule, resources, and other management concernsin terms of
planned versus actual values. Sample project metrics. milestones completed, assigned people, costs, use case scenarios, key
classes, support classes (GUI, collections, etc), packages per system, person-days per class, classes per developer,
development iterations, etc. See Lorenz and Kidd Object-Oriented Software Metrics.

Project Metrics provide information on the system, packages, classes, and other elements. Project metrics are valuable to
show changes over time and to indicate high risk complex elements.

Sample Project Metrics

System Level Metrics - Class/Object Level | Class/Object Level Code Metrics -
Number in the System Metrics- Number Metrics- Number of & Number of &
in the System Average Number Average
Number
SizeMetrics | Analysis: Requirements, Actors, | Packages, Classes, Lines of
Component In M essages, Interfaces, Code/System,
Component Out Messages, Operation, LOC/Class,
Component Input Objects/Data, | Attributes, LOC/Operation
Component Output Rel ationships,
Objects/Data, Use Cases, Use Objects, Messages, LOC refersto
Case Scenarios States, Transitions, NCSS - Non-
Design: Executable Exception Classes, comment Source
Components, Messages between | Reused Classes Statements
Components, Nodes, Links
between Nodes
Complexity Use Case Scenarios/Use Case Levels of Classes & Weighted
Metrics Generalization, Interfaces/Package, Operations/Class,
Attributes/Class, McCabe
Higher Ratio Operations/Class, Cyclomatic
Suggests Relationships/Class, Complexity/Oper
Greater Message Sends/Class, ation,
Complexity Message Sends/Operation, | Halsted/Operatio
Parameters/Operation, n, Length * (Fan-
Subclasses/Superclass in* Fan-out)2
Reuse Reused Patterns, Reused Reused Patterns,
Metrics Components Reused Packages,
Reused Classes
Quality Defects Defects Defects Defects
Metrics

Our goal isto use CASE and other tool monitoring.

required more detailed reports may be generated.

The following automatically generated tables will be used. As

Size Metrics - Number of UML Elements - CASE Tool Gener ated

Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessi mistic/Complex

Actors

Use Cases

Use Case Scenarios

13



Packages

Classes

Interfaces

Attributes

Operation

Generalization Relationships

Realizes Relationships

Composition Relationships

Shared Aggregation
Relationships

Dependency Relationships

Objects

M essages

States

Transitions

Components

Component Dependencies

Nodes

Node Links

Test Cases

Total SLOC-Source Lines of
Code

SLOC per Class

SL OC per Operation

Complexity Measures - CASE or Other Tool Generated Min/Max/Average Provided in Each Cell

Iteration 1 -
Optimistic/Simple

Iteration 2 -
Normal/Moderate

Iteration 3 -
Pessi mistic/Complex

Classes & Interfaces per
Package

Attributes per Class

Operations per Class

Parameters per Operation

M essage Sends/ per
Operation

M essage Sends per Class

Relationships per Class

Weighted Operations per
Class

M cCabe Cyclomatic
Complexity per Operation

Hal sted per Operation

Length* (Fan-in* Fan-
out)2

Benefits of having project metrics and monitoring are:

- supports communication so that team members are working on the latest version,

- supports identifying risks and problems early to meet cost, schedule, and other objectives,
- supports efficiency by reducing redundant efforts,

- supports creating a quality system in which all partsfit together.

14




Reuse

Our goal isto promote reuse in the OOProject. There are several forms of reuse as documented by Scott Ambler in
Building Object Applications That Work (SIGS Books, 1997):

Operation Reuse isthe reuse of complex operations, such as utility operation or complex algorithmic operations.

Class Reuseisthereuse of classes. Classreuseisaccomplished by sharing common classes or collections of functions and
procedures. Class reuse leadsto code reuse.

Inheritance Reuseisto use inheritance to take advantage of behavior implemented in existing classes.

Template Reuseistypically aform of documentation reuse. It refersto using a common set of layouts for key
development artifacts—documents, models, and source code.

Component Reuseisthe use of pre-built, fully encapsulated components. Examples of components are Java Beans and
ActiveX components.

Pattern Reuseisthe use of documented patterns such as documented in Design Patterns by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Patternsin JavaVol 1 and 2 by Mark Grand, A System of Patterns by Frank Buschmann, Regine Meunier,
Hans Rohnert, Peter Sommerlad, and Michael Stal, and other books.

Framewor k Reuseisthe use of collections of classes that implement the basic functionality of acommon technical or
business domain together. Examples of frameworks are the San Francisco Framework.

Artifact Reuseisto use of previously created development artifacts—use cases, standards documents, domain-specific
models, procedures and guidelines, and other applications.

In the OOProject we will maintain the Reuse Table.

Reuse by Iteration

Iteration 1 - Iteration 2 - Iteration 3 -
Optimistic/Simple Normal/Moderate Pessi mistic/Complex

Operations from
Class/Operation Library

Classesfrom
Class/Operation Library

Patterns from
Pattern/Collaboration
Library

Benefits of reuse are:
- deduces effort and resources since a reused element has already been documented, constructed, and tested,
- supports high quality system based upon high quality reused elements,

Quality Assurance and Testing

Quality Assuranceisto ensure adegquate processes, resources, and management to create quality products within required
constraints that are defect-free. Quality factors are reliability, correctness, extensibility, reusability, portability,
maintainability, understandability, usability, etc. Quality Assurance Activities primarily for correctness and defect discover
include:

UML Moded Reviews - these include the presentation of diagrams and specifications.

15




Walkthroughs (Optional) - arole-playing technique to check the completeness and consistency of O-O models. A person
represents the system, an actor, object, or other element. Starting with a system in message compl ete use case scenarios are
traced though the system leading to system out messages.

CASE Tool Checks - automated checks for consistency and compl eteness of diagrams and specifications.

Code I nspections - examining source code and reversed class diagrams.

Testing - executing a system, component, class, operation or other element with test cases to validate that the element
accomplishes requirements and to verify correctness.

Correctness Proofs (Optional) - using formal method with mathematical formalisms to establish the correctness of
analysis/design models and code.

QA Activities During the Construction Phase

QA Activities Requirements Analysis Model Design Model Implementation Testing
M odel Model
QA Planning Project Plan Project Plan Project Plan Project Plan, Testing Plan,
Coding Standards
System AnalysisModels | Design Modelsof | CASE Tool Test Cases, Code
UML Model Requirements of Diagrams & Diagrams & Scripts, Test Inspection
Reviews & Project Plan Specifications Specifications Cases, Code
Inspections Inspection
See Requirement | See Analysis See Design See See Testing
Model Checklist | Model Checklist | Model Checklist Implementation Checklist
Model Checklist
Tool Checks Requirements CASE Tool CASE Tool Compiler, Code Testing Toolsfor
Traceability Checks of Checks of Design | Analyzer, CASE | Unit Tests,
AnalysisModels | Models Reverse System Tests,
Engineering, Acceptance Tests
Testing Tools

Specification:

Operation Specification

Operation Specification is a key specification that is useful to support correctness. Below is a sample Operation

Use Case Name: withdraw

Trigger: withdraw

Input Parameters: nWithdraw : int
Output Return: boolean
Precondition: nWithdraw <= nCurrentBalance
Precondition Exception Raised exInsuffientFunds
Description/Transfor mation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < priorCurrentBalance
Postcondition Exception: exlncorrectBalance

Basic Scenario/Optimistic Scenario: See withdrawFromCheckingA ccount Sequence Diagram
Alternative Scenarios/Pessimistic Scenario: See withdrawFromCheckingAccount Activity Diagram

Business Rules: ValidAccountRule, AdequateBalanceRule

Rever sed Engineered Class Diagrams for each
Build/Release

Reverse Engineering isto create UML diagrams and specifications from source code, e.g. Java, C++, etc. Theclass
diagram shall be automatically created from source code by the CASE tool. Other diagrams, e.g. use case, sequence, state,

16




etc, must be manually created using the reversed class diagram and interviewing domain experts. The following are the
steps to develop a Reverse Engineered UML Model for each Build/Release Iteration

1 - Select one or more UML CASE tools to reverse engineer OOProject source code. Set the reverse optionsin the UML
CASE tool.

2 - Collect the source code for the build/rel ease.
3 - For each directory/package reverse engineer the source code to create the reversed class diagram.

4 - Verify and update the reversed class diagram to ensure that the diagram is accurate showing classes, attributes,
operations, and relationships (realization, generalization, association, shared aggregation, composition, and dependency).

5- Create aglossary - datadictionary listing and defining all major terms and other reports from the reversed class diagram.

6 - After examining the reversed class diagram and reports, create alist of recommended code changes for correctness,
compliance with coding standards, etc.

Benefits of Reverse Engineering are:

- visually displays hard-to-read code,

- identifies poorly written code early, e.g. spaghetti code,

- promotes following project coding standards, e.g. capitalization, prefixes, naming, etc,
- improves the quality of code.

Testing

Testing shall occur throughout the project lifecycle. As presented in The Rational Unified Process An Introduction Second
Edition by Krutchen, there are the following testing dimensions:

- Quality: Reliability, Functionality - required use cases, Performance.
- Stages of testing:

Unit Tests - smallest testable elements of the system are tested individually, e.g. component, collaboration, class,
operation

Integration Tests - integrated units (components or subsystems) are tested

System Test - complete system istested - end to end

Acceptance Test - complete system tested by end usersto ensure readiness for deployment
- Types of tests:

Benchmark Test

Configuration Test

Function Test

Installation Test

Integrity Test

Load Test

Performance Test

The OOProject Test Plan shall include the following:

- Test Cases - the set of test inputs, conditions, and expected results - See Test Specification below.
- Test Procedures - the set of "how to" setup, execute, and evaluate test results .

- Test Scripts - high level programs for automated testing, e.g. Testing Tool Script

- Test Classes and Components - drivers, stubs, and other programs for testing

Thefollowing isthe OOProject Test Case Specification:

Test Case Specification:

Test Use Case Name:
Use Case Name:

17



Use Case Scenario Name:
Trigger:

Input Parameters:

Output Return:

Precondition:

Precondition Exception Raised:
Description/Transformation:
Postcondition:

Postcondition Exception:
Comments:

Testing by Iteration - Planned/Completed/% in each cell

Reference/ Iteration 1 - Iteration 2 - Iteration 3 -
Location Optimistic/Simple Normal/Moderate Pessimistic/Complex

Unit Tests - Operations

Unit Tests - Class

Unit Tests -
Component

Integration Tests

System Tests - End to
End

User Acceptance Test

Quality factor comments:
reliability, correctness,
extensibility, reusability,
portability, maintainability,
understandability, usability

Benefits of testing are:

- supports identifying defects early thereby reducing the costing of fixing each defect,
- supports identifying risks and problems early,

- supports the proper interaction and integration of components,

- supports creating a quality defect-free system.

Summary

Thisproject planisto assist all project team membersto work toward the successful completion of the project, to create a
defect-free software product, and to ensure a satisfied customer.

Project Plan Approval:

Project Manager Approval & Date Architect Approval & Date Approval & Date

Appendices
Tasksto Createa Complete UML Model

Based upon The Rational Unified Process An Introduction Second Edition by Krutchen

O - Business Modeling - Enterprise Level

18




Review the Business Model: Vision Document, Organization Chart, Business Events and Processes (Use Cases), Business
Actors, Workers, and Entities (Domain Model), Business Rules Catalog, Business Interfaces (Set of Operations), Business
Patterns, Business Systems Architecture - Component Diagram, Glossary. See The Rational Unified Process An
Introduction Second Edition by Krutchen and Business Modeling with UML by Eriksson and Penker.

| - Requirements- System/Subsystem/Component Level (Implementation
L anguage | ndependent)

1 - Requirements - Review the Requirements Statement, System Drawing, and System Block Diagram (Customer
Provided). Optionally, create a System Collaboration Diagram (Context Diagram) showing object/data inputs and outputs
to set the system boundary. Optionally, create the Requirements Traceability Table listing Requirement Name, Number,
Reference, Use Case, UML Element, Test Case, Description, Responsibility, etc. Optionally, review management plans,
schedules, risks, naming/coding standards, methodology plans - UML process/stereotypes/properties/constraints.

2 - All Use Cases - Create the Use Case Diagram showing all use cases. Optionally, show use case relationships
(includes, extends, generalization) and/or hierarchical use cases (high level to detailed). Identify the use case increments
and iterations.

3 - Each Use Case- Create a Use Case Specification for each use case stating use case name, trigger, inputs, outputs,
precondition/exception, postcondition/exception, basic and alternative scenarios (optimistic to pessimistic), business rules.
Optionally, create a Sequence Diagram for each use case scenario. Optionally, create input/output forms and test case for
each use case.

4 - Each Use Case All Scenarios - Create an Activity Diagram for each use case showing all use case scenarios
(optimistic to pessimistic). Optionally, show all scenarios/paths for a use casein text, flow chart, or other diagram.

5- Information - Create the Product Capabilities listing non-functional requirements: usability (reliability, performance,
security, human factors), generality (portability, compatibility), timing, space, memory, etc. Optionally create a semantic
datamodel (High Order Concept Model (HOCM)) showing al major elements/concepts inside and outside the system to be
the basis for Class/Package Diagram.

|l - Analysis- Classand Object Level (Implementation Language | ndependent)

6 - Classes and Packages - Create the list of candidate classes, CRC Cards (Class Responsibility Collaboration), Class
Diagram, and Package Diagram. Optionally create an Object Diagram showing attribute values.

7 - Objects and M essages - Create a Sequence Diagram for each use case - optimistic scenario. Optionally, create a
Sequence Diagram for all other use case scenarios. Alternatively, create a Collaboration Diagram for each use case
scenario.

8 - States and Transitions - Create a State Diagram for each state-based class showing states, events, conditions, and
actions.

9 - Operations - Create an Operation Specification showing preconditions, transformations, postconditions, and
exceptions for each complex operation. Optionally, create an Activity Diagram for each complex operation showing the
sequence of activity states, conditions, and actions.

|11 - Design - Class and Object Level for a Specific Processing Environment

10 - Processing Environment - Create the processing environment consisting of the planned Implementation H/W and
S/W Configuration List: operating system, language, class libraries, components, GUI, distribution - object request broker,
persistent data storage, etc. Optionally, list potential patterns, component standard (Active X, Java Bean, CORBA), naming
conventions, coding standards, code generation scripts, tools (CASE, compiler, configuration management, testing, etc).

19



11 - Updated Analysis Diagrams and Specifications - Update all diagrams and specifications to add detail for the
Processing Environment including datatypes, visibility, parameters/returns, support classes, operation detail
(precondition/exception, transformation, postcondition/exception), etc. Optionally provide implementation of patterns, e.g.
polymorphic operations, exceptions (exception superclass/subclasses), threads, data access, transactions, security, message
queuing, etc. Goal: diagrams and specifications provide adequate information for manual coding or code generation.

|V - Implementation - System/Subsystem/Component Level for a Specific
Processing Environment

12 - Implementation Processing Environment, Component Standard and Component Patterns - Update the
Processing Environment to show provided components (GUI, data access, transactions, distribution, message queuing,
security, etc), component standard (Active X, Enterprise Java Bean, CORBA), and component to component patterns, e.g.
small single operation component, class based component, session per user - entity component, package based component,
large multi-package component.

13- Implementation Components - Create the Component Diagram showing all required components and fileswith the
dependency relationship, e.g. .EXE, DLL, .OCX, .LIB, .TXT, .HLP, etc. Optionally show interfaces (lollipops) and create
an interface diagram showing exposed operations. Optionally show IDL (Interface Definition Language) code, e.g.
CORBA IDL, Microsoft IDL, Java.

14 - Implementation Nodes (Processors and Devices) - Create the Deployment Diagram showing all required
processors, devices, and other equipment, e.g. client network computer, Windows PC, NT Server, Transaction Server, Web
Server, Mail Server, Fax, Printer, Network, etc.

V - Construction

15- Coding Standards and Code Generation Scripts - Update coding standards and code generation scripts. Coding
standards list sample code showing code for all major UML elements and rel ationships and policy for inheritance,
interfaces, exceptions, threads, etc.

16 - Code Each Component and Reverse Engineer Diagrams

VI - Testing

17 - Testing Plan - Update the Testing Plan to list test cases (name, input, output, conditions), test procedures (step by step
instructions for each test case), test components (drivers, harnesses, scripts).

18 - Tests - Conduct tests, e.g. class/operation tests (Unit Tests), individual component tests (use case based), overall
system - multiple component tests (use case based integration/acceptance testing).

VIl - Model and Construct Other Components As Required

19- GUI/User/External Interface Components - Optional - Create the GUI component (windows, menus, dialog boxes,
panels).

20 - Persistent Storage Components - Optional - Create the persistent storage component - data storage tabl es/stored
procedures/triggers.



UML CASE Study - BankApp with Rational

Rose

Preliminary - Business Enterprise Models

Business Vision, Objectives, and Organization - Provided Separately

Business Events (UML Signal Events-Named Stimulus Form or Document) and Processes (UML

Use Cases

Process | Actors Events | Transfor | Events/ | Constraints | Description | Reference | Point of
Name Inputs | mation | Output Contact
Withdraw | Customer, Withdr | Update | Withdr

FromAcc | Teller, awReq | Account | awRec

ount BankDB uest ord

<<SignalEvent>>
WithdrawEvent

A

<qReceiveSignalEvents> <gSen

WithdrawRequest

dSignalEvent-Createp>
WithdrawRecord

<<Business Actor>> <<Business Worker>> <<Business Process>> <<Business Worker>>

AT O

Customer Teller WithdrawFromAccoun

Business Actors, Business Workers, and Business Entities (Problem

x

t BankDB

Domain Entities)

Business Actor (UML Actor) BusinessWorker (UML Actor) Business Entity (UML Class)
Customer Teller Account, SavingsAccount,
CheckingA ccount
<<BusinessActor>> <<BusinessWorker>> <<BusinessWorker>>

<<EEusinessEntit >>
— | Account \%

Customer Teller

(from Use Case View) (from Use Case View)

BankDB

(from Use Case View)

A
\'4

<BusinessEntity>

K<BusinessEntity>>|
SavingsAccount CheckingAccount

21




Business Rules Catalog

Rule Identifier

Actor, Entity, Process

Description:If
Conditional..Then Action

Areas

Reference

Point of
Contact

ValidAccount

Account

If AccountNum isValid
then Account is Valid

Business I nterfaces (Named Set of Operations) - Provided by Architect

<<Interface>>
Storable

+ read()
+ write()

<<Interface>>
Verifiable

+ verify()

<<Interface>>

TransactionCapable

+ begin()
+ commit()
+ rollback()

<<Interface>>
Legality

+ getLegalStatus()
+ getLegalReferences()

Business Patterns Catalog - See Business Modeling with UML by Eriksson and Penker

Business Glossary - to be completed

Business Systems Architecture - Provided by Architect

ITellerGUI

TellerGUI

IBankApp

BankApp

| - Requirements Models

IBankDB

BankDB

1 - Requirements: The BankApp shall manage checking and savings account deposits and withdraws.
Future: inquiries, transfers, overdraft, etc. Inputs/Outputs TellerGUI to BankApp: sAcctNum,
nDeposit, nWithdraw, sText. Inputs/Outputs BankApp to BankDB: sAcctNum, nDeposit, nWithdraw.

1 - Requirements Traceability Table: Requirement Number, Name, Reference, Use Case Name,
UML Element, Test Case, Description, Responsibility.

Requirements Traceability Table (Partial)

Require | Requirement Reference | Use Case UML Test Case | Description Responsibility

ment Name Name Element

Number

11 DepositToSavingsAcc DepositToSaving | BankPkg
ount sAccount

1.2 DepositToCheckingA DepositToChecki BankPkg
ccount ngAccount

1.3 WithdrawFromSaving WithdrawFromSa | BankPkg
Account vingAccount

14 WithdrawFromChecki WithdrawFromCh | BankPkg
ngAccount eckingAccount




2 - Requirements - Use Case Diagram - All Use Cases

@

DepositToSavingsAccoun IBankDB

[TellerGU

DeposnToCheckmgAccount

Bank
DB

Teller

Gul ithdrawFromCheckingAccou

+ getAccount()
+ recordDeposit()
+ recordWithdraw()

+ display()

WithdrawFromSavingAccount

Rose Use Case Diagram: In Browser Window select Use Case View; Rename Main to be Use Case
Diagram; Place actors, use cases, and relationships (Rose Unidirectional Association and
Generalization) on the diagram; Select each actor - right mouse to enter actor operations; Select Tools -
Check Model; Select File - Save.

2 - Requirements - High Level Collaboration Diagram (Context Diagram)

sAcctNum nWithdraw nDeposit, sText
<->

. Bank

. TellerGUI . BankDB

sAcctNum nWithdraw nDeposit
<->

Rose High Level Collaboration Diagram: In Browser Window select Use Case View; Select Browse
- Interaction Diagram - Use Case View - <New>; Select Collaboration Diagram; Enter Diagram Name;
Place objects representing actors on the diagram; Double-click each object then select the actor name
from the pull-down list; Place one object in the center of the diagram to represent the system; Double-
click the object and enter the system name; Select Rose Object Link symbol and drag between actors
and the system ; Select the Rose Text Box “ABC” and enter names of passed objects/data; Select
Tools - Check Model; Select File - Save.

2 - Requirements - Use Case | ncrements:

Increment 1. Checking and Saving Account Deposits and Withdraws
Increment 2: Inquiries and Transfers

Increment 3: Overdrafts

Iterations within each Increment: optimistic, normal, pessimistic

Increment Use Cases Build/Release Iterations Use Case Scenarios
Name
Deposits and Checking Deposit, Deposit and Withdraw CheckingDepositOptimistic, CheckingWithdrawOptimistic,

23




Withdraws

Checking
Withdraw, Saving
Deposit, Saving
Withdraw

Optimistic/Simple,

Deposit and Withdraw
Normal/Moderate,

Deposit and Withdraw

SavingDepositOptimistic, SavingWithdrawOptimistic

CheckingDepositNormal, CheckingWithdrawNormal, SavingDepositNormal,

SavingWithdrawNormal

CheckingDepositPessmistic, CheckingWithdrawvPessimigtic,

Pessimi stic/Complex SavingDepositPessimistic, SavingWithdrawPessimistic
Inquiriesand Checking Inquiry, Inquiriesand Transfers CheckinglnquiryOptimistic, CheckingTransferOptimistic,
Transfers Checking Transfer, Optimistic/Simple, SavinglnquiryOptimistic, SavingTransferOptimistic
Saving Inquiry,
Saving Transfer Inquiriesand Transfers CheckinglnquiryNormal, CheckingTransferNormal, SavinglnquiryNormal,
Normal/Moderate, SavingTransferNormal
Inquiriesand Transfers CheckinglnquiryPessimistic, CheckingTransferPessimistic,
Pessimistic/Complex SavinglnquiryPessimistic, SavingTransferPessmistic
Overdrafts CheckingOverdraft, | Overdraft Optimistic/Simple CheckingOverdraftOptimistic, SavingOverdraftOptimistic
SavingOverdraft

Overdraft Normal/Moderate | CheckingOverdraftOptimistic, SavingOverdraftNormal

Overdraft
Pessimistic/Complex

CheckingOverdraftOptimistic, SavingOverdraftPessimistic

3 - Requirements Use Case Specification: Name, Trigger, Input Parameters, Output Return,
Precondition/Exception Raised, Postcondition/Exception Raised, Basic/Optimistic Scenario,
Alternative/Pessimistic Scenarios, Business Rules, Test Cases

Use Case Specification for WithdrawFromCheckingAccount Use Case
Use Case Name: WithdrawFromCheckingA ccount
Trigger: WithdrawFromCheckingA ccount
Input Parameters: sAcctNum, nWithdraw
Output Return: sText
Precondition: ValidAccount = true and nWithdraw <= nCurrentBalance
Precondition Exception Raised To be determined
Description/Transfor mation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < nOldBalance
Postcondition Exception: None
Related Use Cases: Generalization, Includes, Extends/Extension Point: None
Basic Scenario/Optimistic Scenario: Text - to be determined; Diagram - see WithdrawFromCheckingAccount -
Optimistic Scenario Sequence Diagram
Alter native Scenarios/Pessimistic Scenario: Text - to be determined - Diagram - see WithdrawFromCheckingA ccount
Activity Diagram
Business Rules: ValidAccountRule, AdequateBalanceRule
Test Cases: 1 - Optimistic:Inputs: sAcctNum - BGates001, nWithdraw - 100, nCurrentBalance - 1000 Conditions. None,
Output: "BGates001 withdraw $100 OK and recorded”, 2 ... To be determined
Input and Output Forms: See below

I nput/Output Forms for WithdrawFromCheckingAccount Use Case:

Withdraw Request Form
Customer Account Number
Withdraw Amount
Button-Submit Button-Clear
Withdraw Response Form
Customer Account Number

Withdraw Amount
Status

24




Button-OK

3 - Requirements - Sequence Diagram WithdrawFromCheckingAccount - Optimistic Scenario

: BankApp %

: BankDB

1
1

1o

k—_ -

:Te

%ithdrawFromCheckingAccount( )

2: getAccount()

3: recordWithdraw( )

4: display( )

L-

[l
Requirements - Sequence Diagranil WithdrawFromCheckingAccount -

Note: getApp required to get the top level application for the first transaction

Rose Sequence Diagram: In Browser Window select Use Case View; Select the Use Case Diagram,
Select a use case; Select Browse - Interaction Diagram - Use Case View - <New>; Select Sequence
Diagram; Enter Diagram Name, e.g. WithdrawFromCheckingA ccount-OptimisticScenario; Place
objects representing actors on the diagram; Double-click each object then select the actor name from
the pull-down list; Place one object in the center of the diagram to represent the system; Double-click
the object and enter the system name from the pull-down list; Select Rose Object Message symbol and
drag between actors and the system; Select Tools - Check Model; Select File - Save.

4 - Requirements Activity Diagram for WithdrawFromCheckingAccount Use Case - All
Scenarios

25



Initial
withdrawFromCheckingAccount

[ CheckWithdrawalRequest

[OK ]/ Ba&DB.GetAccoum

[ CheckValid

JLK]

[ CheckBalanceAvailable

[ Bak:ceOK ]

MakeWithdraw

—

[ NotOK ] / TellerGUl.display

[ NotValid \ / TellerGU|.display

[ LowBalance )/ TellefGUI.display

\entry: BankDB.recordWithdraw

[ OK ]/ TellerGUl.dis

Termination

Note: getApp required to get the top level application for the first transaction

Rose State - Activity Diagram: In Browser Window select Use Case View; Select the Use Case
Diagram to display the diagram; Select a use case; Select Browse - State Diagram; If “ State Diagram”
is grayed out, then go back to the use case diagram and re-select a use case; Place activity states on the
diagram; Place transitions on the diagram by dragging between states; Select Tools - Check Model;
Select File - Save.

5 -Requirements - Product Capabilities: High Reliability, 10 concurrent users, 2 second response
time.

5 - Requirements/Analysis - High Order Concept Model: Externa Actors. TellerGUI, BankDB
Interna Entities: BankApp, Account, CheckingA ccount, SavingsAccount

BankApp
g% CheckingAccount E%
TellerGUI type of BankDB
(from Use Case View) Account (from Use Case View)

SavingsAccount

26



Rose High Level Concept Model Diagram: Recommend do the HOCM with pencil and paper.
Alternatively, create a Rose Class Diagram without attributes and operations.

|l - Analysis M odél - Rough Sketch

6 - Analysis Class Diagram - Simplest Structure

CheckingAccount

Account
BAmlAED -sCustomerName
-nMinimumBalance
+ getApp() -nCurrentBalance
+ depositToCheckingAccount() - sAcctNum

+ depositToSavingsAccount()

+ withdrawFromCheckingAccount() + create() Q\

+ withdrawFromSavingsAccount() + deposit() SavingsAccount

+ withdraw()

+ done()
Rose Class Diagram: See Using Rational Rose
6 - Analysis Package Diagram
Logical View BankPkg

(from C:\mdI\BankDesign-Impl.mdl)

global

Rose Package Diagram: In Browser Window select Logical View; Select Browse - Class Diagram -
Logical View - <New>. Enter the Package Diagram Name; Place packages on the diagram; To placea
dependency relationship, select the dependency arrow from the Toolbar then drag from the source
package to the destination package; In the Browser drag each class to the approprate package; Select
Tools - Check Model; Select File - Save.

7 - Analysis Sequence Diagram for WithdrawFromCheckingAccount - Optimistic Scenario

27



: BankApp : Checking
: TellerGUI Account

]

]

|

1) ithdrawFromCheckingAccount(i)
]

1

1

[}
.

2: create()

1
1
1
1
1
i
I 3: getAccount()

g

5: recordWithdraw( )

1

4: withdraw( )

6: done( )

7: display() /LJ

1

alysis Sequence Diagram for WjthdrawFromCheckingAccount - Optimistic Courke
1
]

{

A

e

Note: getApp required to get the top level application for the first transaction
Rose Sequence Diagram: See Using Rational Rose

8 - Analysis State Diagram for Account Class

: BankDB

28



create[ Valid ]
reate[ NotValid ]

ReadyState

withdraw[ Bal !| ]

LowBalanceState

W LowBalance ]

TerminationState

Rose State - Activity Diagram: In Browser Window select Logical View; Select the Class Diagram to
display the diagram; Select a class; Select Browse - State Diagram; If “ State Diagram” is grayed out,
then go back to the class diagram and re-select a class; Place states on the diagram; Place transitions on
the diagram by dragging between states; Select Tools - Check Model; Select File - Save.

9 - Analysis- Complex Operations: To be determined - Activity Diagram and/or Operation
Specification for each operation: name, inputs, precondition/exception, transformation,
postcondition/exception, business rules, description

Rose Specifications: Display the class diagram; Select a class; Press the Right Mouse Button to
display the Specification Dialog Box; Select atab, e.g. Operations Tab; Double-click an operation;
Fill-in the operation information. Select Tools - Check Model; Select File - Save.

|11 - Design Models - Basisfor Coding

10 - Design Processing Environment: Linux Version 6.2, GNU C++ Version 6.2, C++ Standard
Library, CORBA 3.

10 - Design Potential Patterns:

Enterprise: Distributed CORBA Based, components with public interfaces

System (Component to Component): Layered, Session - Entity, Callbacks, Publisher - Subscriber
Component: Application - Document, Controller - Entity - Boundary, Facade

Class Design: UML, Factory, Transaction



Java Language: Java Bean, Enterprise Java Bean, Servlet, RMI

11 - Design Package Diagram

| [ ]

Logical View BankPkg

(from C:\mdI\BankDesign-Impl.mdl)

global

11 - Design Class Diagram Showing Types and Parameters- Goal is completeness for coding

BankApp
(from BankPkg)

+ getApp() : BankApp

+ depositToCheckingAccount(sAcctNum : string, nDeposit : int) : boolean

+ depositToSavingsAccount(sAcctNum : string, nDeposit : int) : boolean

+ withdrawFromCheckingAccount(sAcctNum : string, nWithdraw : int) : boolean

+ withdrawFromSavingsAccount(sAcctNum : string, nWithdraw : int) : boolean

CheckingAccount
+theAccpunt
(from BankPkg)

Account
f BankPk )
(from BankPkg) + create(sAcctNum : string) : boolean
-sCustomerName : string + deposit(nDeposit : int) : boolean
-nMinimumBalance : int d/+ withdraw(nWithdraw : int) : boolean
-nCurrentBalance : int +done()

- sAcctNum : string

+ create(sAcctNum : string) : boolean
. S SavingsAccount
+ deposit(nDeposit : int) : boolean W\ g
. . . (from BankPkg)
+ withdraw(nWithdraw : int) : boolean
+done()
+ create(sAcctNum : string) : boolean
+ deposit(nDeposit : int) : boolean
+ withdraw(nWithdraw : int) : boolean
+done()
To be added: interfaces, exceptions, threads,
transactions, message queues, timers, security, rules

Note: CheckingAccount and SavingsAccount will provide implementation of the polymorphic
operations.

11 - Design Sequence Diagram WithdrawFromCheckingAccount - Optimistic Scenario



x A

: BankApp : Checking
: TellerGUI :BankDB
Account
] 1: getApp()

2: withdrawFromCheckingAccount(string, int)

1

3: create(string)
4: getAccount(string)

L

5: withdraw(int)
6: recordWithdraw(string, string)

gl

7: done( )

8: display(string)

{end - start <= 10sec}

e
O |

Note: getApp required to get the top level application for the first transaction

11 - Design Collaboration Diagram WithdrawFromCheckingAccount - Optimistic Scenario
In Rational Rose open sequence diagram and press F5 to automatically create collaboration diagram.

1: getApp()
2: withdrawFromCheckingAccount(string, int)

e : Bank
2 App

8: display(string)
~TLellerGUl 3: greate(string)
{end - start <= 10sec} 5:|withdraw(int)
7:|done( )
4: getAccount(string)
6: recordWithdraw(string, string)
: Checking >
Account

11 - Design Operation Specification for withdraw() in CheckingAccount Class

Use Case Name: withdraw

Trigger :withdraw

Input Parameters: nWithdraw : int

Output Return: boolean

Precondition: nWithdraw <= nCurrentBalance

Precondition Exception Raised exInsuffientFunds
Description/Transfor mation: nCurrentBalance = nCurrentBalance - nWithdraw
Postcondition: nCurrentBalance < priorCurrentBalance

X

: BankDB

31



Postcondition Exception: exIncorrectBalance

Basic Scenario/Optimistic Scenario: See withdrawFromCheckingA ccount Sequence Diagram
Alternative Scenarios/Pessimistic Scenario: See withdrawFromCheckingAccount Activity Diagram
Business Rules: ValidAccountRule, AdequateBalanceRule

11 - Design Exception Classes. Exception Superclass with Exception(),Exception(string); Exception
Subclasses: exInsufficientFunds with exInsufficientFunds() and exInsuffientFunds(string);
exIncorrectBalance with exIncorrectBalance() and exIncorrectBalance(string).

11 - Design State Diagram for Checking Account Class
Initial

create / BankDB.getAccount(sAcctNum)

[ Checking

[ Valid ]

W [ Notvaiid |
BankDB.record\Wi draw(sAcctNum,nWithdraw\/ /

ReadyState

\ deposit / BankDB.recordDeposit(sAcctum,nDeposit)
~— ™~
withdraw[ LowBalance ]

deposit / BankDB.recordDeposit(sAcctNum,nDeposit)

[ LowBalance
/ withdraw / TellerGUL.display

|V - Implementation M odels

12 - Design Processing Environment: UNIX, C++, CORBA

TerminationState

13 - Implementation Component Diagram

32



ITellerGUI

IBankApp IBankDB

TellerGUI BankApp BankDB

Implementation Files: TellerGUI.exe, BankApp.exe, BankDB.exe

Component Interface Alternatives: 1) BankApp has single interface IBankApp with al operations

exposed

2) BankApp exposes IBankApp, | CheckingAccount, & |SavingAccount Interfaces

3) BankApp exposes IBankApp, IWithdraw, I Deposit, | CheckingAccount, & |SavingAccount
Interfaces

CORBA IDL/C++ needed to describe interfaces

Rose Component Diagram: In Browser Window select Component View; Rename Main to be
Component Diagram; Double-click the diagram name to display the diagram; Place component and
dependency relationships (drag from the client component to the supplier component) on the diagram;
In the Browser drag each class to the approprate component; Select Tools - Check Model; Select File -
Save.

14 - Implementation Deployment Diagram

WindowsPC AppServerUnix DBServerUnix

Rose Deployment Diagram: In Browser Window select Deployment View; Double-click to display
the diagram; Place nodes and connection relationships on the diagram; Select Tools - Check Moddl;
Select File - Save.

/llnterface for BankApp System Usi ng CORBA

IBankApp
(from BankPkg)

+ getApp() : IBankApp

+ depositToCheckingAccount(sAcctNum : string, nDeposit : int) : boolean

+ depositToSavingsAccount(sAcctNum : string, nDeposit : int) : boolean

+ withdrawFromCheckingAccount(sAcctNum : string, nWithdraw : int) : boolean

+ withdrawFromSavingsAccount(sAcctNum : string, nWithdraw : int) : boolean

//Sanmple IDL Interface Code



nmodul e BankApp {
interface | BankApp {
exception exl nsuffient Funds;
| BankApp get App() ;
bool ean deposit ToChecki ngAccount (in string sAcctNum in int nDeposit) ;
bool ean deposit ToSavi ngAccount (in string sAcctNum in int nDeposit) ;
bool ean wi t hdr awFr onmChecki ngAccount (in string sAcctNum in int nWthdraw)rai ses (exlnsuffientFunds);
bool ean wi t hdr awFr onSavi ngAccount (in string sAcctNum in int nWthdraw) raises (exlnsuffientFunds);

b

/] Sanpl e Java Interface Code Using Renote Method | nvocation

inport java.rm.?*;

package BankApp;

public interface | BankApp extends java.rm .Renote {
bool ean deposit ToChecki ngAccount (String sAcctNum int nDeposit) throws java.rm . RenoteException ;
bool ean deposit ToSavi ngAccount (String sAcctNum int nDeposit) throws java.rm . RenoteException ;
bool ean w t hdr awFr onChecki ngAccount (String sAcctNum int nWthdraw) throws java.rm .RenoteException;
bool ean wi t hdr awFr onBavi ngAccount (String sAcctNum int nWthdraw) throws java.rm . RenoteException;

}

//Sanple Mcrosoft IDL Interface Code for COM - Sinplified
|'i brary BankAppLib {
di spi nterface | BankApp {
I BankApp get App();
bool ean deposit ToChecki ngAccount (BSTR sAcct Num int nDeposit) ;
bool ean deposit ToSavi ngAccount (BSTR sAcct Num int nDeposit) ;
bool ean w t hdr awFr onChecki ngAccount (BSTR sAcct Num int nWthdraw);
bool ean w t hdr awFr onBavi ngAccount (BSTR sAcct Num int nWthdraw);
b
cocl ass BankApp {
di spi nterface | BankApp;
b
[/ Sanpl e SOAP (Si npl e Object Access Protocol) SDL (Service Description Language) with XM. - Inconplete
<?xm version='"1.0"?>
<servi ceDescri ption nane=' BankApp'
xm ns="ur n: schemas- xm soap- or g: sdl . 2000- 01- 25’
xm ns: dt =" http://ww. w3. or g/ 1999/ XM_Schena'
xm ns: | BankApp="'1 BankApp' >
<i nport nanmespace='1|BankApp' | ocation="#l BankApp'/>
<soap xm ns='urn: schemas- xn soap- or g: soap- sdl - 2000- 01- 25' >
<interface nanme='|BankApp' >
<request Response nane=' Wt hdr awFr onChecki ngAccount ' >
<request ref="1BankApp: Wt hdr awFr onChecki ngAccount' />
<response ref="1BankApp: Wt hdr awFr onChecki ngAccount Response' / >
</ r equest Response>
</interface>
<servi ce>
<addr esses>
<address uri="http://nyserver/|BankApp. asp' />
</ addr esses>
<i npl erent s nane='| BankApp' />
</ service>
</ soap>
<| BankApp: scherma i d='| BankApp' target Nanespace="1BankApp' xm ns='http://wwmv w3. or g/ 1999/ XM_Schena' >
<el emrent nane=' Wt hdr awFr onChecki ngAccount ' >
</ el enent >
<el enent nanme=" Wt hdr awFr onChecki ngAccount Response' >
<t ype>
<el ement name='return' type='dt:boolean'/>
</type>
</ el enent >
</ | BankApp: schena>
</ servi ceDescri ption>

V - Construction

Coding/Naming Standards; Interface Code - CORBA IDL; C++ Code; CASE Tool Scripts/VBA for custom reports/code
generation

Rose Code Generation - Requires Rose Professional or Enterprise Version. See Help Topic Code Generation. Basic
Steps: 1 - Check Model 2 - Create Components 3 - Map/assign classes to components 4 - Set Code Generation Properties 5
- Select a class, component, or package 6 - Generate code 7 - Examine generated code.



Rose Rever se Engineering - Requires Rose Professional or Enterprise Version. See Help Topic Reverse Engineering.
Use the Model Update Tooal.

VI - Testing

Total System/Integration Testing - All Components/Subsystems; Component Testing - Each Component
Unit Testing - Each Class. Test Case Specification:

Test Use Case Name:

Use Case Name:

Use Case Scenario Name:
Trigger:

Input Parameters:

Output Return:
Precondition:

Precondition Exception Raised:
Description/Transformation:
Postcondition:
Postcondition Exception:
Comments:

VIl - Modd and Construct Other Components

TellerGUI Forms; BankDB Tables: thlWithdraw, tblDeposit, thlSavingAccount, tblCheckingA ccount

UML Stereotypes, Tagged-values, and Constraints

0-0 <<Sample Stereotype>> {Sample Tagged value - {Sample
Element property} Constraint}
Actor Human user, machine, interacting software system, device
Use Case Use Cases: abstract, concrete, extension, included, parent,
child; usecaserelationships: communicates, includes,
extends, specializes
Package Facade, framework, stub, subsystem, system, boundary, namespace, package
controller, entity, process, category, processor group,
servicegroup, use case group
packagerelationships : access, import
Class Metacl ass, powertype, stereotype, utility, process, thread, abstract, interface, parameterized, final,
implementationClass, type, interface, class, datatype, concrete, leaf, root
boundary, controller, entity, exception, signal, template,
enumeration, transaction
Operation Constructor, query, update, destructor abstract, class - static, final - const,
synchronized, native, inline, friend,
isQuery, sequential, guarded,
concurrent, isPolymorphic (may be
overridden)
Parameter In - may not be modified, out —may be modified to
communication information to caller, inout — may be
modified, return
Attribute Read only, writeonly, read write changeable, addOnly, frozen-final —
const, class - static, derived
Relationship Gener alization: implementation, subclass, subtype, final — const, friend, mutable, not Generalization:
implements interface/realizes; extends (inherits); mutable, navigable, not navigable, complete, incomplete,
Association: association, composition aggregation, shared | ordered, not ordered overlapping, disjoint;
aggregation; Dependency between classes/objects: bind, Association: implicit,
derive, friend, instanceOf, instantiate, powertype, refine, or, changeable,
uses, addOnly, frozen
State Wait state, action state, activity state, sub-state, initial enumerated type, class
state, final state, history state, decision, fork, join




Event Call event, signal event, change event, time event
Action Call, return, send, create, destroy
Object Interface, boundary, controller, entity, exception, signal transient, persistent ; UML Link End: new, destroyed,
event, utility, thread association, global, local, parameter, transient, persistent
self; Other: automatic, dynamic, static
Message Call, synchronous, asynchronous, balking, timeout, UML Reguest: broadcast, vote
periodic; Interaction between objects: become, call, copy
Component Executable, document, file, library, table, dil,
CORBA/Java Component
Node Processor, device, memory, network; Link between nodes:
TCP-1P, RS-232, 10-T Ethernet, USB
Constraint Invariant, metaclass, precondition, postcondition,
powertype

Sample tagged values for all elements. documentation, location, semantics

O-0O Goodness Guidelinesfor All Modeling
Elements

Guidelines may be found in Grady Booch’s Object Solutions - Managing the Object-Oriented Project. C++ coding
guidelines may be found in Scott Meyer’ s Effective C++ - 50 Ways to Improve Y our Programs and Designs and in Arthur
Riel’s Object-Oriented Design Heuristics.

- Simplest possible - Clear meaningful name

- Complete Specification including stereotype, property, and constraints

- Consistent name and semantics between diagrams

- Supports weak coupling between elements and strong cohesion within an element
- Distribute processing (intelligence) rather than centralize processing (intelligence)
- Supports use of patterns and reusable elements

0O-0 Element 0O-0 Goodness Guideline

System Has awell-defined layered architecture
Use reusabl e patterns (architecture, design, idioms)

Actor Representsarole

Use Case Represents ause/function of the system; May have optimistic, normal, and pessimistic scenarios; All concrete use
casesidentified; Each use case has an activity diagram showing all paths; Largely independent use case increments
identified;

Package Isthe primary element in large systems; Classesin the package are highly cohesive

Class Providesasingle abstraction of something inthe problem or solution domain

Has awell-defined set of 3 - 5 responsibilities

Issimple, understandabl e, extensible, and adaptable

Exposes minimum functionality

Isdependent upon asfew other classes as possible (weak coupling)
Attributes and operation are cohesive

Has operationsfor object creation, copy, assignment, equality check, etc

Attribute Hasprivateor protected visibility
Cohesive —supportsthe basic purpose of the class
Isinitialized. Has accessor operationsif required

Operation Hasappropriatevisibility - private, protected, public

Implemented with asmall number of lines of code

Hasfew number of parameters

If complex has preconditions/thrown exceptions and postconditions/thrown exceptions
Subclass preconditions should be equal to or weaker than superclass preconditions
Subclass postconditions should be equal to or stronger than superclass postconditions
Cohesive —supportsthe basic purpose of the class

Operation may be sequential or concurrent (thread)

Generalization Superclass/subclasses have interface (behavioral) inheritance with polymorphic operations
Polymorhic operations haveidentical signatures (simplest) or conforming signatures (more complex)
Superclass/subclass levels should not exceed 5 - 6 levels

Superclasses should be abstract - No recursive generalization




Realization Implementing class implements all operations specified in the interface; Prefer interfaces to multiple inheritance;
Prefer interfaces to multiple inheritance

Association & Has private or protected visihility; Hasarole nameto be used in coding

Aggregation- Minimum number of relationships for weak coupling

Composition Minimum inverse - 2 way relationships for weak coupling

Relationships Classwith association has public accessor operations to get/set/modify associated objects - Class with association
doesnot create, copy, or destroy associated objects
Aggregate (whole) class has no public accessor operationsto get/set/modify part objects
Aggregate (whole) class creates, copies, and destroys part objects
Aggregation-composition may have an inverse association but not an inverse aggregation-composition
Favor aggregation-composition over inheritance

State State has aclass; Part States with the same transitionsinto acomposite state
Initial and Final States are shown

Transition Each event has an operationin aclassor thereisaprocessEvent(Event) operation; Transitions show all possible
combinations of events, conditions, and actionsincluding all pathsin an activity diagram.

Object Object isaninstance of aclass; Object is sequential or concurrent (active object) with wait semantics

Message Message invokes an operation defined a class
M essage may be sequential call or concurrent (synchronous, asynchronous, balking, timeout)

Component Exports one or moreinterfaces (set of operations)

Node Representsaphysical processor, device, or other hardware; Provides acrisp abstraction of something drawn from
thevocabulary of the hardware; Directly deploysaset of componentsthat reside on the node; Exposesthe
minimum attributes and operationsthat are relevant; |sconnected to other nodesthat reflectsthe topology of the
system

All Elements Simplest possible - Clear meaningful name
Complete Specification including Stereotype, tagged value - property, and constraints
Consistent name and semantics between diagrams
Supportsweak coupling between elementsand strong cohesion within an element
Distribute processing (intelligence) rather centralize processing (intelligence)

Supportsuse of patternsand reusable elements
Requirements M odel Checklist
Category Check Comment
Project Plan Documents the development project in terms of cost/schedul e/performance,

Magjor risks/workarounds,

QA factors (reliability, correctness, extensibility, etc),

Reuse plan (patterns, components, classes, operations/utilities),
Documentation plan (user manual, help system, tutorials),

Staffing for overall project (project manager, architect, client/user,
methodol ogist/tool smith, Business/System Analyst, developer/programmer, tester,
reusable component/class librarian, technical documentor),

Staff for 10 - 12 member development teams,

O-0 roadmap (diagrams, specifications, code),

tools (requirements tracing, CASE, compiler, code analyzers, testing),
policies (standard library, threads, exceptions, etc),

training/help desk,

sample project documentation provided

Requirements

Sufficient to identify system use cases, system operations and the system boundary in

Statement terms of use cases, system in messages, system out messages, system input objects/data,
and system output objects/data

UML Diagram | Use case diagram shows use cases for major system operations in Requirements

and Statement; System sequence diagram exists for each use case scenario for optimistic,

Specification normal, pessimistic, and other circumstances

Checks

System collaboration diagram shows the system, actors, system in messages, system out
messages, system input objects/data, and system output objects/data

Use case specification show preconditions/thrown exceptions, transformation, and
postconditions

37




Activity diagram for each use case shows all scenarios/paths for the use case

UML Element System - Has awell-defined layered architecture; Use reusable patterns (architecture, design,
Checks idioms)
Actor - Representsarole
Use Case - Represents ause/function of the system; May have optimistic, normal, and pessimistic
scenarios; All concrete use casesidentified; Each use case has an activity diagram showing all
paths; Largely independent use case increments identified;
CASE tool Shows no major diagram/specification inconsistencies
check
Walkthrough Each use case scenario with a person assigned to each actor and the system
(role play) -
Optional
Documentation | All required documents are up to date
Review
Analysis M odel Checklist
Category Check Comment
UML Diagrams | - Class Diagram - Each class has 2 or more attributes and 2 or more operations. Classes
and with acommon purpose are grouped together in a package
Specifications - Sequence diagram showing objects and messages for each use case scenario. Each
message invokes an operation shown in aclass on the class diagram. Each object isan
instance of aclass on the class diagrams
- Statechart shows state based behavior for a class on the class diagram. Each event
invokes an operation shown in aclass on the class diagram. Each event is shown asa
message on the sequence diagram
- Operation specification for complex operations show preconditions/thrown exceptions,
transformation, and postconditions
UML Element Package - Isthe primary element in large systems; Classesin the package are highly cohesive
Checks Class- Providesasingle abstraction of something in the problem or solution domain

Has awell-defined set of 3 - 5 responsibilities

Issimple, understandabl e, extensible, and adaptable

Exposes minimum functionality

I's dependent upon asfew other classes as possible (weak coupling)

Attributes and operation are cohesive

Has operationsfor object creation, copy, assignment, equality check, etc

Attribute - Has private or protected visibility

Cohesive—supportsthe basic purpose of the class

Isinitialized. Has accessor operationsif required

Operation - Has appropriate visibility - private, protected, public

Implemented with asmall number of lines of code

Hasfew number of parameters

If complex has preconditions/thrown exceptions and postconditions/thrown exceptions
Subclass preconditions should be equal to or weaker than superclass preconditions
Subclass postconditions should be equal to or stronger than superclass postconditions
Cohesive—supportsthe basic purpose of the class

Operation may be sequential or concurrent (thread)

Generalization - Superclass/subclasses have interface (behavioral) inheritance with polymorphic
operations

Polymorphic operations haveidentical signatures (simplest) or conforming signatures (more
complex)

Superclass/subclasslevels should not exceed 5 - 6 levels

Superclasses should be abstract - No recursive generalization

Realization - implementing class implements all operations specified in theinterface; Prefer
interfaces to multiple inheritance

Association & Aggregation-Composition Relationships

Has private or protected visibility; Hasarole nameto be used in coding

Minimum number of relationships for weak coupling

Minimum inverse - 2 way relationships for weak coupling




Classwith association has public accessor operationsto get/set/modify associated objects - Class
with association does not create, copy, or destroy associated objects

Aggregate (whole) class has no public accessor operationsto get/set/modify part objects
Aggregate (whole) class creates, copies, and destroys part objects

Aggregation-composition may have an inverse association but not an inverse aggregation-
composition

Favor aggregation-composition over inheritance

State - State has aclass; Part States with the same transitions into acomposite state

Initial and Final States are shown

Transition - Each event has an operation in aclass or there is a processEvent(Event) operation;
Transitions show all possible combinations of events, conditions, and actionsincluding all pathsin
an activity diagram.

Object - Object isan instance of aclass; Object is sequential or concurrent (active object) with wait
semantics

Message - Message invokes an operation defined a class

M essage may be sequential call or concurrent (synchronous, asynchronous, balking, timeout)

Walkthrough Check each use case scenario with a person assigned to each object
(role play) -
optional
CASE tool Check shows no major diagram/specification inconsistencies
check
Documentation | All required documents are up to date
Review
Design Model Checklist
Category Check Comment
UML Diagrams and All class/object level analysis models (diagrams and specifications) are updated
Specifications for the H/W and S/W Configuration List and are sufficiently detailed to generate
code or manually create code
- See Analysis Model Checks
UML Elements See AnalysisModel Checks
Walkthrough (role play) - | Check each use case scenario with a person assigned to each object
optional
CASE tool check Check shows no major diagram/specification inconsistencies
Documentation Review All required documents are up to date

| mplementation Model Checklist - Includes Code

Category

Check

Comment

UML Diagrams and H/W and S/W Configuration List sufficiently shows the required components to

Specifications

implement the classes, objects, and other elementsin the problem domain,
graphic user interfaces/external interfaces, persistence, and distribution

- Component Diagram shows all system executable and other executable
components that a user requires

- Deployment Diagram shows the physical elements that has the system and other
executable components

- All system level analysis models (diagrams and specifications) are updated for
the H/W and S/W Configuration List

UML Elements

Component - Exports one or more interfaces (set of operations)

Node - Represents a physical processor, device, or other hardware; Providesacrisp
abstraction of something drawn from the vocabulary of the hardware; Directly deploysa
set of components that reside on the node; Exposes the minimum attributes and operations




that arerelevant; |sconnected to other nodes that reflects the topology of the system

CASE tool check

Shows no major diagram/specification inconsistencies

CASE tool scripts

Written to generate code for the coding standard

Generated code

Compiles without errors or major warnings

Reverse Engineering
Diagrams

Class diagrams accurately reflect the source code

Code Inspection/Code
Analyzer

Check that production execution code implements the required use case scenarios
and meets Coding Standard guidelines

Build/Release Code
I nspection

Tests system operations with reconditions/transformati ons/postconditions/thrown
exceptions, system in messages, system out messages, system input objects/data,
system states, etc for all use cases.

Documentation Review

All regquired documents are up to date

Test Model Checklist

Category Check Comment
Test Plan Test Plan up to date

UML Diagrams and N/A

Specifications

UML Elements N/A

CASE tool check N/A

Test Cases All unit tests complete

All integration tests complete
All system tests complete

Other planned tests complete: benchmark, configuration, function, installation, integrity,

load, performance, stress
All acceptance tests complete

Documentation Review

All regquired documents are up to date

Code Inspection Checklist

(adapted from PSE 2000 http://www.iam.unibe.ch/~scg/Archive/L ecturess PSE2000/WWW/)

This checklist isaimed at reviews of the maintainability aspect of source code. It is geared towards Java code but can
probably be adapted easily for other languages.

This checklist isto be used in conjunction withrever se engineer ed classdiagrams. Reverse engineering is the process to
use a CASE tool to read source code and to create the class diagram or other diagram from the source code.

The following quote details how the checklist isto be used:

To do theinspection, go through the code line by line, attempting to fully understand what you are reading. At
each line or block of code, skim through the inspection checklist, looking for questions which apply. For each
applicable question, find whether the answer is"yes." A yes answer means a probable defect. Write it down. You
will notice that some of the questions are very low-level and concern themselves with syntactical details, while
others are high-level and require an understanding of what ablock of code does. Be prepared to change your
mental focus. See http://www.ics.hawaii.edu/~johnson/FTR/Bib/Baldwin92.html.

The Code Inspection Protocol can be used to record the defects that are found.
The defect types listed here have been assigned a severity level. The meaning of thislevels are the following:

Leve

M eaning

Severe (9

Thistype of defect strongly hinders mai ntenance and evolution of the software system by introducing
inflexible structures.




Dangerous |Thistype of defect heightens the likeliness that maintenance programmers unwillingly introduce
(D) errors when changing the system.
ll r(r:g) edimenta Thistype of defect makesthe code harder to read and understand.

A's cosmetic defects we consider things that can be improved automatically, e.g. by apretty printer. These defects are thus
not taken into account and also not in the checklist.

The Checklist

The checklist is grouped into the following sections:

- Comments

- Names

- Variable Names
- Method Names
- Aliases

- Coding
-Design

- Object-oriented Design

- Code Layout
- Code Duplication
Defect Type Defect Detecting Question Examples Severity Egrr::
Comments |
1 Do the commentsfail to accurately explain I
' what the code does?
Theclassic bad guy: I
2. Are the comments superfluous? i+ /* add Lto | */
Arevariables (global, local and instance I
variables) uncommented?
Example factsto comment on:
Usage
3 Units of measure
' Bounds, Legal values
Implied/displayed number of decimal
points
Display format
Data entry rules (e.g. must enter)
Does a method definition comment fail to D
4, document which of its parameters the
method is going to change?
Names
5. Are acronyms used instead of spelling cnt Bkr instead of cent r al Banker I
names out?
6. Aredifferent spellings used for the same col ors, col ours, andkul er z
word?
7 Cé?ir:rgpﬁnne?ﬁﬁsuﬁhgaﬁgem ued di spl ay, ;how, present usedfor I
functionality? the same action
Easily misinterpreted names:. i | | 1| D
8 Are variable names used that have a and 008
' typographically similar spelling? Easily confused: par sel nt and
par sel nt
Examples of unclear vocabulary: I
. . it, everything, data, handle, stuff
9 VAV :)? ggr)nes built using abstract, cloudy do, routine, perform
' Per f or nDat aFuncti on, Dol t,
Handl eSt uf f

a4



Are naming conventions ignored:
Do class names start with lower case
letters?

10. Do variable names start with upper case
letters?
Do names of constants contain lower case
letters?
Does capitalization of internal words I
changein variable names?
(When variable names are constructed by
11 gluing words directly together, e.g. inputFileName := "foo.in"
' si ngi ngl nTheRai n, al but thefirst |outputFilename := "foo.out"
words are calledinternal words. They are
distinguished by capitalizing the initial
letter)
Method Names
12 Does the method name fail to mention the 2.‘ d@itf?ggtrg:\fgrltss;ﬁl t;i r?:gr;)an?:ls a b
' side effects the method effectuates? X
storesthe result in a database.
Is the class name used for methods other I
13. than constructors?
(Possiblein Javal)
Variable Names
o 1 o P ot s |
displayed/entered there? the associated variable"zip
Aretheloop variable namesi andj used |. _ . D
i . i :=3.1415;
15. for conceptually different (non-integer) S
j :="HelloDolly";
values?
Aliases
100 instead of MAXBUFFER D-S
16 Are constant parameters literally inserted [open( "/ home/ user/ proj ect/|
' into the code? 0g. t xt ") instead of
open( | ogFi | enane)
17 Are constant names used interchangeably (while(items <= MAXBUFFER) { D
' with the literal value? if(items=100) { ...
UPPERBOUND := 100; I
LOWERBOUND := 50;
18 Are dependencies between constant instead of
’ parameters hidden? UPPERBOUND := 100;
LOWERBOUND :=
UPPERBOUND/2;
Coding
inti; D
19 Aretemporary variables used for two for(i=0;i<n;i++) { ...}
' unrelated purposes?
i := euclidDistance(v,w);
Instance variables defined instead of  |D
20 Arevariables defined at scopesthat are local variables
' wider than they could be? Global variables defined instead of
local variables
Design
For datathat can be converted into S
different formats: Is one format choseto  |Domains which have frequently
21. do all computationsin and do the converted data:

conversions only right after input or before
output?

Currencies, temperature, length, weight

&



Object-oriented
Design

Instance variables are defined public  |S
22. Isthe encapsul ation principle violated? ggg E'};”:?}Tﬁg ?)El::ﬁ:/:??]ltl gr? arg ee tof;ot(;l]se
class
Type testsin conjunction with case S
statements:
switch(p.phoneType()) {
23. I's polymorphism simulated? case POT SPhone: break;
case |SDNPhone: break;
default:
} .
Isinstance data stored in class (static) .Th' S.C(.JUId be the case when the aqthor S
24. : implicitly assumed that the class will
variables? X .
only have one instance at runtime.
Having there methods S
set Left Al i gnnent
Are multiple conceptually identical SetRi ght Al i gnment
set Cent er Al i gnnent
25. methods used where an enumerate_d instead of writing only
constants as parameter would suffice to set Al i gnment (i nt
have only one method? al i gnnent)
where alignment can have the values
| eft,right,center
Code Layout
: This practice can save temporar I
26. ll S nlore than one statement written per varialr;Ies but makes the corc)ie ha};der to
ine?
read
This can lead to deceptive layouts: D
o7 Areif/else blocks missing the enclosing { [if (a)
' } if itis not syntactically necessary? if () x=y;
dex=z
Isthe nesting level of () exceeding 5? D
28. (The number 5 is arbitrary, readability can
already belost at lower levels)
Isthe nesting level of { } blocks exceeding D
29. I . ) .
(The number 7 is arbitrary, readability can
already be lost at lower levels)
FAMOQOS anecdotical evidence: while |D
Are methods longer than 200 lines? investigating areal industrial software
30. (The number 200 is arbitrary, the overview |system, a method was found which was

can already belost at lower line counts)

5000 lines long and was named
createButton().

Code Duplication

31

I's code duplicated?

parts of methods

entire methods

parts of classes (missing
polymorphism)

This checklist is partly based on How To Write Unmaintai nable Code from http://mindprod.com/.

UML Glossary




This glossary defines the terms that are used to describe the Unified Modeling Language (UML) and the Meta Object
Facility (MOF). In addition to UML and M OF specific terminology, it includes related terms from OMG standards and
object-oriented analysis and design methods, as well as the domain of object repositories and meta data managers. Glossary
entries are organized al phabetically and MOF specific entries are identified as‘ [MOF]’.

Notation Conventions

The entriesin the glossary usually begin with alowercase letter. Aninitial uppercase letter is used when aword is usually
capitalized in standard practice. Acronyms are all capitalized, unless they traditionally appear in al lowercase. When one
or more words in amulti-word term is enclosed in brackets, it indicates that those words are optional when referring to the
term. For example, use case [class] may be referred to as simply use case.

The following conventions are used in this glossary:
® Contrast: <term> Refersto aterm that has an opposed or substantively different meaning.

® See: <term> Refersto arelated term that has a similar, but not synonymous meaning.
® Synonym: <term> Indicates that the term has the same meaning as another term, which is referenced.

® Acronym: <term> Indicates that the term is an acronym. The reader is usually referred to the spelled-out term for the
definition, unless the spelled-out term is rarely used.

abstract class A classthat cannot be directly instantiated. Contrast: concrete class.

abstraction Theessential characteristics of an entity that distinguish it from all other kinds of entities. An abstraction definesa
boundary relative to the perspective of the viewer.

action The specification of an executable statement that forms an abstraction of acomputational procedure. An action typically results
in achangein the state of the system, and can be realized by sending a message to an object or modifying alink or avalue of an attribute.
action sequence An expression that resolvesto asequence of actions.

action state A statethat representsthe execution of an atomic action, typically theinvocation of an operation.

activation Theexecution of an action.

active class A classwhose instances are active objects. See: active object.

active object Anobject that ownsathread and caninitiate control activity. Aninstance of active class. See: active class, thread.
activity graph A special case of astate machinethat isused to model processesinvolving one or more classifiers. Contrast: statechart
diagram.

actor [class] A coherent set of rolesthat users of use cases play when interacting with these use cases. An actor has onerolefor each
use case with which it communicates.

actual parameter Synonym: argument.

aggregate [class] A classthat representsthe “whol€” in an aggregation (whole-part) relationship. See: aggregation.

aggregation A specia form of association that specifies awhole-part relationship between the aggregate (whole) and acomponent part.
See: composition.

analysis The part of the software devel opment processwhose primary purposeisto formulate amodel of the problem domain. Analysis
focuses what to do, design focuses on how to do it. Contrast: design.

analysis time Refersto something that occurs during an analysis phase of the software devel opment process. See: design time,
modeling time.

architecture Theorganizational structure and associated behavior of asystem. An architecture can be recursively decomposed into
partsthat interact through interfaces, relationships that connect parts, and constraints for assembling parts. Partsthat interact through
interfacesinclude classes, components and subsystems.

argument A binding for a parameter that resolvesto arun-time instance. Synonym: actual parameter. Contrast: parameter.

artifact A pieceof information that isused or produced by a software devel opment process. An artifact can beamodel, adescription, or
software. Synonym: product.

association The semantic relationship between two or more classifiersthat specifies connections among their instances.

association class A model element that has both association and class properties. An association class can be seen as an association
that also has class properties, or asaclassthat also has association properties.

association end Theendpoint of an association, which connectsthe association to aclassifier.

attribute A featurewithin aclassifier that describes arange of valuesthat instances of the classifier may hold.

behavior The observable effects of an operation or event, including itsresults.

behavioral feature A dynamic feature of amodel element, such as an operation or method.

behavioral model aspect A model aspect that emphasizes the behavior of theinstancesin asystem, including their methods,
collaborations, and state histories.

binary association An association between two classes. A special case of an n-ary association.

binding The creation of amodel element from atemplate by supplying argumentsfor the parameters of thetemplate.

boolean Anenumeration whosevalues aretrue and false.

boolean expression Anexpressionthat evaluatesto abooleanvalue.

cardinality The number of elementsin aset. Contrast: multiplicity.



child Inageneralization relationship, the specialization of another element, the parent. See: subclass, subtype. Contrast: parent.

call An action state that invokes an operation on aclassifier.

class A description of aset of objectsthat share the same attributes, operations, methods, relationships, and semantics. A classmay use
aset of interfacesto specify collections of operationsit providesto its environment. See: interface.

classifier A mechanism that describes behavioral and structural features. Classifiersincludeinterfaces, classes, datatypes, and
components.

classification Theassignment of an object to aclassifier. Seedynamic classification, multiple classification and static classification.
class diagram A diagram that showsacollection of declarative (static) model elements, such as classes, types, and their contents and
relationships.

client A classifier that requests a service from another classifier. Contrast: supplier.

collaboration The specification of how an operation or classifier, such asause case, isrealized by aset of classifiersand associations
playing specific roles used in a specific way. The collaboration defines an interaction. See: interaction.

collaboration diagram A diagram that showsinteractions organized around the structure of amodel, using either classifiersand
associations or instances and links. Unlike a sequence diagram, acollaboration diagram shows the rel ationshi ps among the instances.
Sequence diagrams and collaboration diagrams express similar information, but show it in different ways. See: sequence diagram.
comment An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.

compile time Refersto something that occurs during the compilation of a software module. See: modeling time, run time.
component A physical, replaceable part of asystem that packagesimplementation and providesthe realization of aset of interfaces. A
component represents a physical piece of implementation of asystem, including software code (source, binary or executable) or
equivalents such as scripts or command files.

component diagram A diagram that showsthe organizations and dependencies among components.

composite [class] A classthat isrelated to one or more classes by acomposition relationship. See: composition.

composite aggregation Synonym: composition.

composite state A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates. See: substate.
composition A form of aggregation association with strong ownership and coincident lifetime as part of the whole. Partswith non-
fixed multiplicity may be created after the compositeitself, but once created they live and die with it (i.e., they sharelifetimes). Such
parts can also be explicitly removed before the death of the composite. Composition may be recursive. Synonym: composite aggregation.
concrete class A classthat can be directly instantiated. Contrast: abstract class.

concurrency The occurrence of two or more activities during the sametimeinterval. Concurrency can be achieved by interleaving or
simultaneously executing two or more threads. See: thread.

concurrent substate A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: digjoint substate.

constraint A semantic condition or restriction. Certain constraints are predefined in the UML, others may be user defined. Constraints
are one of three extensibility mechanismsin UML. See: tagged value, stereotype.

container 1. Aninstance that existsto contain other instances, and that provides operationsto access or iterate over its contents. (for
example, arrays, lists, sets). 2. A component that existsto contain other components.

containment hierarchy A namespace hierarchy consisting of model elements, and the containment rel ationships that exist between
them. A containment hierarchy formsagraph.

context A view of aset of related modeling elementsfor aparticular purpose, such as specifying an operation.

datatype A descriptor of aset of valuesthat lack identity and whose operations do not have side effects. Datatypesinclude primitive
pre-defined types and user-definable types. Pre-defined typesinclude numbers, string and time. User-definable typesinclude
enumerations.

defining model [MOF] The model on which arepository isbased. Any number of repositories can have the same defining model.
delegation Theability of an object to issue amessage to another object in responseto amessage. Delegation can be used asan
aternative to inheritance. Contrast: inheritance.

dependency A relationship between two modeling elements, in which achange to one modeling element (the independent element)
will affect the other modeling element (the dependent element).

deployment diagram A diagram that showsthe configuration of run-time processing nodes and the components, processes, and
objectsthat live on them. Components represent run-time manifestations of code units. See: component diagrams.

derived element A model element that can be computed from another element, but that is shown for clarity or that isincluded for
design purposes even though it adds no semantic information.

design The part of the software devel opment process whose primary purposeisto decide how the system will beimplemented. During
design strategic and tactical decisions are made to meet the required functional and quality requirements of asystem.

design time Refersto something that occurs during adesign phase of the software devel opment process. See: modeling time. Contrast:
analysistime.

development process A set of partially ordered steps performed for agiven purpose during software devel opment, such as
constructing models or implementing models.

diagram A graphical presentation of acollection of model elements, most often rendered as a connected graph of arcs (rel ationships)
and vertices (other model elements). UML supportsthefollowing diagrams: class diagram, object diagram, use case diagram, sequence
diagram, collaboration diagram, state diagram, activity diagram, component diagram, and deployment diagram.

disjoint substate A substatethat cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.

distribution unit A set of objectsor componentsthat are allocated to aprocessor aprocessor asagroup. A distribution unit can be
represented by arun-time composite or an aggregate.

domain An areaof knowledge or activity characterized by aset of concepts and terminology understood by practitionersin that area.

45



dynamic classification A semantic variation of generalization in which an object may changeitsclassifier. Contrast: static
classification.

element An atomic constituent of amodel.

entry action An action executed upon entering a state in a state machine regardless of the transition taken to reach that state.
enumeration A list of named values used asthe range of aparticular attribute type. For example, RGBColor ={red, green, blue}.
Boolean isapredefined enumeration with values from the set { false, true} .

event The specification of asignificant occurrence that hasalocation intime and space. In the context of state diagrams, an eventisan
occurrence that can trigger atransition.

exit action An action executed upon exiting astate in a state machine regardless of the transition taken to exit that state.

export Inthe context of packages, to make an element visible outsideits enclosing namespace. See: visibility. Contrast: export [OMA],
import.

expression A string that evaluatesto avalue of aparticular type. For example, the expression“ (7 +5* 3)” evaluatesto avalue of type
number.

extend A relationship from an extension use caseto a base use case, specifying how the behavior defined for the extension use case
augments (subject to conditions specified in the extension) the behavior defined for the base use case. The behavior isinserted at the
|ocation defined by the extension point in the base use case. The base use case does not depend on performing the behavior of the
extension use case. Seeextension point, include.

facade A stereotyped package containing only referencesto model elements owned by another package. It isused to providea ' public
view' of some of the contents of a package.

feature A property, like operation or attribute, which is encapsul ated within aclassifier, such asan interface, aclass, or adatatype.
final state A special kind of state signifying that the enclosing composite state or the entire state machineis compl eted.

fire To execute astate transition. See: transition.

focus of control A symbol on asequence diagram that showsthe period of time during which an object is performing an action, either
directly or through asubordinate procedure.

formal parameter Synonym: parameter.

framework 1. A stereotyped package consisting mainly of patterns. See: patter n. 2. An architectural patternthat provides an extensible
template for applications within a specific domain.

generalizable element A model element that may participate in a generalization relationship. See: generalization.

generalization A taxonomic relationship between amore general element and amore specific element. The more specific element is
fully consistent with the more general element and contains additional information. Aninstance of the more specific element may be used
where the more general element is allowed. See: inheritance.

guard condition A condition that must be satisfied in order to enable an associated transition tofire.

implementation A definition of how something is constructed or computed. For example, aclassisan implementation of atype, a
method is an implementation of an operation.

Implementation inheritance Theinheritance of the implementation of a more specific element. Includesinheritance of theinterface.
Contrast: interface inheritance.

import Inthe context of packages, adependency that shows the packages whose classes may be referenced within agiven package
(including packages recursively embedded within it). Contrast: export.

include A relationship from abase use case to aninclusion use case, specifying how the behavior for the base use case containsthe
behavior of theinclusion use case. The behavior isincluded at the location which isdefined in the base use case. The base use case
depends on performing the behavior of theinclusion use case, but not onitsstructure (i.e., attributes or operations). Seeextend.
inheritance The mechanism by which more specific elementsincorporate structure and behavior of more general elementsrelated by
behavior. See generalization.

instance An entity to which aset of operations can be applied and which has astate that storesthe effects of the operations. See: object.
interaction A specification of how stimuli are sent between instancesto perform aspecific task. Theinteraction isdefined in the
context of a collaboration. See collaboration.

interaction diagram A generic term that appliesto several types of diagramsthat emphasize object interactions. Theseinclude
collaboration diagrams and sequence diagrams.

interface A named set of operationsthat characterize the behavior of an element.

interface inheritance Theinheritance of the interface of amore specific element. Does not include inheritance of the implementation.
Contrast: implementation inheritance.

internal transition A transition signifying aresponseto an event without changing the state of an object.

layer The organization of classifiersor packages at the samelevel of abstraction. A layer represents ahorizontal slicethrough an
architecture, whereas apartition representsavertical slice. Contrast: partition.

link A semantic connection among atuple of objects. Aninstance of an association. See: association.

link end Aninstance of an association end. See: association end.

message A specification of the conveyance of information from one instance to another, with the expectation that activity will ensue. A
message may specify theraising of asignal or the call of an operation.

metaclass A classwhoseinstances are classes. M etacl asses are typically used to construct metamodels.

meta-metamodel A model that defines the language for expressing a metamodel. The relationship between ameta-metamodel and a
metamodel is anal ogous to the relationship between a metamodel and amodel.

metamodel A model that defines the language for expressing amodel.

metaobject A generic term for all metaentitiesin ametamodeling language. For example, metatypes, metaclasses, metaattributes, and
metaassociations.

method Theimplementation of an operation. It specifiesthe algorithm or procedure associated with an operation.



Model [MOF] An abstraction of aphysical system, with acertain purpose..See: physical system. Usage note: In the context of the MOF
specification, which describes a meta-metamodel, for brevity the meta-metamodel isfrequently to as simply the model.

model aspect A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural model
aspect emphasizesthe structural qualities of the metamodel.

model elaboration The process of generating arepository type from apublished model. Includesthe generation of interfacesand
implementations which allows repositoriesto be instantiated and popul ated based on, and in compliance with, the model el aborated.
model element [MOF] An element that is an abstraction drawn from the system being model ed. Contrast: view element. Inthe MOF
specification model elements are considered to be metaobjects.

modeling time Refersto something that occurs during amodeling phase of the software devel opment process. It includesanalysistime
and design time. Usage note: When discussing object systems, it is often important to distinguish between modeling-time and run-time
concerns. See: analysistime, design time. Contrast: run time.

module A software unit of storage and manipulation. Modul esinclude source code modul es, binary code modules, and executable code
modules. See: component.

multiple classification A semantic variation of generalization in which an object may belong directly to morethan one classifier. See:
static classification, dynamic classification.

multiple inheritance A semantic variation of generalization in which atype may have more than one supertype. Contrast: single
inheritance.

multiplicity A specification of therange of allowable cardinalitiesthat a set may assume. Multiplicity specifications may be given for
roles within associations, parts within composites, repetitions, and other purposes. Essentially amultiplicity isa(possibly infinite) subset
of the non-negative integers. Contrast: cardinality.

multi-valued [MOF] A model element with multiplicity defined whose Multiplicity Type:: upper attributeis set to anumber greater
than one. Theterm multi-valued does not pertain to the number of values held by an attribute, parameter, etc. at any pointintime.
Contrast: single-valued.

n-ary association An association among three or more classes. Each instance of the association isan n-tuple of valuesfrom the
respective classes. Contrast: binary association.

name A string used to identify amodel element.

namespace A part of the model in which the names may be defined and used. Within anamespace, each name has a unique meaning.
See: name.

node A nodeisclassifier that represents arun-time computational resource, which generally has at |east amemory and often processing
capability. Run-time objects and components may reside on nodes.

object An entity with awell-defined boundary and identity that encapsulates state and behavior. State is represented by attributes and
relationships, behavior isrepresented by operations, methods, and state machines. An object isan instance of aclass. See: class, instance.
object diagram A diagram that encompasses objects and their rel ationships at a point in time. An object diagram may be considered a
special case of aclassdiagram or acollaboration diagram. See: class diagram, collaboration diagram.

object flow state A statein an activity graph that representsthe passing of an object from the output of actionsin one stateto theinput
of actionsin another state.

object lifeline A linein asequence diagram that represents the existence of an object over aperiod of time. See: sequence diagram.
operation A servicethat can be requested from an object to effect behavior. An operation hasasignature, which may restrict the actual
parametersthat are possible.

package A general purpose mechanism for organizing elementsinto groups. Packages may be nested within other packages.
parameter The specification of avariablethat can be changed, passed, or returned. A parameter may include aname, type, and
direction. Parameters are used for operations, messages, and events. Synonyms: formal parameter. Contrast: argumert.

parameterized element The descriptor for aclasswith one or more unbound parameters. Synonym: template.

parent Inageneralization relationship, the generalization of another element, the child. See: subclass, subtype. Contrast: child.
participate The connection of amodel element to arelationship or to areified relationship. For example, aclass participatesin an
association, an actor participatesin ause case.

partition 1. activity graphs: A portion of an activity graphsthat organizesthe responsibilitiesfor actions. See: swimlane. 2. architecture:
A set of related classifiers or packages at the samelevel of abstraction or acrosslayersin alayered architecture. A partition representsa
vertical slicethrough an architecture, whereas alayer represents ahorizontal slice. Contrast: layer.

pattern A templatecollaboration.

persistent object An object that exists after the process or thread that created it has ceased to exist.

postcondition A constraint that must be true at the compl etion of an operation.

precondition A constraint that must be true when an operation isinvoked.

primitive type A pre-defined basic datatype without any substructure, such as an integer or astring.

process 1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which includes heavyweight and
lightweight processes. If necessary, an implementation distinction can be made using stereotypes. 2. A software devel opment process—
the steps and gui delines by which to devel op asystem. 3. To execute an algorithm or otherwise handl e something dynamically.
projection A mapping from aset to a subset of it.

property A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are predefinedin
the UML; others may be user defined. See: tagged value.

pseudo-state A vertex in astate machinethat hasthe form of astate, but doesn’t behave asastate. Pseudo-statesincludeinitial and
history vertices.

physical system 1. The subject of amodel. 2. A collection of connected physical units, which can include software, hardware and
people, that are organized to accomplish aspecific purpose. A physical system can be described by one or more models, possibly from
different viewpoints. Contrast: system.

47



published model [MOF] A model which has been frozen, and becomes available for instantiating repositories and for the support in
defining other models. A frozen model’s model elements cannot be changed.

qualifier Anassociation attribute or tuple of attributeswhose val ues partition the set of objectsrelated to an object across an association.
realization A relationship between classifiers, in which one classifier specifiesacontract that another classifier guaranteesto carry out.
receive [a message] The handling of astimulus passed from asender instance. See: sender, receive.

receiver [object] The object handling a stimulus passed from a sender object. Contrast: sender.

receive signal event - asignal (asynchronous stimulus) that is handled by thereceiver entity.

reception A declaration that aclassifier isprepared to react to the receipt of asignal.

reference 1. A denotation of amodel element. 2. A named slot within aclassifier that facilitates navigation to other classifiers.
Synonym: pointer.

refinement A relationship that represents afuller specification of something that has already been specified at acertain level of detail.
For example, adesign classisarefinement of an analysisclass.

relationship A semantic connection among model elements. Examples of relationshipsinclude associations and generalizations.
repository A facility for storing object models, interfaces, and implementations.

requirement A desired feature, property, or behavior of asystem.

responsibility A contract or obligation of aclassifier.

reuse Theuseof apre-existing artifact.

role The named specific behavior of an entity participating in aparticular context. A role may be static (e.g., an association end) or
dynamic (e.g., acollaboration role).

run time The period of time during which acomputer program executes. Contrast: modeling time.

scenario A specific sequence of actionsthat illustrates behaviors. A scenario may be used to illustrate an interaction or the execution of
ause case instance. See: interaction.

schema [MOF] Inthe context of the M OF, aschemais anal ogousto a package which isacontainer of model elements. Schema
corresponds to an MOF package. Contrast: metamodel, package.

semantic variation point A point of variation in the semantics of ametamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

send [a message] The passing of astimulusfrom asender instance to areceiver instance. See: sender, receive.

send signal event isasignal (asynchronous stimulus) that is created by asender entity and sent to areceiver entity.

sender [object] The object passing astimulusto areceiver object. Contrast: receive.

sequence diagram A diagram that shows object interactions arranged in time sequence. In particular, it showsthe objects
participating in theinteraction and the sequence of messages exchanged. Unlike a collaboration diagram, a sequence diagram includes
time sequences but does not include object relationships. A sequence diagram can exist in ageneric form (describes all possible
scenarios) and in an instance form (describes one actual scenario). Sequence diagrams and collaboration diagrams express similar
information, but show it in different ways. See: collaboration diagram.

signal The specification of an asynchronous stimulus communi cated between instances. Signals may have parameters.

signature The nameand parameters of abehavioral feature. A signature may include an optional returned parameter.

single inheritance A semantic variation of generalization in which atype may have only one supertype. Synonym: multiple
inheritance [OMA]. Contrast: multiple inheritance.

single valued [MOF] A model element with multiplicity defined issingle valued when its Multiplicity Type:: upper attributeisset to
one. Theterm single-valued does not pertain to the number of values held by an attribute, parameter, etc., at any pointintime, sincea
single-valued attribute (for instance, with amultiplicity lower bound of zero) may have no value. Contrast: multi-valued.

specification A declarative description of what something isor does. Contrast: implementation.

state A condition or situation during thelife of an object during which it satisfies some condition, performs some activity, or waitsfor
some event. Contrast: state [OMA].

statechart diagram A diagram that shows a state machine. See: state machine.

state machine A behavior that specifiesthe sequences of statesthat an object or an interaction goesthrough duringitslifein response
to events, together with its responses and actions.

static classification A semantic variation of generalization in which an object may not change classifier. Contrast: dynamic
classification.

stereotype A new type of modeling element that extends the semantics of the metamodel. Stereotypes must be based on certain existing
types or classesin the metamodel. Stereotypes may extend the semantics, but not the structure of pre-existing types and classes. Certain
stereotypes are predefined inthe UML, others may be user defined. Stereotypes are one of three extensibility mechanismsin UML. See:
constraint, tagged value.

stimulus The passing of information from oneinstance to another, such asraising asignal or invoking an operation. The receipt of a
signal isnormally considered an event. See: message.

string A sequence of text characters. The details of string representation depend on implementation, and may include character setsthat
support international characters and graphics.

structural feature A static feature of amodel element, such asan attribute.

structural model aspect A model aspect that emphasizes the structure of the objectsin a system, including their types, classes,
relationships, attributes, and operations.

subactivity state A statein an activity graph that represents the execution of anon-atomic sequence of stepsthat has some duration.
subclass Inageneralization relationship, the specialization of another class; the superclass. See: generalization. Contrast: superclass.
submachine state A statein astate machine which isequivalent to acomposite state but its contentsis described by another state
machine.

substate A statethat is part of acomposite state. See: concurrent state, digoint state.



subpackage A packagethat iscontained in another package.

subsystem A grouping of model elementsthat represents abehavioral unitinaphysical system. A subsystem offersinterfacesand has
operations. In addition, the model elements of asubsystem can be partitioned into specification and realization elements. Seepackage.
See: physical system.

subtype In ageneralization relationship, the specialization of another type; the supertype. See: generalization. Contrast: supertype.
superclass Inageneralization relationship, the generalization of another class; the subclass. See: generalization. Contrast: subclass.
supertype Inageneralization relationship, the generalization of another type; the subtype. See: generalization. Contrast: subtype.
supplier A classifier that provides servicesthat can beinvoked by others. Contrast: client.

swimlane A partition on aactivity diagram for organizing the responsibilitiesfor actions. Swimlanestypically correspond to
organizational unitsin abusiness model. See: partition.

synch state A vertex in astate machine used for synchronizing the concurrent regions of a state machine.

system A top-level subsystemin amodel. Contrast: physical system.

tagged value Theexplicit definition of aproperty asaname-value pair. In atagged value, the nameisreferred asthetag. Certain tags
are predefined in the UML ; others may be user defined. Tagged values are one of three extensibility mechanismsin UML. See:
constraint, stereotype.

template Synonym: parameterized element.

thread [of control] A single path of execution through a program, adynamic model, or some other representation of control flow.
Also, astereotype for theimplementation of an active object as lightweight process. Seeprocess.

time event An event that denotes the time elapsed since the current state was entered. See: evert.

time expression An expression that resolvesto an absolute or relative value of time.

timing mark A denotation for thetime at which an event or message occurs. Timing marks may be used in constraints.

top level A stereotype of package denoting the top-most package in acontainment hierarchy. ThetopL evel stereotype definesthe outer
limit for |ooking up names, as namespaces“ see” outwards. For example, TopL evel subsystem representsthetop of the subsystem
containment hierarchy.

trace A dependency that indicates ahistorical or process relationship between two elementsthat represent the same concept without
specific rulesfor deriving one from the other.

transient object Anobject that existsonly during the execution of the processor thread that created it.

transition A relationship between two statesindicating that an object in the first state will perform certain specified actions and enter
the second state when a specified event occurs and specified conditions are satisfied. On such achange of state, thetransitionissaid to
fire.

type A stereotype of classthat isused to specify adomain of instances (objects) together with the operations applicableto the objects. A
type may not contain any methods. See: class, instance. Contrast: interface.

type expression An expression that evaluatesto areferenceto one or moretypes.

uninterpreted A placeholder for atype or typeswhose implementation is not specified by the UML. Every uninterpreted value hasa
corresponding string representation. See: any [CORBA].

usage A dependency inwhich one element (the client) requiresthe presence of another element (the supplier) for its correct functioning
or implementation.

use case [class] The specification of asequence of actions, including variants, that asystem (or other entity) can perform, interacting
with actors of the system. See: use case instances.

use case diagram A diagram that showstherel ationships among actorsand use cases within asystem.

use case instance The performance of asequence of actions being specified in ause case. Aninstance of ause case. See: use case
class.

use case model A model that describes a system’ sfunctional requirementsin terms of use cases.

utility A stereotypethat groups global variablesand proceduresin the form of aclass declaration. The utility attributes and operations
become global variables and global procedures, respectively. A utility isnot afundamental modeling construct, but aprogramming
convenience.

value Anelement of atypedomain.

vertex A sourceor atarget for atransition in astate machine. A vertex can be either astate or a pseudo-state. See: state, pseudo-state.
view A projection of amodel, which is seen from agiven perspective or vantage point and omits entitiesthat are not relevant to this
perspective.

view element A view element isatextual and/or graphical projection of acollection of model elements.

view projection A projection of model elementsonto view elements. A view projection providesalocation and astylefor each view
element.

visibility Anenumeration whose value (public, protected, or private) denotes how the model element to which it refers may be seen
outside its enclosing namespace.

UML Process Terms
UML - The Unified Modeling Language is a standard modeling language for software - alanguage for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system.

UML Process - asoftware development processthat isbased upon the UML that isiterative, architecture-centric, use-case driven, and
risk-driven. Itisorganized around the workflows (phases) of requirements, analysis, design, implementation, construction, testing. The
processisaset of stepsintended to reach agoal, e.g. to efficiently and predictably deliver asoftware product to meet the needs of your
organization.

Increment - aset of use cases that represent acompl ete subset of business functionality largely independent of other increments.

49



Iteration - acomplete passthrough all phases of the software development, e.g. Requirements, Analysis, Design, |mplementation,
Coding for ause case increment.

Architecture - The organizational structure of asystem, including its decomposition into parts, their connectivity, interaction
mechanisms, and the guiding principlesthat inform the design of asystem.

Business M odel - The set of documentsthat describe abusinessor enterpriseat avery highlevel.

Component-based development (CBD) - The creation and deployment of software-intensive systems assembled from components, as
well asthe development and harvesting of such components.

Middleware and Enterprise Java Bean Glossary

Application server - A server program that allowstheinstallation of application specific software components, in amanner so that they
can beremotely invoked, usually by some form of remote object method call.

Bean-managed per sistence - When an Enterprise JavaBean performsits own long-term state management.

Bytecode - In the context of Java, bytecode isthe platform-independent executable program code.

Clustering - Aggregating multiple serverstogether to form aservice pool of somekind, usually for achieving redundancy or improving
performance.

Component standard - A definition of how software components cooperate, and in particular the rolesand interfaces of each. Inthe
context of Javamiddleware, component standards usually include specifications of the middleware interfaces exposed to the components,
and the component interfaces required by the middleware.

Container managed per sistence - When an Enterprise JavaBean server manages abean'slong-term state.

CORBA - Standard maintained by the Object Management Group (OMG), called the Common Object Request Broker Architecture.
COSNaming - CORBA standard for object directories.

Data sour ce - Thisistheterm used by the JTA and JDBC specificationsto refer to persistent repository of data. It usually representsa
database. It al'so may refer to an object that makes database connections available (i.e. adriver).

DCOM - Microsoft's Distributed Component Object Model.

Enterprise JavaBeans (EJB)- A server component standard devel oped by Sun Microsystems.

Entity bean - An Enterprise JavaBean that maintains state across sessions, and may belooked up in an object directory by itskey value.
Failover - Theability to respond resiliently to acomponent failure by switching to another component.

IDL - interface description language, CORBA's syntax for defining object remote interfaces.

I10OP - Internet Inter-ORB Protocol, CORBA'swire protocol for transmitting remote object method invocations.

I SAPI - Microsoft's C++ API for coding application extensions for its Internet Information Server.

Java Naming and Directory Interface - The Javastandard API for accessing directory services, such asLDAP, COS Naming, and
others.

Java Transaction API - Java APl for coding client demarcated transactions, and for building transactional datasource drivers.

JNDI - JavaNaming and Directory Interface.

JTA -JavaTransaction API.

JTS - The Java Transaction Service, which in the Java binding for the CORBA Transaction Service. Provides away for middleware
vendorsto build interoperabl e transactional middleware.

JVM - Javavirtual machine.

L DAP - Lightweight Directory Access Protocol, a protocol for directory services, derived from X.500.

Middleware - Softwarethat runson aserver, and acts as either an application processing gateway or arouting bridge between remote
clientsand data sources or other servers, or any combination of these.

NSAPI - Netscape's C language API for adding application extensionsto their Web servers.

OM G - Object Management Group, an organi zation that defines and promotes object oriented programming standards.

OODB - object-oriented database.

OODBMS - object-oriented database management system.

ORB - object request broker, the primary message routing component in a CORBA product.

Passivate - To place an object in adormant state when it isnot being accessed, such that it can later be returned to an active and usable
state.

Per sistence - Maintaining state over along time, especially across sessions.

Pooling - Maintaining acollection of objects, servers, connections, or other resourcesfor ready access, so that one does not need to be
created anew each time oneisneeded.

RM1 - Remote Method Invocation, the Java standard technology for building distributed objects whose methods can be invoked remotely
acrossanetwork.

RM1 over [IOP - Using the CORBA |1OP wire protocol from an RMI API.

Servlet- An application extension to aJava\Web server.

Session bean - An Enterprise JavaBean that does not maintain its state from one session to the next. Appearsto the client asif the bean
was created just for that client.

Skeleton - A server-side software component that servesto relay remote callsfrom aclient to the methods of aservant runningina
server. Usually askeleton isautomatically generated by aspecial compiler.

SOAP - Simple Object Access Protocol for passing XML documents between distributed applications.

SQLJ - An extended Java syntax for embedding SQL -like commandsin a Java program.

Stub - A client-side software component that servesto forward remote callsto aremote server, and receive the subsequent responses.
Usually automatically generated by aspecial compiler.

Three-tier - Anarchitecturein which aremote client accesses remote data sources viaan intervening server.



Transaction manager - A software component that coordinates the separate transactions of multiple datasources, so that they behave as
asingleunified transaction. Requires datasource driversthat can participatein thiskind of coordination. Also usually providesthe ability
to monitor transactions and provide statistics.

Transactional - When an operation hasthe property that it either completes, or if it does not complete dueto afailure, it either undoesits
own effectsor hasthe ability to complete at alater timewhen thefailureisrepaired.

Refer ences

UML References
The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language
Reference Manual by James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Software Development Process by Ivar Jacobson,
Grady Booch, and James Rumbaugh, The Complete UML Training Course by Grady Booch, James Rumbaugh, Ivar Jacobson; UML
in a Nutshell by Sinan Si Alhir, The Object Constraint Language by Jos Warmer and Anneke Kleppe, Applying Use Cases by Geri
Schneider and Jason P. Winters, The Rational Unified Process An Introduction Second Edition by Krutchen, Object Solutions Managing
the Object-Oriented Project by Grady Booch, Objects, Components, and Frameworks with UML - The Catalysis Approach by Desmond
D’ Souzaand Alan Wills, Use Case Driven Object Modeling with UML - A Practical Approach by Doug Rosenberg; Use Case:
Requirements in Context by Daryl Kulak, Business Modeling with UML Business Patterns at Work by Hans-Eric Eriksson and Magnus
Penker, Analysis Patterns Reusable Object Models by Martin Fowler, Building Object Applications That Work (SIGS Books, 1997) by

Scott Ambler; Object-Oriented Software Metrics by Lorenz and Kidd

Patter ns References
Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Patternsin JavaVol 1 and 2 by Mark Grand
A System of Patterns by Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal

Enter prise Java References
Developing Java Enterprise Applications by Stephen Asbury and Scott R. Weiner, Client/Server Programming with Java and CORBA by
Robert Orfali and Dan Harkey, Java Application Frameworks by Asbury and Giovani, Enterprise Java Beans by V aleski
Key Web Sites - www.rational .com.com, www.omg.org, www.cetus-links.org, www.semadusa.com, Free M agazines- Software
Development - www.sdmagazi ne.com/sdonline/fr_subs.html; Distributed Computing - www.distributedcomputing.com; Application
Development Trends - www.adtmag.com

Richard Felsinger, 960 Scottland Dr, Mt Pleasant, SC 29464 843-881-3648 dfel singer @home.com1/29/2001

51



