
PAGE 1 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

ObjectiveView
The Journal For Managers and Technical Staff In Object and Component

Development
Summer '98 Issue

Welcome to issue 2 of ObjectiveView. This issue sees the start of our Object
Architecture and SubjectiveView series, which will look in-depth at object

infrastructure products. Our ObjectDesign series continues with discussion of
the Open Closed principle, and we have the results of a recent survey on business

objects. Email us now (in confidence) for your FREE subscription.

Object Design Series

The Open Closed Principle
For: Object Architects and Designers

How do you make components extensible without
modification?

Robert C. Martin discusses - page 37

Introducing Object Technology Series

Introducing CORBA
For Managers and Technical Staff New

To CORBA

Author Thomas Mowbray introduces
CORBA - Page 6

Architecture/SubjectiveView Series

End To End Objects
For: Object Architects, Project Mangers,

Technical Staff
Relational or Object Database?

Keiron McCammon - puts the ODBMS
Case - page 21

Architecture/SubjectiveView Series

Middleware Wars
For: Object Architects, Project Mangers,

Technical Staff

How do you develop inter-operably for RPC,
CORBA and COM at the same time?

Anne Thomas on Noblenet Nouveau -12

ObjectNews - page 2 OMG Analysis - page 36

Subscription Details
FOR YOUR FREE SUBSCRIPTION TO OBJECTIVE VIEW

Email: objective.view@ratio.co.uk-Tel: Rennie Garcia on 0181 579 7900 or simply complete the box below and
post or FAXBACK (0181 579 9200) PLEASE SUPPLY THE FOLLOWING:
Name … … … … … … … … … … .. … … … … … … … … .Daytime Tel.No… … … … … … … … … … … .
Job Title..............................… … … … … … … … … … … Email… …
Address..… … … … … … Company..… … … … … … … … … ..
… .. Preferred delivery: (Please tick) Hardcopy… … Email… …

Postcode...… … … … … … .

Design/Layout: Kate Harper Editor: Mark Collins-Cope

PAGE 2 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Object News
Quarter 2, 1998

Dion Hinchcliffe discusses the latest object news.

The second quarter of 1998 was an exciting one for the object technology industry
and included a variety of important announcements, trends, and product
introductions in the areas of CORBA, COM, UML, OO languages, and

methodology.

CORBA

Although no major revisions to the commercial
ORBs occured during 2Q, Java support in
ORBs continued to make serious headway
especially in many of the free ORBs such as
JacORB and ORBacus 3.0.

OMG made available new interoperability
specifications to improve language mapping
between Java and IDL as well as other
standard languages. The new specifications
allow Java to work well with client or servers
written in other languages and will allow Java
to be used in far wider variety of CORBA
settings.

The first 64-bit ORBs began making their way
to market with an announcment in May that
Expersoft's CORBAplus ORB is now available
for Digital Unix. 64-bit ORBs, while still a
novelty, may permit scalabilty beyond what is
available for any other current distributed
object technology.

Applications servers built around CORBA
continued to pour into the market during the
2Q including BEA Systems M3,
SilverStream's 2.0 app server, and Tengah's
WebLogic 3.1 to name a few.

The Object Management Group announced the
adoption of the Business Object Component
Architecture for CORBA that will bring a
standardized infrastructure for generation of
business objects from design specifications.

COM

Two non-events during 2Q of 1998 illustrate
the somewhat pensive situation in the
Component Object Model world. The first is
the lack of a COM+ beta which was scheduled
to be released during this time period. COM+
is a forthcoming upgrade to COM which
improves ease-of-use, provides standard
services for security, object lifecycle, and

transactions and largely does away with IDL.
The COM+ beta is now tenatively going to be
released in 3Q or 4Q 1998.

Also expected during the 2Q was NT 4 Service
Pack 4 which was to bring interim features to
COM including DCOM over HTTP which
would bring full web protocol support to
DCOM, a feature much in request by the COM
user community. Service Pack 4 has now
indefinitely been delayed and it’s release is
uncertain in the face scheduling turmoil within
Microsoft’s NT division.

COM for Solaris did make it out of Microsoft
during 2Q 1998 and is now generally available
and is fully supported externally by Microsoft.
The price is steep at $3500 but may not matter
much compared to the production cost of a full
distributed object system on Solaris. COM for
Solaris is the first of several products
Microsoft is hoping to release to eliminate
what many consider to be COM’s Windows-
only stigma.

An interesting trend began developing during
2Q 1998, that of bridges opening up between
CORBA and COM. IONA, Expersoft, and
other announced bridges between COM and
CORBA in 1Q 1998 but then IONA made the
startling announcment that Microsoft and
IONA will integrate Microsoft Transaction
Server with IONA's Obect Transaction
Manager product that will allows transactions
started in one products to be finished in the
other. Microsoft has reportedly been reluctant
in the past to built bridges to CORBA but is
now apparently relenting.

Unified Modeling Language

The Unified Modeling Language 1.2 was
adopted by the Object Management Group's
UML Revision Task Force during 2Q although
the text of the standard is still not fully
available except in draft form.

Numerous new UML modeling tools were in beta during 2Q with release dates in 3Q. New

PAGE 3 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

tools scheduled for release included Object
International's Together/J 2.0, NoMagic's
MagicDraw UML, and Object Domain 2.0.

Object-oriented languages

Java continued to evolve with numerous new
initiatives and APIs becoming available. JDK
1.1.6 was released during the 2Q and remains
the currently Java Development Kit until the
forthcoming and much-awaited JDK 1.2 is
released. IBM also announced that Java will
be a first class citizen in its CICS world and in
fact, plans on bringing CICS's formidable
capabilities to the Java masses over the next
several quarters. Enterprise JavaBeans were
another exciting area in the Java world and 2Q
included some of the first functioning EJB
contains from EJBHome, Weblogic, and
NetDynamics to name a few.

C++ vendor Inprise (formerly known as
Borland) released C++ Builder Enterprise that
includes first class support for distributed
object standards such as CORBA, COM, and
Entera. Inprise release Delphi 4, in what many
assumed to be a pre-emptive strike against
Microsoft's forthcoming Visual J++ 6.0. The
Delphi 4 product includes full support for the
latest distributed object models. Interactive
Software Engineering, makers of Eiffel,
announced the availability of an open source
version of their core library, EiffelBase.

Methodology

As expected, Rational Software announced at
their Rational User Conference in June that
their commercial development method,

Objectory, will become the industry's Unified
Process, at least as far as Rational is
concerned. The original collaboration between
the Three Amigos (Grady Booch, Jim
Rumbaugh, and Ivar Jacobson), the ultimate
product for which they came together
(creating the Unified Modeling Language
along the way) was a merger of their
respective object-oriented development
methods. Objectory will be renamed the
Rational Unified Process and become available
in the next few months. Although the UML
has now attained standardization through the
OMG and its documentation is freely
available, the future and availability of the
Unified Process remains unclear since it
remains a commercial product from Rational.

Wrap up

Another major trend occuring during the
second quarter was an apparent undercurrent
of movement away from an object-centric
industry, to one of components developed with
objects. This trend was best signalled by the
famous SIGS publication Object Magazine
changing its name to Component Strategies
during the second quarter. Look for more
organisations to change their focus from
objects to components during the 2nd half of
1998.

The object technology industry looks forward
to major new events in the 2nd half of 1998
including the release of a COM+ beta,
CORBA 3.0, UML 1.3, JDK 1.2, and many
new exciting middle-tier announcements such
as applications servers from Inprise and CICS
for Java from IBM.

Object News (http://www.objectnews.com) is a free, daily object technology newsletter that
focuses on issues in UML, COM, CORBA and methodology. Dion Hinchcliffe is co-editor of

Object News with Paul Evitts and is an senior object technolgoy consultant with Object
System Group. Mr. Hinchcliffe can be reached a dhinchcliffe@objectnews.com

For your daily update on ObjectNews
Web:www.objectnews.com - see page 10 for full details

PAGE 4 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

A Master Class in
Advanced Principles of Object

Oriented Design

Dates: December 1-2, 1998, London.

Presented by: Robert C. Martin

Author: Designing Object Oriented C++
Applications

Editor: C++ Report

Please Note: Classes are limited to a maximum of 16 paying attendees, so please
book early.

Robert C. Martin
is an international consultant and president of Object Mentor Inc. He is

author of "Designing Object Oriented Applications Using the Booch
Method", and his forthcoming book: "Patterns and Advanced Principles of

OOD" is soon to be published by Prentice Hall. Robert is also editor of
C++ Report.

To book call: 0181 579 7900 and ask for Rennie Garcia, or
email:info@ratio.co.uk with full contact details.

Please register with Ratio Group (email:info@ratio.co.uk) if you would
like further information on up and coming masterclasses, including:

Analysis Patterns, CORBA Design Patterns, Designing Components Using
Design Patterns

Do You Know The Object...

PAGE 5 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Object Oriented Public Course Schedule

Newly updated and developed courses starting September 1998

September October
Dates Course Cost Dates Course Cost
7-8
(Expert
Level)
RAT151

Ralph Johnson
A Master Class in
Design Patterns and
Frameworks

FULL 21-23
(Updated)
RAT150

Software Engineering
Using Design Patterns

£795

8
(New)
RAT100

Intensive –
OO Concepts

£425 5-9
(Updated)
RAT220

Pragmatic OO Java
Development Workshop

£1,195

9
(New)
RAT104

Advanced Skills in
OO Project Management

£425 12-16
(Updated)
RAT102

OO Analysis & Design
Using UML

£1,250

November December
Dates Course Cost Dates Course Cost
2

RAT100

Intensive -
OO Concepts

£425 1-2
(Expert
Level)
RAT151

Robert C. Martin
A Master Class in
Advanced Principles of
Object Oriented Design

£995

4
RAT104

Advanced Skills in
OO Project Management

£425 7-11
RAT102

OO Analysis & Design
Using UML

£1,250

9-13
(Updated)
RAT210

OO C++ Programming
Workshop

FULL 14-18

RAT210

Pragmatic OO C++
Programming Workshop

£1,195

Ratio have invested heavily into the production of highly up to date course materials and case
studies looking at the issues of today’s OO & Component Based systems.

Please contact Rennie Garcia @ Ratio Group on 0181 579 7900 or email: info@ratio.co.uk
for details on:

Public training courses
In-house courses

Object oriented computer based training programme

Special Offer: Free C++ Video Set with every
December Booking on OO C++ Development (Quote:

ObjectiveView offer) Normal cost - £550.00.

Visit our web site:www.ratio.co.uk for hot OO links, new technical whitepapers and details of
the ObjectTeam Case Tool.

PAGE 6 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Introducing CORBA
Thomas Mowbray, Author of the bestselling book "Corba Design Patterns", gives

an introductory overview of CORBA.

Introduction

CORBA is a standard from the Object
Management Group (OMG), an international
industry consortium whose mission is to define
interfaces for interoperable software using an
object-oriented technology.

Their specification, the Common Object
Request Broker Architecture (CORBA) is an
industry consensus standard that defines a
higher level facility for distributed computing.

In general, object-orientation enables the
development of reusable, modular software,
and it is moving technology towards plug-and-
play software components.

The OMG's efforts are extending these benefits
across distributed heterogeneous systems.

Object Management
Architecture

Figure 1 is an overview of the OMG's object
management architecture (OMA). The OMA
Guide identifies four categories of software
interfaces for standardization. The central
component of the architecture is the Object
Request Broker (ORB). The ORB functions as
a communication infrastructure, transparently
relaying object requests across distributed
heterogeneous computing environments. The
CORBA specification covers all the standard
interfaces for ORBs. CORBAservices
comprise a set of fundamental services such as
object creation and event notification.
CORBAfacilities comprise a set of high level
services such as compound documents and
system management.

.

Applications CORBAdomains

CORBA Object Request Broker

CORBAservices CORBAfacilities

Figure 1. Object Management Architecture

CORBA domains comprise vertical market
areas, such as financial services and
healthcare. Application interfaces comprise all
the remaining software interfaces such as
proprietary commercial interfaces and legacy
interfaces.

CORBA simplifies distributed systems in
several ways. The distributed environment is

defined using an object-oriented paradigm that
hides all differences between programming
languages, operating systems, and process
locations. The object oriented approach allows
diverse types of applications to interoperate at
the same level, hiding implementation details
and supporting reuse. CORBA defines a very
useful notation for defining software interfaces

PAGE 7 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

called the Interface Definition Language (ISO
IDL). CORBAservices defined in ISO IDL
have a dual role: ORB vendor provided
services and application provided services.
Developers are encouraged to reuse and extend
the standard interfaces.

Adopted

The first ORB standard, CORBA 1, was
adopted in December 1991 [2]. The current
version, CORBA 2, was adopted in 1994; this
specification is upwardly compatible with the
CORBA 1 specification. CORBA 3 was
completed in 1997 with the addition of
portability interfaces and Java bindings. In
particular, the interface definition language
(ISO IDL) has been a stable part of the
specification since 1991.

ISO IDL is the notation used for interface
specification in the OMG standards and is used
by other standards groups such as X/Open,
ECMA, and ISO. The CORBA 3 specification
includes standard language bindings for C,
C++, Smalltalk, Ada95, COBOL, and Java.

There have been more than a dozen
CORBAservices adopted such as: Naming,
Event Management, Persistence Life Cycle,
Concurrency, Externalization, Relationships,
Transactions, Query, Licensing, Security,
Time, Trading, Collections, and Properties.

There are many other standards in process at
the time of this writing. Additional
CORBAservices in process include
asynchronous messaging. And the first set of
domain interface specifications from
telecommunications, healthcare, and financial
services task forces.
OMG has reengineered standards group
adoption processes to make them much more
responsive to market needs. Instead of a
typical 4 to 7 year process for many formal
standards, the OMG process can converge on
multi-vendor specifications in about a year.
OMG has successfully completed this process
more than a dozen times as evidenced by the
available specifications. The adoption process
also has a built-in assurance that the adopted
specifications will be supported commercial
products. This has worked well in practice,
with more than a dozen available
implementations of CORBA to choose from.

Getting Started with CORBA

There are many ways to prepare for your
organization's technology transition to
CORBA. The OMG has published the Object
Management Architecture Guide and the
CORBA Specification. The CORBA
specification is available on-line (i.e. its
FREE), at http://www.omg.org/corbask.htm

CORBA vendors offer comprehensive training
courses covering their CORBA products.
These courses offer insight into the standard
and the technology. Successful CORBA
development experiences have been
documented Mowbray, T.J. and R. Zahavi,

THE ESSENTIAL CORBA: SYSTEMS

INTEGRATION USING DISTRIBUTED OBJECTS,
John Wiley & Sons, New York, 1995. (ISBN
0-471-10611-9))
For more CORBA and software architecture
information, also visit:
http://www.serve.com/mowbray

Ratio Group can make various introductory
and advanced training courses available on
CORBA-based software development,
components, frameworks, architectures, and
design patterns. Contact: Rennie Garcia on +44
(0)181-579-7900 or
 email:info@ratio.co.uk

CORBA Market Share

It is estimated by OMG (and often quoted) that
over 17% of the Fortune 500 companies are
using CORBA today. Numerous mission-
critical systems have been implemented using
CORBA. For example, the UK passport
control systems is a CORBA-based system that
has been operational for years. An entire book
by Jeri Edwards is devoted to CORBA case
studies which includes many successful
systems developments in a wide range of
domains.

In our opinion, several UK-made CORBA
products have some of the most advanced
features and capabilities. For example, the ICL
DAIS ORB (made in Manchester-Gorton UK)
has the most complete complement of
CORBAservices, including the essential
Trader Service, a yellow pages directory based
upon ISO standards. The Real Objects Ltd.
InterBroker (made in Leamington Spa, UK) is
the only known ORB which has successfully
passed long-term load-testing benchmarks.
This makes InterBroker the only proven ORB

PAGE 8 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

in the world for 24 hour by 7 day (24X7)
mission critical applications.

In comparison, the Microsoft infrastructures
DCOM and COMplus have no measureable
market share. There are also few known
success stories with this technologies, but
many disaster sagas about enterprises
struggling with pernicious system management
issues in the Microsoft operating systems.
DCOM was created by Microsoft in 1995 to be
a multi-media infrastructure for the Internet.
But since there were no security provisions
whatsoever engineered into DCOM, it simply
cannot be used on the Internet for example,
any DCOM-enabled ActiveX component that
is downloaded from the Internet has complete
and unlimited access to your Windows95 or
Windows NT system resources.

DCOM is being actively obsolesced by
Microsoft in favore of COMplus. COMplus is
an announced future infrastructure from
Microsoft. However, COMplus development
tools are still immature, and Microsoft has not
selected a delivery vehicle for COMplus. In
other words, COMplus will not be included in
Windows98 nor Windows NT5, and it is not
decided how COMplus will be disseminated.
This means that COMplus will not be widely
available until at least the year 2001. In the
meantime, CORBA is ready, working, and
available now on virtually every operating
system platform, including all Microsoft
releases, on systems ranging from DOS to
workstations to IBM mainframes.

Looking at one significant market, defense, the
U.S. Department of Defense has adopted
CORBA as its standard technology for object-
oriented system development. Two
infrastructures are mandated by the Joint
Technical Architecture, an operational profile
of the TAFIM, approved in FY96. CORBA is
mandated for use on object-oriented DoD
systems. OSF DCE is mandated for use on
procedural DoD systems. Contact:
http://www.itsi.disa.mil for more information.
ISO IDL has been used on many DoD
programs and in specifications. For example,
the Common Imagery Interoperability
Facilities (CIIF), the Image Access Services
(IAS), and the Common Imagery
Interoperability Profile (CIIP) comprise a
prime example of how to architect DoD
systems for interoperability. For more
information, visit:
 http://www.itsi.disa.mil/ismc/ciiwg

These case studies of interoperability are
documented in Chapter 10 of the book Inside
CORBA. The domain specifications are some
of the most exciting developments in CORBA
standardization. These interfaces enable
application-level interoperability across multi-
vendor systems. For example, the UK MoD
contractors along with multi-national defense
organizations and contractors have formed the
OMG C4I Special Interest Group. OMG C4I
has the mission of identifying remaining
technical gaps in standards and technology for
distributed object specifications and products,
as well as adopt specifications for
interoperability. This group is international in
scope; consider the needs for multi-national
regional conflict support as well as mainstream
US DoD C4I systems implementation.

Formal Standards Groups and
CORBA

The International Standards Organization
(ISO) has approved a Draft International
Standard based on CORBA. ISO DIS 14750 is
a universal notation for defining application
program interfaces (API). ISO IDL is identical
to CORBA IDL.

The European Computer Manufacturers
association (a peer group to US ANSI) has
been using ISO IDL for several years to
specify all application program interfaces
(API). X/Open has used ISO IDL extensively
in its specifications. Numerous other standards
groups are following suit. ISO IDL-based
specifications have the benefit of defining
multiple programming language bindings
automatically from one API specification.
This advantage will be used by multiple ISO
standards bodies.

CORBA Design Patterns

In 1991, MITRE began a research project
(called DISCUS) on how to achieve universal
interoperability between all forms of
government application as well as commercial
software. Early in the activity, we discovered
that OMG had a similar mission, and we began
working with CORBA technology. From the
start, we identified ISO IDL as a very useful
notation for describing government software
APIs. We have based all our approaches
around the use of ISO IDL ever since,
regardless of the underlying infrastructure
(ORB, RPC, library interface or other
networking stack). Luckily, groups like
X/Open and ISO picked up on this concept.

PAGE 9 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

After years of successful use and reuse of the
DISCUS API written in ISO IDL, we began
other ISO IDL-based initiatives, and we began
to mentor others in the use of CORBA
technologies. To our surprise, we discovered
that people were using CORBA just like they
used sockets or RPC; there was no “paradigm
shift” in their practices or the form of the
resulting systems. Ideas that seemed obvious
to us about software architecture and
frameworks were not being practiced by
government systems developers.

To remedy this problem, we began a campaign
of education and evangelism to help people to
build better systems. Our first book, The
Essential CORBA, captured this guidance
through discussion of the DISCUS
architecture.

We also felt that a more structured form of
guidance was needed, to make this available to
the widest possible group of government
developers. Our eventual goal for our work to
evolve into a government guideline, analogous
to the TAFIM Volume III, but containing
much more specific implementation guidance.
The product of this CORBA experience,
mentoring, and research is CORBA DESIGN
PATTERNS.

We have captured our lessons learned and
guidance in a new book published by John
Wiley & Sons Publishers and the Object
Management Group. CORBA DESIGN
PATTERNS is written by Dr. Tom Mowbray
(author of The Essential CORBA) and Raphael
Malveau, experienced CORBA architects,
developers, and object mentors. CORBA
Design Patterns is the quintessential guide to
successful development using distributed
objects. The "design patterns" format of the
book makes the expertise readily applicable to
real-world object-oriented design and
development challenges. Containing 39 design
patterns in a new pattern language and catalog.

The book breaks new ground for application
development, software architecture, enterprise
applications, and Internet technologies. The
book provides a definitive reference model for
software design levels and a comprehensive set
of design patterns covering each level. The
reference model details the key forces that
drive software decision making. The reference
models allows you to find the right patterns
quickly and apply sophisticated solutions
properly for significant benefits. The patterns
include well-thought-out benefits and
consequences; this makes justification of
software decisions easy. Specially featured are
patterns for applying Java(tm) applets and
ORBlets, as well as, integrating legacy
applications For information
email:compbks@jwiley.com or visit
web:www.serve.com/mowbray/CDPflyer.htm.

Conclusions

ISO IDL is a stable API notation that can be
used today for specifying application
architectures. The greatest benefits can be
realized when ISO IDL is used to define
reusable architectures and services. This
allows organizations to leverage software
development between projects and it simplifies
the upgrade of distributed software systems.
This enables application software architects
and developers to rely upon stable architectural
specifications and not upon specific vendor
implementations, which are subject to
obsolescence

Tom Mowbray, PhD, the Chief Scientist of
Blueprint Technologies Incoporated, is the
Architectures Columnist for OBJECT
Magazine, and co-author of the bestsellers:
The Essential CORBA, CORBA Design
Patterns, Inside CORBA, and the new book:
ANTIPATTERNS: Refactoring Software,
Architectures, and Projects in Crisis. Dr.
Mobray may be contacted on
email:mowbray@www.serve.com

PAGE 10 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

For a daily update on
the latest object related

news…

and a whole lot more…

check out the hottest object news site on
the web…

http://www.objectnews.com

News
Online UML references

Online Methodology references
Online Process references
Online COM references

Online CORBA references
Online Patterns references

Online Online papers
Online People in objects

…

PAGE 11 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Patterns '98
The Reuse of Ideas in Software Development

The Britannia Hotel, Manchester, UK
October 28 & 29, 1998

Featuring
Bruce Anderson, Erich Gamma, & Thomas J

Mowbray

Repeated by popular demand!
February 1998 event was oversubscribed

This conference aims to meet the growing needs of software developers to understand
how they can enjoy productivity and software quality benefits using pattern-based
techniques. World class speakers have been recruited from Europe and the USA to
share their expertise with the audience.

Patterns are vehicles for re-using ideas. Patterns try to identify commonly recurring
themes in building software. The interest in patterns has been steadily growing in
recent years, although the concept of using them in software development was first
identified some 20 years ago. The foundation work for creating design patterns was
written in 1977 by Christopher Alexander. He described the use of design patterns to
record the wisdom of great architects so that others could reproduce building designs
which were known to be of high quality. Building on this work we now have patterns
for software design, analysis, requirements, project management, organisation and
process, architecture, software migration, data models and frameworks. Patterns are
also emerging in end-user domains, including those in Accounting and
Manufacturing.

This conference is aimed at software developers, analysts and designers of object
oriented systems, software development managers and software architects.

For more information:
Tel: +44 (0)181-570-2182

Email:eric_leach@compuserve.com
 Web:http://ourworld.compuserve.com/homepages/eric_leach

Sponsored by:
OMG

OBJECT MANAGEMENT GROUP

PAGE 12 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

NobleNet Nouveau
Distributing OO Applications

One major dilemma facing many product vendors and development organisations is
whether to use COBRA, COM or RPC to distribute their applications. All offer a
potential solution, but at the cost of limiting the platforms on which applications

may run.
Anne Thomas offers a potential solution in NobleNet's Nouveau product.

 Introduction

Middleware Wars
In the age of client/server, distributed objects,
and the Internet, heterogeneous systems are a
fact of life. A growing number of middleware
solutions are available to provide connectivity
between heterogeneous systems. However
each middleware solution provides its own
unique set of infrastructure services, and these
infrastructure services are incompatible.
Therefore organizations often find they must
standardize on a single middleware solution
for all application systems in order to ensure
easy interoperability. Relying on a single
middleware solution can be a risky
proposition, though, since application systems
are very dependent on their middleware. The
industry has not yet settled on a single
middleware solution, and it is not clear which
middleware vendors will survive.

The Leading Contenders
The leading contenders in the middleware wars
are Microsoft’s Component Object Model
(COM); Object Management Group’s
Common Object Request Broker Architecture
(CORBA); and various Remote Procedure Call
(RPC) systems from the Open Group,
Microsoft, and Sun. Recently, Sun’s Java
Remote Method Invocation (Java RMI) has
also started to attract attention, but Java RMI
supports only homogeneous (Java to Java)
communications. Although all of these systems
perform similar functions, each uses a different
programming personality that makes the
systems incompatible.

No Single Best Option
Unfortunately, it’s very difficult to select a
single middleware system. Each system has its
advantages and disadvantages. COM provides
a natural interface to desktop-based visual
application development tools, but COM has
almost no presence on Unix or the Internet.
CORBA is a platform-independent middleware

solution, but it doesn’t provide as simple
integration with Windows applications and
tools as COM. RPC is the tried and true
middleware solution for C applications, but it
doesn’t easily support object-oriented or
scripting languages. The best solution would
be a combined solution: use COM with visual
development tools on Windows and NT, use
CORBA with Java and C++ applications on
Unix and the Internet, and use RPC with C
applications. The challenge is getting the
different systems to interoperate.

The Bridge Approach
Most CORBA and RPC systems provide
integration with COM using a bridge approach.
A bridge is an intermediary, or gateway, that
converts a distributed request from one
middleware format to another. For example, a
COM/CORBA bridge supports transparent bi-
directional interoperability between any COM
client or server and any CORBA client or
server.

Overhead
Although the bridge solution effectively
establishes connectivity between the two
worlds, it often imposes a significant amount
of overhead on each request. For each call, the
bridge converts and remarshals the datatypes
and reissues the request using a different wire
protocol.

Programming Mismatch
The bridge solution also does not address the
native programming issue. COM, CORBA,
and RPC present different constructs to the
programmer, and interoperability is not always
completely transparent

Native Internetworking Using Nouveau
NobleNet recommends a different type of
solution: one based on native internetworking.
NobleNet Nouveau is a middleware
development and runtime environment that
natively supports COM, CORBA, and RPC
infrastructures. Middleware connectivity is

PAGE 13 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

implemented directly in the client and server
communication stubs within the applications.
No intermediary bridges are required.

Nouveau IDL Compiler and CORBA 2.2
Compliant Runtime
Nouveau consists of an IDL-based
development tool and a CORBA 2.2 compliant
runtime middleware system. The Nouveau IDL
compiler can compile interfaces written in
CORBA IDL, Microsoft IDL, and RPC IDL.
Regardless of the type of IDL used as input,
the compiler generates client and server stub
code in the developer’s choice of CORBA,
COM, or RPC programming interfaces.

Transparent Interoperability
At runtime, the Nouveau-generated stubs use
the standard CORBA protocol, IIOP, thereby
supporting full interoperability with any
CORBA-compliant system. In addition, each
stub supports the programming interface and
dispatching mechanism of its native
personality, thereby fully supporting both
COM and RPC. Nouveau enables transparent
interoperability among CORBA, COM, and
RPC applications.

Innovative Approach
NobleNet uses an innovative approach to
address the issues of heterogeneous
interoperability. Nouveau seamlessly connects
disparate systems using a common wire
protocol, and yet it still preserves the full
native programming experience. Developers
can use whichever programming model is most
appropriate for a specific application
component, and then trust in Nouveau to
reliably and efficiently connect it to the rest of
the environment.

IDL Middleware

Heterogeneous Systems
In the days of monolithic systems,
organizations developed applications based on
tools supplied by a single vendor, and all
systems could easily interoperate. But today, in
the age of client/server, distributed objects, and
the Internet, few organizations have the luxury
of implementing homogenous systems.
Heterogeneity is the rule. And it’s up to the
Information Technology (IT) organization to
find the means to integrate disparate systems.

Middleware
Middleware is the collective term used to
describe integration software. Middleware
automates the process of passing requests and
data between applications that are physically

or logically separated. Middleware comes in
many different flavors, providing different
levels of service and automation. Early SQL-
based middleware products were designed to
provide remote access to databases. Message
oriented middleware products provide a
versatile low-level programming interface to
support asynchronous communications. IDL-
based middleware products provide a high
level of automation to support transparent
synchronous distributed computing.

Remote Procedure Call
IDL-based middleware was a natural
outgrowth of structured programming
techniques. A structured program consists of a
main routine with a set of procedures that are
invoked using a local procedure call. Remote
Procedure Call (RPC) middleware enables an
application to invoke a procedure that is
executing on a remote system using the same
programming paradigm as a local procedure
call. An RPC replaces the local procedure with
a generated piece of code on the client, called a
proxy or a stub. The stub transparently
packages the local procedure call information
and transfers it to the server application that
contains the procedure on the remote system.
The server contains a comparable stub routine
that interprets the request and invokes the
procedure using standard local procedure call
mechanisms.

Interface Definition Language
A set of client and server stubs that process a
remote service constitutes a remote interface.
An interface is defined using an Interface
Definition Language (IDL). An IDL identifies
the procedures that can be called through the
interface and describes the data that are passed
back and forth for each procedure.

Language and Platform Independence
One of the problems associated with
heterogeneous distributed computing is that
every language and every platform represents
data in a slightly different way. An IDL
defines a set of canonical datatypes that are
both language and platform independent. An
RPC runtime system provides a marshaling
service that automatically converts an
application’s native datatypes into the
canonical datatypes for transport. The
marshaling service ensures that the
applications on both sides of the network
communication can interpret the contents of
any messages sent.

Stub Routine Services
All RPC communication code is generated

PAGE 14 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

from the IDL definitions. An IDL compiler
parses the IDL and generates the client and
server stubs for the interface. The client and
server stubs, along with a dispatcher in the
server process, fully automate all remote-
processing services. Illustration 1 shows the
anatomy of an RPC call. The client application
calls the client stub routine using a local
procedure call, passing a parameter list. The

client stub marshals the request and the
parameter list into a message, it establishes a
network connection with the remote server,
and it transports the message to the server. The
server receives the message and dispatches the
request to the appropriate server stub. The
server stub unmarshals the request, determines
which procedure to invoke, and invokes the
procedure

.

void main (...)
{ …

sum = remote_add (a,b)

remote_add client stub:
 Marshal request
 Connect to math server
 Pass request
 (Wait)
 Unmarshal results
 Return results

remote_add server stub:
 Unmarshal request
 Invoke remote_add
 Marshal results
 Return results

long remote_add (long sum) {
 sum = a + b
 return (sum);

Message

interface math {
 long remote_add (
 [in] long a
 [in] long b
 [out] long sum);

IDL:

Client Application Math Server

void main (…)
Listen for connection
(Wait)
Dispatch server stub ...

Illustration 1 - Anatomy of an RPC.

In an RPC, all remote processing is managed
by the client and server stub routines that are
generated from an IDL file. In this example,
the math server provides a remote service
called remote_add. A client specifies two
numbers, and the remote_add procedure
returns the sum of the two numbers. The client
invokes the remote service using a simple local
procedure call to the remote_add client stub.
The remote_add client stub takes the request
and marshals it into a message. Next it
establishes a connection with the math server
and passes the message to the dispatcher
routine in the math server. The client
application then waits for a response. The
dispatcher identifies the interface being used
and dispatches the remote_add server stub. The
remote_add server stub unmarshals the request
and invokes the remote_add procedure. The
remote_add procedure returns the sum of the
two numbers to the remote_add server stub,
which marshals the results into a message and
passes the message back to the remote_add

client stub. The client stub unmarshals the
results and returns them to the client
application.

Remote Method Invocation
The interface stub mechanism is also used in
distributed object systems to support remote
method invocations. Both CORBA and COM
use IDL to describe remote object interfaces,
and IDL compilers generate proxy stub
routines that transparently transport method
invocation requests across the network.
CORBA refers to the generated interface
components as client stubs and server
skeletons. A server skeleton provides a
template for the server application in addition
to the server communication routine.

Java RMI
Java also supports distributed object
computing using a similar mechanism called
Java remote method invocation (Java RMI).

PAGE 15 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Unlike CORBA and COM, Java RMI does not
define its interfaces using IDL. IDL provides a
mechanism to describe interfaces in a way that
is not dependent on any specific programming
language. Java RMI only supports remote
communications between two Java
applications; therefore language independence
is not required. Java RMI simply defines
interfaces in Java. But as with CORBA and
COM, the Java interfaces are compiled using
rmic, the RMI compiler, to generate proxy stub
routines.

Middleware Differences
All IDL-based middleware accomplish
effectively the same services. They
transparently communicate requests from a
client application to a server application and
transfer the results back to the client. But
although conceptually the systems are the
same, the implementation details are different,
as shown in Illustration 2. Each middleware
system provides its own programming
interface, uses its own IDL language, and
supports its own set of datatypes. Each system
uses its own marshaling service and its own
wire protocol. Each system uses a different
naming service to locate servers. Each system
uses a different mechanism to dispatch
requests to the server procedure or method.

The distributed object systems also provide
object management services that automatically
create server object instances if they do not
exist when a client issues a request. Even
though middleware is designed to support
integration, different IDL middleware systems
do not interoperate.

Selecting IDL Middleware

In order to ensure universal interoperability,
most organizations attempt to standardize on a
single middleware solution for all application
systems. But relying on a single middleware
solution is a less than optimal solution. Each
middleware system has its own strengths and
weaknesses. For example, COM is easy to
program, while CORBA offers excellent
exception handling. The perfect middleware
for one application might not be the best
middleware for another application.
Application systems are tightly bound to their
middleware, causing significant vendor
dependency. The middleware market is still
young and competitive. No single middleware
vendor has established dominance in the
market, and it is not clear which middleware
vendors will survive.

COM
Programming

MIDL

NDR
Marshaling

COM
Runtime

MRPC
Protocol

COM
Registry

CORBA
Programming

CORBA IDL

CDR
Marshaling

CORBA
Runtime

IIOP
Protocol

CORBA
Naming

RPC
Programming

DCE IDL

NDR
Marshaling

DCE
Runtime

DCE RPC
Protocol

DCE
CDS

COM
Dispatching

CORBA
POA

RPC
Dispatching

COM CORBA RPC

Illustration 2 - Middleware Silos.

Although each middleware system performs
essentially the same functions, they each
present a different programming interface, and
they each use an incompatible set of
middleware layers.

COM
Microsoft’s COM will almost certainly survive
since it is a core component of the Windows

and NT operating systems. Microsoft has
effectively recruited the desktop application
and tools vendors to implement support for
COM in most Windows and NT based
products. Therefore COM provides the most
natural interface to desktop-based visual
application development tools. Recently COM
has become available on a number of non-
Windows operating systems, including Solaris,
OpenVMS, and OS/390, but almost no

PAGE 16 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

products or services are available that support
COM. In addition, COM has almost no
presence on the Internet.

CORBA
Object Management Group (OMG) CORBA is
an industry standard cross-platform distributed
object middleware architecture. CORBA
implementations are available on numerous
platforms from a number of vendors, including
BEA Systems, Inprise (previously Borland
International), Expersoft, ICL, IBM, Iona
Technologies, and ObjectSpace. The future of
the individual CORBA vendors is less certain
than that of COM, as demonstrated by the
recent acquisitions of Visigenic by Borland
and Digital’s ObjectBroker by BEA. The latest
release of the specification, CORBA 2.2,
defines a new dispatching mechanism, the
Portable Object Adapter (POA). The POA
enables CORBA objects to be easily ported
across CORBA implementations, affording
some vendor dependency protection. The POA
combined with the Internet Inter-ORB Protocol
(IIOP) ensures easy interoperability between
CORBA implementations. Although the fates
of individual CORBA vendors might be
suspect, it seems likely that CORBA
technology as a whole will survive. CORBA is
the most widely deployed distributed object
middleware on Unix and the Internet. CORBA
is not as popular on Windows platforms,
though, since it requires complex
programming to make it work with visual
development tools.

RPC
RPC systems have been used for years to build
distributed client/server applications on Unix.
Sun’s public domain ONC RPC is available on
most platforms, and development tools such as
NobleNet RPC 3.0 have simplified distributed
application development with ONC RPC. The
industry standard Open Group DCE RPC is
also available on most platforms. Microsoft
has its own implementation of DCE RPC, the
Microsoft RPC, which is integrated in
Windows 95 and NT. Although RPC systems
are very appropriate for C applications, they
don’t easily support object-oriented or
scripting languages.
Combining the Best of Each System
Because each middleware system offers its
own advantages and disadvantages, the
optimal solution would involve all middleware
systems, using each where it is most
appropriate. COM should be used with visual
development tools on Windows and NT.
CORBA should be used with Java and C++
applications on Unix and the Internet. RPC

should be used with C applications on any
platform. The theory is nice, but the execution
can be more challenging. Something is needed
to enable the different systems to interoperate.

Middleware Interoperability

Bridging the Gap
Since Windows is often the default client
environment, most CORBA and RPC vendors
have made an effort to implement COM
interoperability. The most popular approach
used to implement COM interoperability is a
protocol converter called a bridge. A bridge is
an intermediary service that converts a
distributed request from one middleware
format to another.

COM/CORBA Internetworking
OMG has defined a standard specification for
COM/CORBA Internetworking. According to
the specification, a COM/CORBA bridge
supports transparent bi-directional
interoperability between any COM client or
server and any CORBA client or server. From
a COM client’s point of view, a CORBA
server looks like a COM server. From a
CORBA client’s point of view, a COM server
looks like a CORBA server. A COM/CORBA
bridge is implemented as a gateway server that
supports both COM and CORBA interfaces.
As Illustration 3 shows, each request goes
through the gateway and gets transparently
converted to the appropriate protocol.

Part A
The specification supports connectivity based
on both IIOP and COM wire protocols. The
COM/CORBA Internetworking Specification
Part A defines connectivity using IIOP. This
type of bridge is implemented as a combined
COM and CORBA server running on a
Windows platform. In many cases a different
COM/CORBA bridge is generated for each
CORBA server being accessed, and it is
implemented as a DLL linked to the client
application. The client makes a standard COM
call to the COM/CORBA bridge, and the
bridge converts the request into a CORBA call
to the CORBA server. This approach requires
that IIOP be installed on each client machine.
Alternately, the bridge can be implemented as
a standalone executable that is deployed on an
NT server, and multiple clients can share the
same bridge server. The clients make standard
DCOM calls, and the COM/CORBA bridge
converts the requests to CORBA calls. This
approach requires IIOP only on the NT server.
In the reverse process, CORBA clients can
also use the bridge to access COM servers. The

PAGE 17 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

bridge exposes a standard CORBA interface,
so CORBA clients issue standard
CORBA/IIOP requests to the bridge, which
converts the requests into COM calls. Part A

compliant COM/CORBA bridges are available
from all CORBA vendors and from Visual
Edge.

COM
Client

COM/CORBA
Bridge (Part A)

Protocol
ConverterCOM

Server

COM
request CORBA

Server

CORBA
Client

CORBA
request

COM
request

CORBA
request

Communications using IIOP

COM
Client

COM/CORBA
Bridge (Part B)

Protocol
ConverterCOM

Server

COM
request CORBA

Server

CORBA
Client

CORBA
request

COM
request

CORBA
request

Communications using MSRPC

Illustration 3 - COM/CORBA Internetworking

COM/CORBA Internetworking uses a protocol
converter to implement transparent
connectivity between COM and CORBA
systems. A COM/CORBA bridge supports both
COM and CORBA interfaces. A COM client
issues a COM request to the COM/CORBA
bridge server, which converts the call into a
CORBA request and reissues the call.
Likewise, a CORBA client issues a CORBA
request, and the COM/CORBA bridge converts
the call into a standard COM request. The
COM/CORBA bridge can be deployed on
Windows 95, NT, Unix, or any other supported
platform. The Part A specification defines
communications based on the CORBA IIOP
protocol. The Part B specification defines
communications based on COM’s distribution
protocol, MSRPC.

Part B
The COM/CORBA Internetworking
Specification Part B defines connectivity using
COM. This type of bridge is implemented as a
combined COM and CORBA server running
on a Unix (or other) platform. In this case, a
COM client makes a standard COM call to the
COM bridge running on Unix. It converts the
request into a CORBA request and calls the
local CORBA runtime to dispatch the request.
Likewise, a CORBA client can issue a
standard CORBA request to the local
COM/CORBA bridge, which converts the
request to COM and reissues the call. This
approach allows Windows clients to access

Unix-based CORBA servers without installing
IIOP on each desktop and without using an
intermediary NT server box. A Part B
compliant COM/CORBA bridge called COMet
is available from Iona Technologies.

Overhead and Bottleneck
A COM/CORBA bridge solution provides
connectivity between COM and CORBA, but
it does not support the RPC environment.
Similar bridges must be implemented to
support connectivity between RPC and COM
systems and between RPC and CORBA
systems. More importantly, bridge systems
impose a significant amount of overhead. For
each call, the bridge unmarshals the request,
converts and remarshals the datatypes,
establishes a new connection, and reissues the
call using a different wire protocol. In addition,
when using dedicated bridge servers, the
environment generates a potential bottleneck,
since every request must be processed through
the bridge servers

Naming
In addition to the differences in the runtime
protocols, each system also provides a
different mechanism to locate and get
references to remote servers. In CORBA, each
object is accessed through a unique object
reference, and the reference is registered in a
CORBA Object Service Naming service (COS
Naming). COM objects are registered in the
COM Registry. COM does not use unique

PAGE 18 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

object references, but a COM Moniker can
provide a unique name for an object. RPC
servers may or may not use a naming service.
In DCE, RPC servers are registered in the Cell
Directory Service (CDS). To achieve
transparent interoperability, developers must
make sure that interoperable servers are
registered in all appropriate naming services.

Direct Internetworking
A more efficient connectivity solution is one
based on direct internetworking. NobleNet
provides a middleware development and
runtime environment that natively supports
COM, CORBA, and RPC infrastructures.
Rather than trying to bridge incompatible
systems, NobleNet Nouveau implements
middleware connectivity directly in the client
and server communication stubs within the
applications. No intermediary bridges are
required, and Nouveau automatically registers
the servers in all appropriate naming services.

NobleNet Nouveau

Development and Runtime System
NobleNet Nouveau is a model-independent
middleware solution that supports the
development and execution of COM, CORBA,
and RPC applications. Nouveau consists of an
IDL compiler development system and a
CORBA 2.2 compliant runtime system. In
addition, Nouveau provides an administrative
tool to monitor and manage the deployment of
application systems.

Multiple IDL Support
Nouveau addresses the interoperability issue at
the IDL level. The Nouveau IDL compiler
supports multiple IDL languages, including
Microsoft IDL (MIDL), CORBA IDL, and
RPC IDL. As seen in Illustration 4, the
Nouveau IDL compiler can parse any IDL file
and transform it into a model-independent
internal data representation (IR). A set of code
generators then generates client and server stub
routines and makefiles for COM, CORBA, or

RPC applications. The stub generators support
C++ language bindings for COM and CORBA
and C bindings for RPC. The IDL compiler
can also generate standard CORBA IDL from
any IDL input. Any CORBA-compliant IDL
compiler can compile the CORBA IDL to
generate CORBA bindings for Java, Smalltalk,
or other languages.

Mix and Match Connectivity
The Nouveau environment enables complete
mix and match connectivity. To allow a COM
client to access an RPC server, the developer
feeds RPC IDL in and requests a COM client
interface and an RPC server interface out. To
allow a CORBA client to access a COM
server, the developer feeds MIDL in and
requests a CORBA client interface and a COM
server interface out. All interfaces support a
common wire protocol (IIOP), but expose the
native programming model.

Nouveau Infrastructure
The communication stubs generated by the
Nouveau IDL compiler rely on a CORBA 2.2
compliant runtime infrastructure and the IIOP
protocol. Nouveau applications run using the
Nouveau runtime system. Even though all
Nouveau applications use IIOP, Nouveau RPC
applications act and behave like native RPC
applications, and Nouveau COM applications
act and behave like native COM applications.
Nouveau provides a layer of abstraction
between the application programming model
and the object runtime.

Layered Services
The generated stubs rely on a set of layered
services that ensure complete interoperability
among the various programming models. Each
layer is distinct, exposing a formal API.
Individual layers can be replaced or
supplemented to add support for additional
programming models or alternate services.
Illustration 5 shows the layered services used
within the generated stub code. Nouveau IDL
Compiler

PAGE 19 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

IDL

MIDL
Parser

CORBA IDL
Parser

RPC IDL
Parser

Internal Data Representation (IR)
COM

Generator
CORBA

Generator
RPC

Generator
CORBA IDL

Generator

IDL

Source Makefile

Illustration 4 - Nouveau IDL Compiler.

The Nouveau IDL compiler accepts MIDL,
CORBA IDL, RPC IDL, or any combination of
the three as input, and the parser converts the
interface definitions into a model-independent
internal data representation. Then, depending
on the developer’s specified options, the
compiler uses the appropriate code generator
to generate client and server stub source code
and makefiles. Alternately, the compiler can
generate a standard CORBA IDL file that in
turn can be compiled by any CORBA IDL
compiler.

Application Manager
The Application Manager is an optional
service used to register application servers at
deployment time and to dynamically start and
stop application servers at runtime.
Applications are registered in a naming service
database.

Naming Service
The Nouveau Naming Service is a full

implementation of the OMG CORBA Object
Services Naming service (COS Naming) that
can be used to locate or access object
references. Nouveau can automatically
generate COM monikers to allow COM
applications to transparently interact with the
COS Naming service. Any COS Naming
service can be used in place of the Nouveau
Naming service.

COM Runtime
COM clients interface with Nouveau
application servers using standard COM
runtime functions and the standard COM
interface mechanism. Each Nouveau-generated
COM interface exposes standard COM
interfaces, including IUnknown, IMoniker, and
IErrorInfo. The Nouveau COM runtime layer
maps standard COM runtime functions such as
CoCreateInstance and interface dispatch
mechanisms to the lower-level Nouveau
runtime services.

PAGE 20 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Generated Code

COM Runtime

Object Runtime

IIOP and Marshaling

Transport Layers

Application
ManagerRegistry

Naming
Service

RPC
Runtime

CORBA Runtime

Illustration 5 - Layered Runtime Services.

The Nouveau runtime services are organized
as a set of replaceable layered functions. The
COM runtime, CORBA runtime, and RPC
runtime layers supply a native programming
interface to the developer that maps to the
common runtime services. The object runtime
layer provides core object management
functions to the COM and CORBA runtime
layers such as reference counting and
interface navigation. The IIOP layer marshals
requests into IIOP message formats. The
transport layers manage network connections
and transport IIOP messages. Nouveau
supports TCP/IP and shared memory
transports, although support for other network
transports can be implemented if desired. The
application manager registers applications
and manages instances of running
applications. Applications can locate other
applications using an OMG COS Naming
service.

CORBA Runtime
CORBA clients interface with Nouveau
application servers using the standard CORBA
object reference mechanism. Each Nouveau-
generated CORBA object reference inherits
from the standard CORBA::Object interface.
The Nouveau CORBA runtime layer maps
standard CORBA runtime functions such as
lifecycle management and exception handling
to the lower-level Nouveau runtime services.

Object Runtime
The Nouveau Object runtime layer performs
object management services on behalf of the
COM and CORBA runtime layers, including

reference counting and interface navigation.
The Object runtime layer includes an
implementation of the OMG POA, which
performs the object dispatching services for
Nouveau CORBA servers. The Object runtime
layer calls the IIOP runtime layer to prepare
messages for transport.

RPC Runtime
RPC clients interface with Nouveau
application servers using standard RPC
invocation mechanisms. The Nouveau RPC
runtime layer maps RPC runtime functions to
the lower-level Nouveau runtime services. The
RPC runtime layer calls the IIOP runtime layer
to prepare messages for transport.

IIOP Runtime
The IIOP runtime layer is responsible for
marshaling requests into IIOP message
formats. Datatypes and object references are
marshaled using OMG CDR marshaling
services. The IIOP runtime layer calls the
transport layers to relay the IIOP messages.

Transport Layers
The transport layers manage network
connections and perform all message
transports. The standard Nouveau environment
supports TCP/IP and shared memory transport
services, although additional transports can be
implemented if desired.

PAGE 21 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Conclusions Native Interoperability
NobleNet Nouveau takes a new and direct
approach to middleware interoperability

Rather than cobbling together connections
using bridges and gateways, Nouveau
implements native interoperability directly in
the applications.

Use the Right Tool for the Job
Nouveau removes the headaches associated
with using multiple middleware systems.
Organizations no longer need to be constrained
by an arbitrary mandate to use one and only
one middleware system. Instead an
organization can use the most appropriate
middleware system to suit the requirements of
a particular application component. A single
distributed application system can be
implemented using different middleware
services in different pieces of the application.
New application systems can be integrated
with existing application systems.

Preserving the Programming Model
Nouveau uses a common wire protocol, OMG
IIOP, to provide direct connectivity between
any COM, CORBA, or RPC client and server.
Yet even though the low-level infrastructure is
based on CORBA, Nouveau preserves the full
capabilities of both the COM and the RPC
programming model.

Less Overhead and Higher Reliability
By establishing direct connectivity between
heterogeneous middleware systems, Nouveau
reduces runtime overhead and removes an
added layer of management complexity. Since
bridge servers must be managed, monitored,
and replicated to ensure the reliability and
availability of the system, Nouveau’s native
connectivity will deliver higher performance
and more reliable application systems than
other connectivity solutions.

Anne Thomas works for the Patricia Seybold Group - see:www.psgroup.com.
NobleNet inc. may be contacted on +1 (508) 229 4665. See also:www.noblenet.com for further

information. Additional technical information and white papers can be obtained by
emailing:ratio@noblenet.com or calling the above number. asking for Bill Bogaski

ObjectArchitecture … … SubjectiveView

End-to-End Objects
The ODBMS Advantage

Kieron McCammon of Versant Object Technology argues the case for the OO
Database, giving a thorough introduction along the way!

Introduction

The IT landscape faces a process of continual
change, now more so than ever. Business
demands of time to market, reduced costs,
increased complexity and functionality all
drive towards the single goal of being
competitive in today's markets. From a
technological standpoint these pressures have
driven the adoption of object-oriented
technologies, principles and approaches
throughout the software development lifecycle.
New acronyms like CORBA, new languages
like Java and new approaches like component-
based development are becoming the norm. So
why would people turn to 20-year-old

technology when it comes to selecting a
database?

This article aims to investigate the roles for
database technologies, focusing on how an
Object Database Management System
(ODBMS), like the one provided by Versant,
can help an organisation to truly deliver end-
to-end object solutions.

What's an Object Database?

Object Databases appeared on the horizon over
ten years ago, back in 1988. The goal then was
to deliver a new breed of database, designed
and optimised to store and manipulate objects.

PAGE 22 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

This goal was driven by the widespread
adoption of object-oriented modelling
techniques and languages. Design decisions
made at this time differentiated object
databases from existing relational databases.
Primarily, instead of focusing on a data model
(based on a fixed set of types) specified in
some abstract, normalised form, the object
database focused on the object model as
defined within the O-O language.

The primary strength of an object database is
its in-built ability to manage arbitrarily
complex models (in terms of types) with
arbitrarily complex relationships. Managing
objects consisting of simple-valued attributes
(integers, strings), multi-valued attributes

(dynamic arrays of values) and complex
structures is fundamental, but it’s the ability to
handle relationships that is key - not just one-
to-one or one-to-many, but relationships that
include semantics: like sets (uniqueness); lists
(ordering); maps (associative lookup). These
relationships may be complex objects in
themselves, perhaps containing hashed values
for efficient lookup and retrieval.

In the object world transactions involve
navigating relationships and performing
complex operations thereon. Object databases
are optimised for this navigational access and
the marshalling of objects between the
database server and client. Figure 1 shows a
typical ODBMS architecture.

Client

Database

Pages
Request

ObjectsS
er

ve
r

Client Cache

Disk

Server Cache
Figure 1 - Client-server architecture of an ODBMS

The server process provides concurrency and
transactional control, ensuring recoverability
(as with any database). The client-side cache
manages the objects that have been transferred
from the server, effecting transparent access
through the programming language. As
relationships are traversed, objects are
requested from the server and instantiated in
cache automatically. Once in cache they
remain there until the transaction ends. When
the client commits a transaction, any modified
objects are transferred back to the server and
the transaction ends.

So to answer the question:

"What is an object database?"

Simply put, it’s a database for objects

But why can't I use a relational
database?

Still not convinced? Well, lets look in detail at
how you might store objects in a relational
database. Figure 2 shows a simple object
model that we will use as an example (notice
that it doesn't include any real complexity, but
it should serve to prove a point).

PAGE 23 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Employee
soc_no
emp_name
birth_date
dept_name

HourlyEmployee
hour_rate
over_rate
max_over

SalariedEmployee
hour_rate
bonus_pct

Figure 2 - Simple object model

There are a number of ways in which to map
this model to a relational database. Each
approach has its trades off. One way is to
define a table for each class, where each
column in the table represents an attribute of

the class (fine for simple-valued attributes,
requires more work and additional tables for
multi-valued and structured attrbitutes, and
don't even think about multi-media types).
Figure 3 shows the likely schema.

soc_no hour_rate over_rate max_oversoc_no hour_rate over_rate max_over

soc_no month_rate bonus_pctsoc_no month_rate bonus_pct

soc_no emp_name birth_date dept_namesoc_no emp_name birth_date dept_name
Employee_Table

HourlyEmployee_Table

SalariedEmployee_Table

Figure 3 - Relational schema

The attributes common to all Employees are
stored in the Employee table, additional
attributes for HourlyEmployees are stored in
the HourlyEmployee table and so on. We may
refer to this method of object-to-relational
mapping as “Inheritance by Join”. The other
approach, analogous to the relational notion of
denormalizeation, is “Inheritance by Copy”.
In this style, the attributes of the parent class
are copied into each of its children.

Once the required schema has been defined the
mapping code has to be written. This code is
required to take an object, as created and
manipulated in the programming language and
de-construct it into the representation required
by the database and conversley construct an
object from the database representation so it
can be used by the programming language.
Figure 4 shows the SQL code required just to
perform the mapping from an object to the
relational schema (the same will be required to
map from the relational schema to an object).

Subscribe to ObjectiveView.
For your free copy email:objective.view@ratio.co.uk

PAGE 24 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

EXEC SQL INSERT INTO Employee_Table
 (soc_no, emp_name, birth_date, dept_name)
 VALUES
 (:emp->soc_no, :emp->name,
 :emp->birth_date, :emp->dept_name);
if (emp->type == 1)
 EXEC SQL INSERT INTO HourlyEmployee_Table
 (soc_no, hour_rate, over_rate, max_over)
 VALUE
 (:emp->soc_no, :emp->hour_rate,
 :emp->over_rate, :emp->max_over);
else if (emp->type == 2)
 EXEC SQL INSERT INTO SalariedEmployee_Table
 (soc_no, month_rate, bonus_pct)
 VALUES
 (:emp->soc_no,
 :emp->month_rate, :emp->bonus_pct)
EXEC SQL COMMIT WORK RELEASE;

Figure 4 - Mapping an object to the relational database

The Employee attributes are inserted into the
Employee table, if the object is type "1" (some
means to identify the class of the object), the
additional attributes are inserted into the

HourlyEmployee table and so on.
Compare this to the code in figure 5, which
shows what is required by an object database
to create and store an object.

HourlyEmployee* employee = new(db, "HourlyEmployee")
 HourlyEmployee("Versant","1/1/88","Object Technologies");

Figure 5 - Creating an object in an object database

A very graphic comparison of the effort
involved. You can see why it is generally
recognised in the industry that anything upto
35-40% of such an application's code is
involved in overcomming this mapping of
objects to and from a relational database,
(often referred to as overcomming the
"impedance mismatch").

And of course this is only a small part of the
overall story: Retrieving an HourlyEmployee
from the database involves joining the
HourlyEmployee and Employee tables. Every
time you retrieve an object of any of the child
classes (e.g., HourlyEmployee), you will have
to join several tables. Had we selected the
“Inheritance by Copy” style, the retrieval of
HourlyEmployee would avoid the inheritance
joins, but that introduces other complications.
Using “Inheritance by Copy”, an application
must instead join every time it wishes to access
objects via a parent class (in this instance,
Employee). Which of these two approaches is
least expensive for a given application depends
upon data access patterns and the object

model, but even mildly complex objects may
require a 5-way join, across potentially large
tables (as the number of objects increases).

None of the above costs take into account
mapping complex relationships (sets, lists,
maps), this can take the number of joins into
double figures, and also introduce sorting. So
even though the objects have been mapped into
the relational database it isn't possible to get
the required performance as the object model
is navigated, (this of course leads to
simplification of the object model and its
relationships, to reduce the number of joins,
thus negating the benefit of using an object
approach in the first place)

Once the mapping layer has been implemented
it has to be maintained. More importantly it
has to be able to evolve as the application
evolves. How would you add a
PartTimeEmployee class? What code would
need to change? What impact would this have
on other parts of the system?

As complexity increases the effort and cost to
develop and maintain this mapping layer
increases exponentially.

So How does an object database

PAGE 25 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

work?

Back to basics
Firstly some basics, an important concept to
understand is that of object identity. In the
object world every object can be said to have
an identity, this identity is orthogonal its state
(the values of its attribute). Object identity is
fundamental since it is the means by which
objects are manipulated; object identity is used
to build relationships between objects, and by
navigation to determine which object to access
next.

Whilst object identity is fundamental in the
object world, it doesn't exist in the relational
world, here data is accessed based on its value
(using keys). Take a Circle object, should its
colour change from "Yellow" to "Red", its
identity remains the same. In the relational
world it would no longer be possible to find
the row that had previously contained the value
"Yellow". This can (and indeed should) be
addressed in a relational database design with
unique keys not derived from any application
attributes, but in a relational database these
values are still potentially changeable by the
application.

0.0.7

0.0.7

colour = yellow colour = red

==

Figure 6 - Object Identity

Object database architectures
Object identity is likewise fundamental to an
object database. Figure 7 shows in more detail

the client-side architecture of an object
database.

Object Manager

Conventional Memory
Application

Object
Cache Server

Figure 7 - Client-side architecture of an object database

The application is linked with the Object
Manager (OM) provided by the database
vendor, this provides transparent navigation
(based on object identity) and management of
persistent objects, fetching them on demand
from the server into the client's object space.
The application calls the OM APIs to manage
the transactional boundaries; on calling
commit (or rollback to discard changes) the
OM sends the changed objects back to the
server and ends the transaction. The database
server enforces transactional integrity and
isolation between multiple clients, using
locking to ensure "cache-coherency" between

the objects held in the client-cache and those in
the server. As expected with any database, the
server provides transactional recovery on
failure and ensures objects held in the database
are transactionally consistent.

Whilst the various object databases available
in the market today all provide the same basic
capability they have tended to approach the
problem from different perspectives. Most
focused on providing persistent extensions to
the language, C++ or Smalltalk, and are often
categorised as persistent storage engines.
Others focused on providing a database for

PAGE 26 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

objects. The difference can be exemplified by looking at how queries are processed.

Server

Client Client

Server

Server

Client

Server-centric Client-centric

Balanced client-server
Figure 8 - Different database architectures

The persistent storage engines turned the
server-centric approach of the relational
database on its head, adopting instead a client-
centric approach. Rather than off-loading the
data processing to the database server (as when
using SQL), they choose to simplify the
database server so it is just responsible for
managing pages (as in pages of memory). It
sends these pages to clients on request (this
type of database server is often referred to as a
"page server"). The client then performs the
required processing. To perform a query all
the required objects must be transferred from
the database server to the client, the client then
determines which objects satisfy the specified
criteria.

The second approach is to design a database
for objects instead of for undifferentiated
blocks of data.

This architecture allows three major benefits:
Object-aware processing can occur at both the
client and the server; objects can be
transported as objects rather than as blocks of
data; and Objects can be transported between
differing platforms more easily.

The first benefit means that since the database
is object-aware, the server can perform
processing on those objects. It can perform
navigation, queries, maintain inter-object
relationships, and other complex functions. To
perform a query for example, the client simply
specifies the criteria using an SQL-like syntax
and passes this to the server. The server
optimises and executes the query, using multi-
user indices if available, returning just the
resultant objects to the client.

Subscribe to ObjectiveView.
For your free copy email:objective.view@ratio.co.uk

PAGE 27 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Client

“Object-aware Server”

S
er

ve
r

Disk
select * where name like “*Smith”

“Fred Smith” “John Smith”

“Liz Smith”

Index

Figure 9 - Query processing

The second benefit of a database for objects is
that the server and client can exchange and
cache objects as objects. This reduces
overhead in both transport and caching, and
allows for much faster performance.

The third major benefit of the "object-aware
server" is the ability to easily share objects
between different platforms, compilers and
languages. Because the database understands
and stores objects, not pages of memory, NT
clients can talk to Solaris servers, Java
applications can manipulate objects created by
C++ applications and vice-versa. All issues of
heterogeneity are taken care of by the database,
an important concept to help future-proof
today's applications.

Who wants to discover they can't access their
objects from a new
machine/compiler/language because its
memory layout is incompatible with that stored
in the database, (32bit addressing verses 64bit
addressing, for example)? Or to increase the
pain of cross-platform development?

Developing an application
The Object Data Management Group (ODMG)
has defined standard language bindings for
C++, Smalltalk and Java to an object database

(see:Error! Reference source not found. for
more information). The standard defines:
• How an object model is defined and

captured in the database (Object
Definition Language). The standard
allows for a separate ODL, but generally
C++, Smalltalk or Java is used as the
definition language.

• How the application interacts with the
Object Manager to manipulate the objects
(Object Manipulation Language). This
defines the language interface for C++,
Smalltalk and Java.

• How the application can query the
database (Object Query Language). Each
language interface provides means of
allowing OQL queries to be expressed and
executed. Only object databases with
"object-aware servers" are able pass the
query to the server to be executed. Others
use the client to execute the query,
transferring all the objects from the
database and checking for a match.

As an example lets look at a simple, ODMG
C++ application. Figure 10 shows the UML
model for the application.

Subscribe to ObjectiveView.
For your free copy email:objective.view@ratio.co.uk

PAGE 28 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

/
d_Object

Department
mName : d_String
mEmployees : d_Set

getName()
addEmployee(employee)
findDepartment(name)

Employee
mName : d_String

getName()
setName(name)

0..*

1

0..*

1

+has employees

Figure 10 - UML for example

It consists of two classes. An Employee class
and a Department class, each has a name.
The Department class has a one-to-many

relationship to Employee (denoting that a
department contains many employees).
First lets declare the Employee class:

class Employee : public d_Object
{
public:
// Constructors/Destructors
 Employee (const char* name) : mName(name) {}
 virtual ~Employee () {}

// Accessor Methods
const char* getName () const { return mName; }

// Mutator Methods
void setName (const char* name)
{

mark_modified();
mName = name;

}

private:
// Attributes
d_String mName;
}; // class Employee

Figure 11 - Employee class

Employee inherits from the ODMG
persistence base-class, d_Object. This means
the class is now persistent capable (transient or
persistent instances of Employee can be
created). The class has a single attribute,
mName, which uses the ODMG d_String
string class rather than a const char* (since
memory pointers cannot be stored in the

database). The mutator method, used to set an
employees name, first calls
mark_modified() to tell the Object Manager
that the object is going to be changed
(depending on the database, this may result in
a write lock being granted to ensure no one
else tries to modify the same object).
If we now look at the Department class:

PAGE 29 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

class Department : public d_Object
{
public:
// Constructors/Destructors
Department (const char* name) : mName(name) {}
virtual ~Department () {}

// Accessor Methods
const char* getName () { return mName; }

// Mutator Methods
void addEmployee (Employee* employee)
{

mark_modified();
mEmployees.add(employee);

}

// Static Methods
static d_Ref<Department> findDepartment (const char* name);

private:
// Attributes
 d_String mName;
 d_Set<d_Ref<Employee> > mEmployees;
}; // class Department

Figure 12 - Department class

Again the Department class inherits from
d_object and has a name attribute. Each
Department has a set of Employees, this
relationship is defined using an ODMG
d_Set<> (d_Set<> is an unordered collection
class) of ODMG references, d_Ref<>, to
Employee. The mutator method to add an
employee to a department calls
mark_modified()to signify its intention to
update itself and adds the given employee to
its set of employees. The static method
findDepartment() returns a reference to a
Department. The d_Ref<> class replaces the

usual use of C++ pointers. C++ pointers are
not safe when manipulating persistent objects,
a pointer to an object is only valid while it
remains in memory. Also pointers are limited
by the addressing model of the operating
system. The implementation of
findDepartment() will be looked at later.

Once the database schema has been captured
from the class definitions and loaded into the
database, persistent objects can be created
using the new operator:

Employee* emp1 =
new Employee("Mickey"); // Transient instance

Employee* emp2 =
new(db, "Employee") Employee("Donald"); // Persistent instance

Figure 13 - Creating an object

The ODMG overloaded new operator takes
two additional parameters: the database in
which the object is to be created; and the class
of the object. Otherwise it functions as the
standard new operator. To create a transient

instance of a persistent capable class just call
the standard new operator.
Figure 14 shows a simple application that
opens a database, starts a transaction, creates a
department and some employees and commits:

PAGE 30 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

main()
{

d_Database db;
d_Transaction txn;

db.open("Staff.db"); // Open a database connection
txn.begin(); // Start a transaction

// Create a persistent Department and some Employees
Department* dep = new(db, "Department") Department("RD“);
Employee* emp1 = new(db, "Employee") Employee("Mickey");
Employee* emp2 = new(db, "Employee") Employee("Donald");

// Add the Employees to the Department
dep->addEmployee(emp1);
dep->addEmployee(emp2);

txn.commit(); // Commit the transaction
db.close(); // Close the database connection

}

Figure 14 - A simple application

The ODMG d_Database and
d_Transaction classes interface to the
Object Manager and are used to control
database connections and transaction

boundaries. The rest is standard C++ code.
Finally, taking a look at the implementation of
findDeparment() demonstrates the use of
queries:

d_Ref<Department> Department::findDepartment (const char *name)
{

d_Set<d_Ref<Department> > results; // Results of query
d_VQL_Query query // Query object

 ("select SelfOID from Department where name like $1");

query << name; // Bind name to $1
d_oql_exectute(query, results); // Execute the query

if (results.cardinality() > 1)
{

// Opps, found more than one department
throw InvalidDepartmentException(name);

}
else if (results.cardinality() == 1)
{

// Found a single match, return the first element in set
return *results.begin();

}
else
{

// No match found, return NULL
return NULL;

}
}

Figure 15 - Performing a query

The query object is built using the SQL-like
select syntax, SelfOID denotes that the result
is a collection of object references of matching

objects (rather than a projection of attributes
from the matched objects).
d_oql_execute() executes the query.

PAGE 31 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Conclusion

As can be seen, building a C++ application that
interfaces to an object database is
straightforward. The ODMG language binding
hides all the complexity of storing and
retrieving objects. Eliminating the complex
mapping required to use a relational database
results in less code to design, write, debug, test
and maintain. This can lead to significantly
shorter development time scales, one of the
fabled promises of object-orientation.

By using the same object representation in the
database as that manipulated by the
application, providing direct support for
complex relationships and navigation, an
object database can deliver significant
performance gains over a relational database.

Using an object database that has a "balanced
client-server" architecture ensures maximum
flexibility in application design, allowing
complex navigation to be performed by the
client and ad-hoc queries by the server,
delivering the best performance in both cases,
and supporting cross-platform communication.

But what's the impact on my
development process?

Getting the design right
The use of an object database is more
pervasive in the development process than a
relational database. Thought must be given to
issues of concurrency, performance and
scalability during analysis and design (rather
than during deployment, by relying on the
DBA to optimise the data model and define
appropriate indexing strategies). This is not
because the object database itself requires it,
but because concurrency, performance and
scalability are real-world requirements that
need to be reflected throughout analysis,
design and into implementation. The use of a
database (object or otherwise) is often driven
by requirements related to concurrency,
performance and scalability.

Since part of the strength of an object database
comes from its ability to support complex
relationships, allowing clients to navigate and
perform complex manipulations, it is essential
to ensure that the object model includes the
navigational paths dictated by the system's
transactions. This is often seen as a drawback
of using an object database, the emphasis on
getting the class model right. But is it any less

true if using a relational database? It may be
argued that a DBA can tune a data model; de-
normalise tables, define indexes, build join
tables, and so on to achieve performance and
concurrency requirements. And in a purely
data driven application this may be true, but
few applications are purely data-driven. It was
shown earlier that the impact on the mapping
code when changing the database schema is
potentially catastrophic and indexes or join
tables can only be created where common keys
already exist. If a particular access path wasn't
envisaged then neither relational or object
database can help you. There is no exception
to the rule:

"There is no substitute for good design"

Due in large part to the much greater cost of
fixing problems in the implementation or
maintenance phases, today's object-oriented
methodologies place a great importance on
getting the design right. They place emphasis
on the consideration of "use cases" or
"scenarios" that help identify interactions
(transactions) within a system and bring to the
fore, thoughts of performance and
concurrency. Object databases are a natural
part of this approach. The role of the ODBA
should be more proactive. Instead of
becoming involved only at the end of the
project to tune and manage the data, the
ODBA has more of an architectural role, and
works as part of the analysis, design and
implementation teams. The ODBA helps to
consider issues of concurrency, performance
and scalability; ensuring that transactions are
designed making best use the features of the
chosen technology. And since the ODBA is
taking a more proactive role within the project,
why not introduce the concept of a class
librarian, facilitating reuse by providing a
repository for class libraries and components.

Understanding access patterns
Access patterns are the ways in which a system
accesses and manipulates its objects.
Consideration of access patterns helps to
identify the navigational paths required by a
system's transactions. The performance
requirements of these transactions will in turn
sway implementation decisions, ensuring that
required relationships are present or supporting
classes available.

A persistent storage engine places great
importance on defining relationships, since
navigation is the only means of access. If an
object can't be reached via navigation then it is
garbage (which is why some technologies

PAGE 32 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

advocate garbage collection within the
database). This client-centric approach places
a great emphasis on maintaining collections of
objects to support the required access patterns.
Taking a look at the earlier example, to support
the findDepartment() method all
Department objects would have to be
inserted into a collection of departments (the
collection would likely be a map, associating a
department name to a department very
efficiently).

This is an obvious requirement, but its impact
on concurrency may not be. Each time a
department is created it must be inserted into
the collection of departments. Not a problem
for an application using an in-memory model,
but it can act as a potential concurrency "hot-
spot" otherwise; since only one transaction can
create a department at any time (due to the
need to update the department collection).
This may not be evident during initial
prototyping and isn't pleasant to discover
during deployment as the number of users,
levels of concurrency or transaction rates
increase. And whilst the access path is
available to navigate from a department to its
employees, what for a latter requirement to
find all employees with a given name?

This would have to be performed by retrieving
each department to the client and navigating to
each employee, checking for a match, one by
one; unless this was foreseen during design
and a collection of employees added (in which
case a query over the collection would suffice).
But how would either approach scale to
manage millions of objects.

Compare this approach to that of using an
object database with an "object-aware server".
The class declarations remain the same, but
since the server automatically maintains a
collection of all objects in a given class,
referred to as a class extent, it is not necessary
to maintain a department collection.
findDepartment() would be implemented
using the query capability of the database.
Likewise for a latter requirement to find an
employee, rather than navigating to every
employee via a department, a query could be
used (with an index if available) over the
Employee class extent. Of course finding the
employees of a department is still a simple
means of navigation, unlike a relational
database that would require a query. With this
approach it is possible to balance concurrency,
performance and scalability requirements.
Navigation has the potential to deliver the best

performance at the expense of having to
maintain the required relationships. Querying,
whilst not as fast, offers a greater degree of
concurrency (no need for collections) and is
more scalable, being able to manage millions
of objects and deliver near constant
performance through the use of indexes.

The elimination of potential concurrency "hot-
spots" when using a balanced client-server
approach makes it much more suited to multi-
user, highly concurrent database applications.
And since every object is reachable via a
query, there is no need for garbage collection
to reclaim space.

Developing transactions
Every database client needs to execute one or
more transactions. For those not familiar with
developing database applications deciding on
what constitutes a transaction can be one of the
toughest problem. A transaction should
consist of a logical unit of work that is either
done in its entirety or not done at all. An
object transaction will typically start by
creating an object, navigating from an ODMG
root object (simply an object which has been
given a name) or performing a query.
Thereafter anything can happen. A transaction
finishes when the application issues a commit
or rollback.

When developing transactions a few simply
rules apply:

Keep transactions short.
Thought should be given to the impact of
holding locks for extended periods of time in
multi-user systems. For GUI applications, an
optimistic locking model may be more
appropriate (where locks aren't held, instead
timestamps ensure multiple updates don't
occur).

Use navigation.
Navigation should be the primary means of
interaction with the database.

Judiciously use queries.
For object databases with "object-aware"
servers this can help maintain near-constant
performance as numbers of objects increase by
minimising the objects transferred to the client
and eliminating "hot-spots".
The ability to perform queries adds a forth
dimension to the way an object application
would otherwise be developed. As an
example, figure 16 shows a directed acyclic
graph of circles.

PAGE 33 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

R

YB

R G

B RY

R G

R
YB

R

G
B

R

Y

R
G

Circle Extent

select * from Circle where colour = “red”

Figure 16 - A DAG

Most transactions would navigate the tree-
structure, depth or breadth first, making the
most of the object database's ability to handle
complex structures. And where a tree walk is
required navigation is the optimal approach,
offering performance far superior to that
achievable with a comparable relational
solution. But for searches, navigation may not
prove the most efficient means of solving the
problem, especially as the graph grows into the
millions (as the number of objects doubles so
does the time to navigate them). Instead a
query over all instances of Circle (its class
extent) to identify those matching the specified
criteria will return in near-constant time,
irrespective of the number of objects (when
used in conjunction with an index).

Conclusion
The use of an object database provides a less
segregated approach to object-oriented
development than using a relational database.
The emphasis of current methodologies on
understanding the real-world requirements of a
system dovetails neatly with the use of an
object database. The lesson from objects, as
with other technologies is that it's important to
get the design right, no technology can
overcome poor design. The argument for
keeping the database (and data definition)
segregated from the application to ensure that
it can be optimised, independent of the
application, is a fallacy. Mapping objects to
tables results in convoluted relational schemas
and large amounts of mapping code.
Key issues to be addressed revolve around

concurrency, performance and scalability
requirements. These will invariably impact
class design and implementation, with
consideration being given to the capabilities
offered by the database itself. Persistent
storage engines may prove sufficient for
single-user applications that require
persistence (embedded systems, CAD/CAM
packages). But only an object database with
the capability and flexibility to be a database
for objects allows multiple applications, with
different transaction types and access patterns,
to each optimise their use of the database to
deliver maximum performance and
concurrency.

And how do I manage a
deployed system?

Deploying an object database involves similar
considerations to deploying any database. It
consists of a number of data volumes stored on
disk, that need to be backed up and managed.
Hardware considerations like disk speed,
number of CPUs and speed, I/O bandwidth
will all affect the behaviour of the database.
Understanding the database architecture helps
in extrapolating likely cause and effects.
Availability and recoverability requirements
dictate how a database is managed and which
policies and procedures are put in place.
Therefore the skills normally equated with the
DBA are still a necessary part of deploying an
object database, but the focus of the DBA does
change.

PAGE 34 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

The role of the ODBA
The role of the database administrator in the
object database world is different than it is in
the relational world. The task of optimisation
happens earlier in the process, with the ODBA
providing architectural input to help get the
design right, instead of after the fact.
Therefore some tasks disappear (for example,
building join tables). The class model
identifies access patterns by virtue of its
relationships; therefore much of the
optimisation is implicit in this approach. The
development team, including the ODBA in an
expanded role, has optimised the transactions
to make the best use of available features to
ensure the performance, scalability and
concurrency requirements are met. There is
little design repair work for the ODBA to do
here after the fact.

Day-to-day management of the database is, of
course, still necessary. Backup strategies need
to be defined and implemented, additional
volumes need to be added, high availability
solutions need to be put in place, and as the
applications evolve the database schema needs
to evolve with it. These are all tasks that still
fall into the realm of the DBA. This pure
administrative role is perhaps 20% of the
workload associated with a typically RDBMS
DBA. This shift in workload presents an
opportunity for the DBA to become more
active within the overall development process,
participating in class and transaction design,
sharing knowledge regarding the impact of
using a database.

Administration Tasks
Each object database offers different levels of
administrative support depending upon the
underlying capabilities of their architecture.
One aspect to consider is whether the tasks can
be performed on-line (particularly important if
backing up, adding extra data volumes or
evolving schema). If tasks require the
database to be shutdown it will significantly
effect how the database can be deployed. The
following list identifies typical administrative
tasks:

Creating and deleting a database
In a development environment developers
usually undertake this. In a deployment
environment databases should be created and
managed by the ODBA.

Starting and stopping a database
It is useful if the database starts automatically
upon first connection, undergoing automatic

recovery if required, to help reduce
administrative intervention. An option to stop
the database after a specified time of inactivity
also helps.

Backing up and recovering a database
Backup should be an on-line task; the database
should be available during a backup. Support
for incremental backups helps reduce backup
times particularly for large databases. The
option to archive transaction records since the
last backup is useful in facilitating full
recovery. A backup is restored and the
archived transaction records replayed.

Adding additional data volumes to a database
Adding additional space to a database should
be an on-line task; where a database consists of
many data volumes, each potentially on
different physical devices for reasons of
performance or reliability.

Defining clustering strategies
It should be possible to create logical
partitions, each consisting of several physical
volumes, and be able to specify which classes
are stored in which partitions to support
physical optimisation of storage if required.

Reorganising a database
A database should support automatic, on-line
space reclamation and reuse to ensure optimal
performance over time. An option to undergo
off-line reorganisation is useful to optimise
internal structures periodically.

Adding and removing indexes
Adding and removing indexes should be an on-
line task performed at any time after database
creation (for those databases that support
server-side querying).

Evolving the schema of a database
Evolving the database schema should be an on-
line task allowing the addition of a new class
or removal of an existing one, addition,
renaming or removal of attributes of a class.
Support for "lazy" schema evolution allows the
schema to be evolved without changing the
actual objects themselves, especially important
for large databases. Objects are evolved into
the new representation as accessed, over time.
Schema evolution, by virtue of its potential to
break applications, should be controlled by the
ODBA.

Granting access to a database
Granting access rights to a database should be
on-line. As a minimum it should be possible
to specify user-level on a read or read/write

PAGE 35 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

basis.

Browsing and querying a database
It should be possible to browse the database
schema and objects and perform ad-hoc
queries (where supported). An option to insert,
update, delete via a browser is useful but can
break the encapsulation of the class model
since an object's attributes are manipulated
directly (however as a developer/DBA tool its
invaluable to help fix potential problem areas).

Monitoring and tuning a database
It should be possible to monitor the health of
the database as well as the overall performance
to aid tuning.

Configuring fault tolerance
Not all object databases offer a fault tolerant
solution, but for those that do it should be the
responsibility of the DBA to configure and
manage. Fault tolerance should be transparent

 to the application; not needing changes to the
application code.

Coexistence
An object database deployed in isolation or
embedded as part of an application has little or
no requirement to coexist with other
technologies. Often however the reality is that
the object database must be part of an overall
infrastructure. Particularly if this infrastructure
consists of existing reporting or data access
tools. It is important that these tools can
access the information stored within the object
database to satisfy the user's needs.

Most object databases vendors can provide an
ODBC interface to their database. This should
automatically map the class model to a
relational model and present this through an
ODBC interface allowing ODBC-compliant
tools to create, update and delete information
in the database, thus preserving the investment

in these tools.

Conclusion
Deploying an object database is like deploying
any database, it requires consideration of the
hardware and database capabilities, along with
the requirements for availability and
recoverability. Typically object databases
simplify the deployment process by
automating many of the administrative tasks
and allowing most to be performed on-line.

Conclusion (of conclusions!)

Object databases are an integral part of an
object end-to-end approach. They address the
shortfalls of existing database technologies by
managing objects as objects, with all their
inherent complexities, allowing the developer
to concentrate on developing the application
and business logic rather than focusing on
overcoming the "impedance mismatch"
between object and relational models.
As part of an encompassing O-O approach,
with the emphasis on getting the design right,
they can address issues of:

Time to market
Ease of use
Performance
Flexibility
Scalability
Concurrency

But consideration must be given to choosing
the most appropriate product for the job.
Object database's have different architectures
and different capabilities. A database with an
"object-aware server" offers the highest level
of concurrency, scalability and flexibility, all
pre-requisites for it to be considered part of an
infrastructure supporting a suite of evolving
applications. Importantly the object database
should be a database first and foremost. So
what are the advantages of an ODBMS? Well
that’s up to you!

Kieron McCammon is a Technical Manager with Versant Object Technology Ltd. Kieron may be
contacted at 'kmccammon@versant.com' or on +44 (0) 1753 701013

PAGE 36 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

OMG Analysis
By Eric Leach, OMG’s UK Representative

OMG Meeting, Orlando, Florida

At OMG’s Technical Committee Meeting
(TCM) in Orlando, Florida, USA, June 8-12,
members completed work on a new messaging
service for linking CORBA to Message
Oriented Middleware. The messaging
specification will be the first international
standard for messaging. Specifications for
security (Firewall), realtime systems
(Minimum CORBA), telecommunications
(CORBA/TMN interworking), DCE/CORBA
interworking and a Persistent State service
were also discussed and voted on at the
meeting. At the meeting IBM, Unisys and
Oracle proposed an industry standard for
streamlining collaborative application
development efforts on the Web.

The standard, known as Metadata Interchange
Format specification was created in response
to developers’ needs for standardised methods
of sharing data, regardless of tool or
programming language, in collaborative
development environments. The XMI
specification aims to integrate Extensible
Modelling Language and Meta Object Facility
to be the cornerstone of an open information
interchange model.

OMG Meeting, Helsinki,
Finland

At the OMG TCM in Helsinki, Finland, July
27-31, the OMG Board of Directors approved
the Currency Facility specification, making it
the first OMG financial domain standard. It
was also announced at the meeting that the
International Accounting Standards Committee
(IASC) had joined the OMG. The other
substantive specifications adopted at the
Helsinki meeting were Objects by Value,
Printing Facility, IDL to Java Mapping, Java to
IDL Specification, Lexicon, Query Services,
PDM Enabler, Notification and Patient
Identifiers (PIDS). OMG's next TCM is in
Seattle, WA, USA, hosted by Boeing,
September 14-18. See:www.omg.org for
details.

Evaluating the Business

Potential Of CORBA in
Telecoms

OMG’s Richard Soley was the keynote
speaker at IIR’s “Evaluating The Business
Potential Of CORBA In The
Telecommunications Industry” held at The
Cumberland Hotel, London, UK on 15-17
June. 80 of the 100 delegates were from
mainland Europe and all of them were
adopting or had adopted CORBA
implementations.

CORBA applications discussed and showcased
included those for Telecom operators, Internet
and multi-media services, Legacy integration,
TMN and GIS. The high degree of OMG
interest in and interworking with other related
standards groups and consortia was very
apparent. The groups and standards include
The Network Management Forum,
CMIP/OMIP, GDMO, ISO, ITU-IS, ETSI,
DAVIC and TINA-C. “The Telecoms
industry has managed to create standard
interfaces, even though the underlying
technologies and de facto and de jure standards
are assembled together in a somewhat messy
fashion. But it does work. OMG aims to do
the same in the IT industry,” said Richard
Soley in his keynote speech.

Ovum tips CORBA IDL for
Stardom

In May, Ovum (www.ovum.com) published its
long-awaited “Componentware: Building It,
Buying It, Selling It” report. The report
identified OMG CORBA IDL as a future
(2001) principal component interface standard,
only rivalled by Microsoft’s COM IDL. Ovum
sees CORBA IDL effectively encapsulating
Sun’s JavaBeans because of the latter’s
language and platform dependencies. The
report is descriptive, but not judgmental, when
it comes to evaluating component execution
platforms. It describes offerings from IBM,
Microsoft, Oracle and Sybase, but advises IS
Managers and CIOs to “court a trusted supplier
– preferably one that can provide tools,
infrastructure, service and applications to
support your component execution platform.”

Ovum defines a software component as “… a

PAGE 37 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

unit of software that:

• implements some known function

• hides the implementation of that function
behind one or more unambiguous
“interfaces” that it exposes to its
environment”

Ovum coined the term Componentware to
describe software assembled from a set of
components.

CORBA Desktop Tools

On the CORBA desktop tools front, Inprise
(formerly Borland, see: www.inprise.com)
demonstrated the beta version of its Delphi 4.0
Client/Server Suite at PC Expo in the USA in
June. Delphi 4.0, which shipped in July,
supports CORBA, HTTP, RPC, Sockets and
DCOM. Dephi 4.0’s tight integration with
Inprise’s own CORBA ORB, Visibroker,
offers an attractive alternative to VB 6.0 on the

desktop for those whose world extends beyond
the Microsoft closed world of Windows.

In June, BEA Systems (www.beasys.com)
completed its acquisition of Top End from
NCR. BEA is committed to integrate Top End
with its own Tuxedo software. BEA is
compiling a technology cocktail from third
party ingredients it has acquired in recent
years. These include ObjectBroker and
DECmessageQ originally developed by DEC.

CORBA®, OMG®, Object Management® and the OMG
logo are registered trademarks of the Object Management
Group. The Information Brokerage™ , CORBA – The
Middleware That’s Everywhere™ OMG: Setting The
Standards For Distributed Computing™ , IIOP™ , OMG
Interface Definition Language™ , CORBAservices™ ,
CORBAfacilities™ , CORBAmed™ and CORBAnet™ are
trademarks of the Object Management group. All other
products or company names mentioned are used for
identification purposes only, and may be trademarks of
their respective owners

 Object Design … Object Design … Object Design … Object Design

The Open-Closed Principle
How can software be extended without being modified?

Robert C. Martin tells all!

There are many heuristics associated with
object oriented design. For example, “all
member variables should be private”, or
“global variables should be avoided”, or “using
run time type identification (RTTI) is
dangerous”. What is the source of these
heuristics? What makes them true? Are they
always true? This article investigates the
design princi-ple that underlies these heuristics
-- the open-closed principle. As Ivar Jacobson
said: “All systems change during their life
cycles. This must be borne in mind when
developing systems expected to last longer
than the first version.”

How can we create designs that are stable in
the face of change and that will last longer
than the first version? Bertrand Meyer gave us
guidance as long ago as 1988 when he coined
the now famous open-closed principle.

To paraphrase him:
“SOFTWARE ENTITIES (CLASSES,
MODULES, FUNCTIONS, ETC.) SHOULD BE
OPEN FOR EXTENSION, BUT CLOSED FOR
MODIFICATION.”

When a single change to a program results in a
cascade of changes to dependent modules, that
program exhibits the undesirable attributes that
we have come to associate with “bad” design.
The program becomes fragile, rigid,
unpredictable and unreusable. The open-closed
principle attacks this in a very straightforward
way. It says that you should design modules
that never change. When requirements change,
you extend the behavior of such modules by
adding new code, not by changing old code
that already works.

Description

Modules that conform to the open-closed
principle have two primary attributes.

Description
1. They are “Open For Extension”. This means
that the behavior of the module can be
extended. That we can make the module
behave in new and different ways as the
requirements of the applica-tion change, or to

PAGE 38 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

meet the needs of new applications.
2. They are “Closed for Modification”. The
source code of such a module is inviolate. No
one is allowed to make source code changes to
it. It would seem that these two attributes are at
odds with each other. The normal way to
extend the behavior of a module is to make
changes to that module. A module that cannot
be changed is normally thought to have a fixed
behavior. How can these two opposing
attributes be resolved?

Abstraction is the Key.

In C++, using the principles of object oriented
design, it is possible to create abstractions that
are fixed and yet represent an unbounded
group of possible behaviors. The abstractions
are abstract base classes, and the unbounded

group of possible behaviors is repre-sented by
all the possible derivative classes. It is possible
for a module to manipulate an abstraction.
Such a module can be closed for modification
since it depends upon an abstraction that is
fixed. Yet the behavior of that module can be
extended by creating new derivatives of the
abstraction. Figure 1 shows a simple design
that does not conform to the open-closed
principle. Both the Client and Server
classes are concrete. There is no guarantee that
the member functions of the Server class
are virtual. The Client class uses the
Server class. If we wish for a Client
object to use a different server object, then the
Client class must be changed to name the
new server class.

Client Server1 1

Figure 1
Closed Client

Figure 2 shows the corresponding design that
conforms to the open-closed principle. In this
case, the AbstractServer class is an
abstract class with pure-virtual member
functions. the Client class uses this
abstraction. However objects of the Client
class

will be using objects of the derivative Server
class. If we want Client objects to use a
different server class, then a new derivative of
the AbstractServer class can be cre-ated.
The Client class can remain unchanged.

client abstract
server

server

1 1

Figure 2
Open Client

The Shape Abstraction

Consider the following example. We have an
application that must be able to draw circles

and squares on a standard GUI. The circles and
squares must be drawn in a particular
order. A list of the circles and squares will be
created in the appropriate order and the pro-
gram must walk the list in that order and draw

PAGE 39 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

each circle or square. In C, using procedural
techniques that do not conform to the open-
closed principle, we might solve this problem
as shown in Listing 1. Here we see a set of
data structures that have the same first
element, but are different beyond that. The first
element of each is a type code that identifies
the data structure as either a circle or a square.
The function DrawAllShapes
walks an array of pointers to these data
structures, examining the type code and then
calling the appropriate function (either
DrawCircle or DrawSquare).

Listing 1
Procedural Solution to the Square/Circle
Problem
enum ShapeType {circle, square};
struct Shape
{
 ShapeType itsType;
};
struct Circle
{
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};
struct Square
{
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};
//
// These functions are implemented
// elsewhere
void DrawSquare(struct Square*)
void DrawCircle(struct Circle*);
typedef struct Shape *ShapePointer;

void DrawAllShapes
 (ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++)
 {
 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square:
 DrawSquare((struct
 Square*)s);
 break;
 case circle:
 DrawCircle((struct
 Circle*)s);
 break;
 }
 }
}
The function DrawAllShapes does not
conform to the open-closed principle because
it cannot be closed against new kinds of
shapes. If I wanted to extend this function to

be able to draw a list of shapes that included
triangles, I would have to modify the func-tion.
In fact, I would have to modify the function for
any new type of shape that I needed to draw.
Of course this program is only a simple
example. In real life the switch statement in
the DrawAllShapes function would be
repeated over and over again in various func-
tions all over the application; each one doing
something a little different.

Adding a new shape to such an application
means hunting for every place that such
switch statements (or if/else chains)
exist, and adding the new shape to each.
Moreover, it is very unlikely that all the
switch statements and if/else chains
would be as nicely struc-tured as the one in
DrawAllShapes. It is much more likely that
the predicates of the if statements would be
combined with logical operators, or that the
case clauses of the switch statements
would be combined so as to “simplify” the
local decision making.

Thus the problem of finding and understanding
all the places where the new shape needs to be
added can be non-trivial. Listing 2 shows the
code for a solution to the square/circle problem
that conforms tothe open-closed principle. In
this case an abstract Shape class is created.
This abstract class has a single pure-virtual
function called Draw. Both Circle and
Square are derivatives of the Shape class.

Listing 2
OOD solution to Square/Circle problem.
class Shape
{
 public:
 virtual void Draw() const = 0;
};
class Square : public Shape
{
 public:
 virtual void Draw() const;
};
class Circle : public Shape
{
 public:
 virtual void Draw() const;
};

void
DrawAllShapes(Set<Shape*>&list)
{
 for (Iterator<Shape*>i(list); i;
 i++)
 (*i)->Draw();
}

PAGE 40 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Strategic Closure

It should be clear that no significant program
can be 100% closed. For example, consider
what would happen to the DrawAllShapes
function from Listing 2 if we decided that all
Circles should be drawn before any
Squares. The DrawAllShapes function
is not closed against a change like this. In
general, no matter how “closed” a module is,
there will always be some kind of change
against which it is not closed. Since closure
cannot be complete, it must be strategic. That
is, the designer must choose the kinds of
changes against which to close his design. This
takes a certain amount of prescience derived
from experience. The experienced designer
knows the users and the industry well enough
to judge the probability of different kinds of
changes. He then makes sure that the open-
closed principle is invoked for the most
probable changes.

Using Abstraction to Gain Explicit
Closure.
How could we close the DrawAllShapes
function against changes in the ordering of
drawing? Remember that closure is based upon
abstraction. Thus, in order to close
DrawAllShapes against ordering, we need
some kind of “ordering abstraction”. The
specific case of ordering above had to do with
drawing certain types of shapes before other
types of shapes. An ordering policy implies
that, given any two objects, it is possible to
discover which ought to be drawn first. Thus,
we can define a method of Shape named
Precedes that takes another Shape as an
argument and returns a bool result. The
result is true if the Shape object that
receives the message should be ordered before
the Shape object passed as the argument.
In C++ this function could be represented by
an overloaded operator< function. Listing
3 shows what the Shape class might look
like with the ordering methods in place.
Now that we have a way to determine the
relative ordering of two Shape objects, we
can sort them and then draw them in order.
Listing 4 shows the C++ code that does this.
This code uses the Set, OrderedSet and
Iterator classes from the Components
category developed in my book (if you would
like a free copy of the source code of the
Components category, send email to
rmartin@oma.com). This gives us a means
for ordering Shape objects, and for drawing
them in the appropriate order. But we still do

not have a decent ordering abstraction. As it
stands, the individual Shape objects will
have to override the Precedes method in
order to specify ordering. How would this
work? What kind of code would we write in
Circle::Pre-cedes to ensure that
Circles were drawn before Squares?
Consider Listing 5.

Listing 3
Shape with ordering methods.
class Shape
{
 public:
 virtual void Draw() const = 0;
 virtual bool Precedes(const
 Shape&) const = 0;
 Bool operator<(const Shape& s)
 {return Precedes(s);}
};

Listing 4
DrawAllShapes with Ordering
void DrawAllShapes(Set<Shape*>&
 list)
{
 // copy elements into OrderedSet
 // and then sort.
 OrderedSet<Shape*> orderedList =
 list;
 orderedList.Sort();
 for
 (Iterator<Shape*>i(orderedList);
 i; i++)
 (*i)->Draw();
}

Listing 5
Ordering a Circle
Bool Circle::Precedes(const Shape&
 s) const
{
 if (dynamic_cast<Square*>(s))
 return true;
 else
 return false;
}

It should be very clear that this function does
not conform to the open-closed principle.
There is no way to close it against new
derivatives of Shape. Every time a new deriv-
ative of Shape is created, this function will
need to be changed.

Using a “Data Driven” Approach to
Achieve Closure.
Closure of the derivatives of Shape can be
achieved by using a table driven approach that
does not force changes in every derived class.
Listing 6 shows one possibility. By taking this
approach we have successfully closed the

PAGE 41 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

DrawAllShapes function against ordering
issues in general and each of the Shape
derivatives against the creation of new Shape
derivatives or a change in policy that reorders
the Shape objects by their type. (e.g.
Changing the ordering so that Squares are
drawn first.)

Listing 6
Table driven type ordering mechanism
#include <typeinfo.h>
#include <string.h>
enum {false, true};
typedef int bool;
class Shape
{
 public:
 virtual void Draw() const = 0;
 virtual bool Precedes(const
 Shape&) const;
 bool operator<(const Shape& s)
 const
 {return Precedes(s);}

 private:
 static char* typeOrderTable[];
};

char* Shape::typeOrderTable[] =
{
 “Circle”,
 “Square”,
 0
};

// This function searches a table
// for the class names.
// The table defines the order in
// which the
// shapes are to be drawn. Shapes
// that are not
// found always precede shapes that
// are found.
//
bool Shape::Precedes(const Shape&
 s) const
{
 const char* thisType =
 typeid(*this).name();
 const char* argType =
 typeid(s).name();
 bool done = false;
 int thisOrd = -1;
 int argOrd = -1;

 for (int i=0; !done; i++)
 {
 const char* tableEntry =
 typeOrderTable[i];

 if (tableEntry != 0)
 {
 if (strcmp(tableEntry,
 thisType) == 0)
 thisOrd = i;
 if (strcmp(tableEntry,

 argType) == 0)
 argOrd = i;
 if ((argOrd>0)&& (thisOrd>0))
 done = true;
 }
 else // table entry == 0
 done = true;
 }
 return thisOrd < argOrd;
}

The only item that is not closed against the
order of the various Shapes is the table
itself. And that table can be placed in its own
module, separate from all the other modules,
so that changes to it do not affect any of the
other modules.

Extending Closure Even Further.
This isn’t the end of the story. We have
managed to close the Shape hierarchy, and
the DrawAllShapes function against
ordering that is dependent upon the type of the
shape. However, the Shape derivatives are
not closed against ordering policies that have
nothing to do with shape types. It seems likely
that we will want to order the drawing of
shapes according to some higher level
structure. A complete exploration of these
issues is beyond the scope of this article;
however the ambitious reader might consider
how to address this issue using an abstract
OrderedObject class contained by the
class OrderedShape, which is derived from
both Shape and OrderedObject.

Heuristics and Conventions

As mentioned at the begining of this article,
the open-closed principle is the root motiva-
tion behind many of the heuristics and
conventions that have been published
regarding OOD over the years. Here are some
of the more important of them.

Make all Member Variables Private.
This is one of the most commonly held of all
the conventions of OOD. Member variables of
classes should be known only to the methods
of the class that defines them. Member
variables should never be known to any other
class, including derived classes. Thus they
should be declared private, rather than
public or protected. In light of the
open-closed principle, the reason for this
convention ought to be clear. When the
member variables of a class change, every
function that depends upon those variables
must be changed. Thus, no function that

PAGE 42 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

depends upon a variable can be closed with
respect to that variable.

In OOD, we expect that the methods of a class
are not closed to changes in the member
variables of that class. However we do expect
that any other class, including sub-classes are
closed against changes to those variables. We
have a name for this expectation, we call it:
encapsulation. Now, what if you had a
member variable that you knew would never
change? Is there any reason to make it
private? For example, Listing 7 shows a
class Device that has a bool status
variable. This variable contains the status of
the last operation. If that operation succeeded,
then status will be true; otherwise it will
be false.

Listing 7
non-const public variable
class Device
{
 public:
 bool status;
};

We know that the type or meaning of this
variable is never going to change. So why not
make it public and let client code simply
examine its contents? If this variable really
never changes, and if all other clients obey the
rules and only query the contents of sta-
tus, then the fact that the variable is public
does no harm at all. However, consider what
happens if even one client takes advantage of
the writable nature of status, and changes
its value. Suddenly, this one client could affect
every other client of Device. This means that
it is impossible to close any client of Device
against changes to this one misbehaving
module. This is probably far too big a risk to
take. On the other hand, suppose we have the
Time class as shown in Listing 8. What is the
harm done by the public member variables in
this class? Certainly they are very unlikely to
change. Moreover, it does not matter if any of
the client modules make changes to the
variables, the variables are supposed to be
changed by clients. It is also very unlikely that
a derived class might want to trap the setting of
a particular member variable. So is any harm
done?

Listing 8
class Time
{
 public:
 int hours, minutes, seconds;
 Time& operator-=(int seconds);

 Time& operator+=(int seconds);
 bool operator< (const Time&);
 bool operator> (const Time&);
 bool operator==(const Time&);
 bool operator!=(const Time&);
};

One complaint I could make about Listing 8 is
that the modification of the time is not atomic.
That is, a client can change the minutes
variable without changing the hours
variable. This may result in inconsistent values
for a Time object. I would prefer it if there
were a single function to set the time that took
three arguments, thus making the setting of the
time atomic. But this is a very weak argument.
It would not be hard to think of other
conditions for which the public nature of
these variables causes some problems. In the
long run, however, there is no overriding rea-
son to make these variables private. I still
consider it bad style to make them public,
but it is probably not bad design. I consider it
bad style because it is very cheap to create the
appropriate inline member functions; and the
cheap cost is almost certainly worth the
protection against the slight risk that issues of
closure will crop up. Thus, in those rare cases
where the open-closed principle is not violated,
the proscrip-tion of public and
protected variables depends more upon
style than on substance.

No Global Variables -- Ever.
The argument against global variables is
similar to the argument against pubic
member variables. No module that depends
upon a global variable can be closed against
any other module that might write to that
variable. Any module that uses the variable in
a way that the other modules don’t expect, will
break those other modules. It is too risky to
have many modules be subject to the whim of

one badly behaved one. On the other hand, in
cases where a global variable has very few
dependents, or can-not be used in an
inconsistent way, they do little harm. The
designer must assess how much closure is
sacrificed to a global and determine if the
convenience offered by the glo-bal is worth the
cost. Again, there are issues of style that come
into play.

The alternatives to using globals are usually
very inexpensive. In those cases it is bad style
to use a technique that risks even a tiny amount
of closure over one that does not carry such a
risk. However, there are cases where the
convenience of a global is significant. The

PAGE 43 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

global variables cout and cin are common
examples. In such cases, if the open-closed
principle is not violated, then the convenience
may be worth the style violation.

RTTI is Dangerous.
Another very common proscription is the one
against dynamic_cast. It is often claimed
that dynamic_cast, or any form of run time
type identification (RTTI) is intrinsically
dangerous and should be avoided. The case
that is often cited is similar to Listing 9 which
clearly violates the open-closed principle.
However Listing 10 shows a similar program
that uses dynamic_cast, but does not
violate the open-closed principle. The
difference between these two is that the first,
Listing 9, must be changed when-ever a new
type of Shape is derived. (Not to mention
that it is just downright silly). How-ever,
nothing changes in Listing 10 when a new
derivative of Shape is created. Thus, Listing
10 does not violate the open-closed principle.
As a general rule of thumb, if a use of RTTI
does not violate the open-closed principle, it is
safe.

Listing 9
RTTI violating the open-closed principle.
class Shape {};
class Square : public Shape
{
 private:
 Point itsTopLeft;
 double itsSide;
 friend DrawSquare(Square*);
};

class Circle : public Shape
{
 private:
 Point itsCenter;
 double itsRadius;
 friend DrawCircle(Circle*);
};

void DrawAllShapes(Set<Shape*>& ss)
{
 for (Iterator<Shape*>i(ss);i;i++)
 {
 Circle* c =
 dynamic_cast<Circle*>(*i);
 Square* s =
 dynamic_cast<Square*>(*i);
 if (c)

 DrawCircle(c);
 else if (s)
 DrawSquare(s);
 }
}

Listing 10
RTTI that does not violate the open-closed
Principle.
class Shape
{
public:
virtual void Draw() cont = 0;
};
class Square : public Shape
{
 // as expected.
};

void DrawSquaresOnly(Set<Shape*>
 &ss)
{
 for (Iterator<Shape*>i(ss); i;
 i++)
 {
 Square*
 s=dynamic_cast<Square*>(*i);
 if (s)
 s->Draw();
 }
}

Conclusion

There is much more that could be said about
the open-closed principle. In many ways this
principle is at the heart of object oriented
design. Conformance to this principle is what
yeilds the greatest benefits claimed for object
oriented technology; i.e. reusability and
maintainability. Yet conformance to this
principle is not achieved simply by using an
object oriented programming language. Rather,
it requires a dedication on the part of the
designer to apply abstraction to those parts of
the program that the designer feels are going to
be subject to change. This article is an
extremely condensed version of a chapter from
my new book: The Principles and Patterns of
OOD, to be published soon by Prentice Hall.

Reprinted with permission from C++ Report
(C) SIGS Publications, Inc.

This article is an extremely condensed version of a chapter from Robert Martin’s new book: Patterns and
Advanced Principles of OOD, to be published soon by Prentice Hall.

This article was written by Robert C. Martin of Object Mentor Inc. Copyright (C) by Robert C. Martin
and Object Mentor Inc. All rights reserved. Object Mentor Inc, 14619 N. Somerset Circle, Green

Oaks, IL, 60048, USA phone: 847.918.1004 fax:847.918.1023
 email:oma@oma.com web:www.oma.com

PAGE 44 OBJECTIVEVIEW WWW.RATIO.CO.UK

WE KNOW THE OBJECT

Subscribe to ObjectiveView.
For your free copy email:objective.view@ratio.co.uk

Patterns '98 with Erich Gamma
See page 11 for full details.

Subscribe to ObjectiveView. Email:objective.view@ratio.co.uk

Object news daily -www.objectnews.com

Patterns '98 with Erich Gamma
See page 11 for full details.

