您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
Python 使用Opencv实现边缘检测以及轮廓检测
 
作者:Xy-Huang
   次浏览      
 2020-10-16 
 
编辑推荐:
本文主要介绍了边缘检测是是什么、轮廓检测、函数参数、返回值等相关内容。
本文来自于 博客园,由火龙果软件Anna编辑,推荐。

边缘检测

Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化。

Canny边缘检测器算法基本步骤:

平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声。

计算图像的梯度:这里计算图像的梯度,并将梯度分类为垂直、水平和斜对角。这一步的输出用于在下一步中计算真正的边缘。

非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则抑制该像素(像素不属于边缘)。这是一种边缘细化技术,用最急剧的变换选出边缘点。

用滞后阈值化选择边缘:最后一步,检查某一条边缘是否明显到足以作为最终输出,最后去除所有不明显的边缘。

Opencv使用Canny边缘检测相对简单,代码如下:

import cv2
import numpy as np

img = cv2.imread("hammer.jpg", 0)
cv2.imwrite("canny.jpg", cv2.Canny(img, 200, 300))
cv2.imshow("canny", cv2.imread("canny.jpg"))
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

Canny函数的原型为:

cv2.Canny(image, threshold1, threshold2 [, edges[, apertureSize[, L2gradient ]]])
必要参数:
第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
第二个参数是滞后阈值1;
第三个参数是滞后阈值2。

 

轮廓检测

轮廓检测主要由cv2.findContours函数实现的。

函数的原型为

cv2.findContours (image, mode, method [, contours[, hierarchy[, offset ]]])

函数参数

第一个参数是寻找轮廓的图像;

第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):

cv2.RETR_EXTERNAL表示只检测外轮廓 。

cv2.RETR_LIST检测的轮廓不建立等级关系。

cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。

cv2.RETR_TREE建立一个等级树结构的轮廓。

第三个参数method为轮廓的逼近方法

cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1。

cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。

cv2.CHAIN_APPROX_TC89_L1和cv2.CHAIN_APPROX_TC89_KCOS都是使用teh-Chinl chain近似算法。

返回值

如:image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

image:是原图像

contours:图像的轮廓,以列表的形式表示,每个元素都是图像中的一个轮廓。

hier:相应轮廓之间的关系。这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

原图:

示例一

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
# threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值
ret, thresh = cv2.threshold (cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:
# 轮廓绘制方法一
# boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高
x, y, w, h = cv2.boundingRect(c)
# 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度
cv2.rectangle (img, (x, y), (x + w, y + h), (0, 255, 0), 2)

# 轮廓绘制方法二
# 查找最小区域
rect = cv2.minAreaRect(c)
# 计算最小面积矩形的坐标
box = cv2.boxPoints(rect)
# 将坐标规范化为整数
box = np.int0(box)
# 绘制矩形
cv2.drawContours(img, [box], 0, (0, 0, 255), 3)

# 轮廓绘制方法三
# 圆心坐标和半径的计算
(x, y), radius = cv2.minEnclosingCircle(c)
# 规范化为整数
center = (int(x), int(y))
radius = int(radius)
# 勾画圆形区域
img = cv2.circle (img, center, radius, (0, 255, 0), 2)

# # 轮廓绘制方法四
# 围绕图形勾画蓝色线条
cv2.drawContours(img, contours, -1, (255, 0, 0), 2)
# 显示图像
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如图所示:

示例二

import cv2
import numpy as np

img = cv2.pyrDown (cv2.imread ("hammer.jpg", cv2.IMREAD_UNCHANGED))
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY) , 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 创建新的图像black
black = cv2.cvtColor (np.zeros((img.shape[1], img.shape[0]), dtype= np.uint8), cv2.COLOR_GRAY2BGR)


for cnt in contours:
# 轮廓周长也被称为弧长。可以使用函数 cv2.arcLength() 计算得到。这个函数的第二参数可以用来指定对象的形状是闭合的(True) ,还是打开的(一条曲线)
epsilon = 0.01 * cv2.arcLength(cnt, True)
# 函数approxPolyDP来对指定的点集进行逼近,cnt是图像轮廓,epsilon表示的是精度,越小精度越高,因为表示的意思是是原始曲线与近似曲线之间的最大距离。
# 第三个函数参数若为true,则说明近似曲线是闭合的,它的首位都是相连,反之,若为false,则断开。
approx = cv2.approxPolyDP(cnt, epsilon, True)
# convexHull检查一个曲线的凸性缺陷并进行修正,参数cnt是图像轮廓。
hull = cv2.convexHull(cnt)
# 勾画图像原始的轮廓
cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)
# 用多边形勾画轮廓区域
cv2.drawContours(black, [approx], -1, (255, 255, 0), 2)
# 修正凸性缺陷的轮廓区域
cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)
# 显示图像
cv2.imshow("hull", black)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如图所示:

参考资料:OpenCV 3计算机视觉 Python语言实现第二版

 
   
次浏览       
相关文章

手机软件测试用例设计实践
手机客户端UI测试分析
iPhone消息推送机制实现与探讨
Android手机开发(一)
相关文档

Android_UI官方设计教程
手机开发平台介绍
android拍照及上传功能
Android讲义智能手机开发
相关课程

Android高级移动应用程序
Android系统开发
Android应用开发
手机软件测试
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]
 
最新文章
简述Matplotlib
Python三维绘图--Matplotlib
Python数据清洗实践
PyTorch实战指南
Python爬虫与数据可视化
最新课程
Python应用开发最佳实践
Python+数据分析+tensorflow
Python 编程方法和应用开发
人工智能+Python+大数据
Python及数据分析
更多...   
成功案例
某通信设备企业 Python数据分析与挖掘
某银行 人工智能+Python+大数据
某领先数字地图提供商 Python数据分析与机器学习
北京 Python及数据分析
某金融公司 Python编程方法与实践培训
更多...