接上篇NoSQL数据库笔谈(一)
TC除了支持Key-Value存储之外,还支持保存Hashtable数据类型,因此很像一个简单的数据库表,并且还支持基于column的条 件查询,分页查询和排序功能,基本上相当于支持单表的基础查询功能了,所以可以简单的替代关系数据库的很多操作,这也是TC受到大家欢迎的主要原因之一, 有一个Ruby的项目miyazakiresistance将TT的hashtable的操作封装成和ActiveRecord一样的操作,用起来非常爽。
TC/TT在mixi的实际应用当中,存储了2000万条以上的数据,同时支撑了上万个并发连接,是一个久经考验的项目。TC在保证了极高的并发 读写性能的同时,具有可靠的数据持久化机制,同时还支持类似关系数据库表结构的hashtable以及简单的条件,分页和排序操作,是一个很棒的 NoSQL数据库。
TC的主要缺点是在数据量达到上亿级别以后,并发写数据性能会大幅度下降,NoSQL: If Only It Was That Easy提到,他们发现在TC里面插入1.6亿条2-20KB数据的时候,写入性能开始急剧下降。看来是当数据量上亿条的时候,TC性能开始大幅度下降,从TC作者自己提供的mixi数据来看,至少上千万条数据量的时候还没有遇到这么明显的写入性能瓶颈。
这个是Tim Yang做的一个Memcached,Redis和Tokyo Tyrant的简单的性能评测,仅供参考
CT.M
GT.M: API: M, C, Python, Perl, Protocol: native, inprocess C, Misc: Wrappers: M/DB for SimpleDB compatible HTTP ?, MDB:X for XML ?, PIP for mapping to tables for SQL ?, Features: Small footprint (17MB), Terabyte Scalability, Unicode support, Database encryption, Secure, ACID transactions (single node), eventual consistency (replication), License: AGPL v3 on x86 GNU/Linux, Links: Slides ?,
Scalien
Scalien: API / Protocol: http (text, html, JSON), C, C++, Python, Concurrency: Paxos.
Berkley DB
Berkley DB: API: Many languages, Written in: C, Replication: Master / Slave, Concurrency: MVCC, License: Sleepycat, BerkleyDB Java Edition: API: Java, Written in: Java, Replication: Master / Slave, Concurrency: serializable transaction isolation, License: Sleepycat
MemcacheDB
MemcacheDB: API: Memcache protocol (get, set, add, replace, etc.), Written in: C, Data Model: Blob, Misc: Is Memcached writing to BerkleyDB.
它是新浪互动社区事业部为在Memcached基础上,增加Berkeley DB存储层而开发一款支持高并发的分布式持久存储系统,对任何原有Memcached客户端来讲,它仍旧是个Memcached,但是,它的数据是可以持久存储的。
Mnesia
Mnesia: (ErlangDB ?)
LightCloud
LightCloud: (based on Tokyo Tyrant)
HamsterDB
HamsterDB: (embedded solution) ACID Compliance, Lock Free Architecture (transactions fail on conflict rather than block), Transaction logging & fail recovery (redo logs), In Memory support – can be used as a non-persisted cache, B+ Trees – supported [Source: Tony Bain ?]
Flare
TC是日本第一大SNS网站mixi开发的,而Flare是日本第二大SNS网站green.jp开发的,有意思吧。Flare简单的说就是给 TC添加了scale功能。他替换掉了TT部分,自己另外给TC写了网络服务器,Flare的主要特点就是支持scale能力,他在网络服务端之前添加了 一个node server,来管理后端的多个服务器节点,因此可以动态添加数据库服务节点,删除服务器节点,也支持failover。如果你的使用场景必须要让TC可 以scale,那么可以考虑flare。
flare唯一的缺点就是他只支持memcached协议,因此当你使用flare的时候,就不能使用TC的table数据结构了,只能使用TC的key-value数据结构存储。
最终一致性Key Value存储
Amazon之Dynamo
Amazon Dynamo: Misc: not open source (see KAI below)
功能特色
- 高可用
- 可扩展
- 总是可写
- 可以根据应用类型优化(可用性,容错性,高效性配置)
架构特色
- 完全的分布式
- 去中心化(人工管理工作很小)
- Key 唯一代表一个数据对象,对该数据对象的读写操通过 Key 来完成.
- 通常是一台自带硬盘的主机。每个节点有三个 Java 写的组件:请求协调器(request coordination)、成员与失败检测、本地持久引擎(local persistence engine)
- 数据分区并用改进的一致性哈希(consistent hashing)方式进行复制,利用数据对象的版本化实现一致性。复制时因为更新产生的一致性问题的维护采取类似 quorum 的机制以及去中心化的复制同步协议。
- 每个实例由一组节点组成,从应用的角度看,实例提供 IO 能力。一个实例上的节点可能位于不同的数据中心内, 这样一个数据中心出问题也不会导致数据丢失。
BeansDB
简介
BeansDB 是一个主要针对大数据量、高可用性的分布式KeyValue存储系统,采用HashTree和简化的版本号来快速同步保证最终一致性(弱),一个简化版的Dynamo。
它采用类似memcached的去中心化结构,在客户端实现数据路由。目前只提供了Python版本的客户端,其它语言的客户端可以由memcached的客户端稍加改造得到。
Google Group: http://groups.google.com/group/beandb/
更新
2009.12.29 第一个公开版本 0.3
特性
高可用:通过多个可读写的用于备份实现高可用
最终一致性:通过哈希树实现快速完整数据同步(短时间内数据可能不一致)
容易扩展:可以在不中断服务的情况下进行容量扩展。
高性能:异步IO和高性能的KeyValue数据TokyoCabinet 可配置的
可用性和一致性:通过N,W,R进行配置 简单协议:Memcache兼容协议,大量可用客户端
性能
在小数据集上,它跟memcached一样快: # memstorm -s localhost:7900 -n 1000
Num of Records : 10000
Non-Blocking IO : 0
TCP No-Delay : 0
Successful [SET] : 10000
Failed [SET] : 0
Total Time [SET] : 0.45493s
Average Time [SET] : 0.00005s
Successful [GET] : 10000
Failed [GET] : 0
Total Time [GET] : 0.28609s
Average Time [GET] : 0.00003s
实际部署情况下的性能(客户端测量): 􀂄 服务器 请求数 评价时间(ms) 中位数(ms) 99% (ms) 99.9%(ms)
􀂄 get A:7900 n=151398, avg=8.89, med=5.94, 99%=115.5, 99.9%=310.2
􀂄 get B:7900 n=100054, avg=6.84, med=0.40, 99%=138.5, 99.9%=483.0
􀂄 get C:7900 n=151250, avg=7.42, med=5.34, 99%=55.2, 99.9%=156.7
􀂄 get D:7900 n=150677, avg=7.63, med=5.09, 99%=97.7, 99.9%=284.7
􀂄 get E:7900 n=3822, avg=3.07, med=0.18, 99%=44.3, 99.9%=170.0
􀂄 get F:7900 n=249973, avg=8.29, med=6.36, 99%=46.8, 99.9%=241.5
􀂄 set A:7900 n=10177, avg=18.53, med=12.78,99%=189.3, 99.9%=513.6
􀂄 set B:7900 n=10431, avg=12.85, med=1.19, 99%=206.1, 99.9%=796.8
􀂄 set C:7900 n=10556, avg=17.29, med=12.97,99%=132.2, 99.9%=322.9
􀂄 set D:7900 n=10164, avg=7.34, med=0.64, 99%=98.8, 99.9%=344.4
􀂄 set E:7900 n=10552, avg=7.18, med=2.33, 99%=73.6, 99.9%=204.8
􀂄 set F:7900 n=10337, avg=17.79, med=15.31, 99%=109.0, 99.9%=369.5
BeansDB设计实现(非常难得的中文资料)
PPT
Nuclear
人人网研发中的数据库
详见:
http://ugc.renren.com/2010/01/21/ugc-nuclear-guide-use/
http://ugc.renren.com/2010/01/28/ugc-nuclear-guide-theory/
两个设计上的Tips
1. 万事皆异步
我们在编码的过程中走了一些弯路,同步的操作在高并发的情况下带来的性能下降是非常恐怖的,于是乎,Nuclear系统中任何的高并发操作都消除了Block。no waiting, no delay。
2. 根据系统负载控制后台线程的资源占用
Nuclear系统中有不少的后台线程默默无闻的做着各种辛苦的工作,但是它们同样会占用系统资源,我们的解决方案是根据系统负载动态调整线程的运行和停止,并达到平衡。
Voldemort
Voldemort: (can you help)
Voldemort是个和Cassandra类似的面向解决scale问题的分布式数据库系统,Cassandra来自于Facebook这个 SNS网站,而Voldemort则来自于Linkedin这个SNS网站。说起来SNS网站为我们贡献了n多的NoSQL数据库,例如 Cassandar,Voldemort,Tokyo Cabinet,Flare等等。Voldemort的资料不是很多,因此我没有特别仔细去钻研,Voldemort官方给出Voldemort的并发读 写性能也很不错,每秒超过了1.5万次读写。
其实现在很多公司可能都面临着这个抽象架构图中的类似问题。以 Hadoop 作为后端的计算集群,计算得出来的数据如果要反向推到前面去,用什么方式存储更为恰当? 再放到 DB 里面的话,构建索引是麻烦事;放到 Memcached 之类的 Key-Value 分布式系统中,毕竟只是在内存里,数据又容易丢。Voldemort 算是一个不错的改良方案。
值得借鉴的几点:
- 键(Key)结构的设计,有点技巧;
- 架构师熟知硬件结构是有用的。越大的系统越是如此。
- 用好并行。Amdahl 定律以后出现的场合会更多。
详细:
http://www.dbanotes.net/arch/voldemort_key-value.html
http://project-voldemort.com/blog/2009/06/building-a-1-tb-data-cycle-at-linkedin-with-hadoop-and-project-voldemort/
Dynomite
Dynomite: (can you help)
Kai
KAI: Open Source Amazon Dnamo implementation, Misc: slides ,
未分类
Skynet
全新的Ruby MapReduce实现
2004年,Google提出用于分布式数据处理的MapReduce设计模式,同时还提供了第一个C++的实现。现在,一个名为Skynet的Ruby实现已经由Adam Pisoni发布。
Skynet是可适配、可容错的、可自我更新的,而且完全
是分布式的系统,不存在单一的失败节点。
Skynet和Google在设计上有两点重要的区别:
Skynet无法向工作者(Worker)发送原生代码(Raw code),
Skynet利用结对恢复系统,不同的工作者会互相监控以防失败:
如果有一个工作者由于某种原因离开或者放弃了,就会有另一个工作者发现并接管它的任务。Skynet 也没有所谓的“主”管理进程,只有工作者,它们在任何时间都可以充当任何任务的主管理进程。
Skynet的使用和设置都很容易,这也正是MapReduce这个概念的真正优势。Skynet还扩展了ActiveRecord,加入了MapReduce的特性,比如distributed_find。
你要为Starfish编写一些小程序,它们的代码是你将要构建其中的。如果我没有弄错的话,你无法在同一台机器上运行多种类型的MapReduce作业。Skynet是一个更全面的MR系统,可以运行多种类型的多个作业,比如,各种不同的代码。
Skynet也允许失败。工作者会互相关照。如果一个工作者失败了,无法及时完成任务,另一个工作者将会接起这个任务并尝试完成它。Skynet也支持map_data流,也就是说,即使某个数据集非常庞大,甚至无法放在一个数据结构中,Skynet也可以处理。
什么是map_data流?大多数时候,在你准备启动一个map_reduce作业时,必须提供一个数据的队列,这些数据已经被分离并将被并行处理。如果队 列过大,以至于无法适应于内存怎么办?在这种情况下,你就要不能再用队列,而应该使用枚举(Enumerable)。Skynet知道去对象的调 用:next或者:each方法,然后开始为“每一个(each)”分离出map_task来。通过这样的方式,不会有人再试图同时创建大量的数据结构。
还 有很多特性值得一提,不过最想提醒大家的是,Skynet能够与你现有的应用非常完美地集成到一起,其中自然包括Rails应用。Skynet甚 至还提供了一个ActiveRecord的扩展,你可以在模型中以分布式的形式执行一些任务。在Geni中,我们使用这项功能来运行特别复杂的移植,它通 常涉及到在数百万的模型上执行Ruby代码。
Model.distributed_find(:all, :conditions => "id > 20").each(:somemethod)在你运行Skynet的时候,它将在每个模型上执行:somemethod,不过是以分布式的方式(这和你 拥有多少个工作者相关)。它在向模型分发任务前不必进行初始化,甚至不必提前获取所有的id。因此它可以操作无限大的数据集。 用户的反馈如何?
Drizzle
Drizzle可 被认为是键/值存储要解决的问题的反向方案。Drizzle诞生于MySQL(6.0)关系数据库的拆分。在过去几个月里,它的开发者已经移走了大量非核 心的功能(包括视图、触发器、已编译语句、存储过程、查询缓冲、ACL以及一些数据类型),其目标是要建立一个更精简、更快的数据库系统。Drizzle 仍能存放关系数据;正如MySQL/Sun的Brian Aker所说那样:“没理由泼洗澡水时连孩子也倒掉”。它的目标就是,针对运行于16核(或以上)系统上的以网络和云为基础的应用,建立一个半关系型数据 库平台。
比较
可扩展性
数据和查询模型
当你需要查询或更新一个值的一部分时,Key/value模型是最简单有效实现。
面向文本数据库是Key/value的下一步, 允许内嵌和Key关联的值. 支持查询这些值数据,这比简单的每次返回整个blob类型数据要有效得多。
Neo4J是唯一的存储对象和关系作为数学图论中的节点和边. 对于这些类型数据的查询,他们能够比其他竞争者快1000s
Scalaris是唯一提供跨越多个key的分布式事务。
持久化设计
内存数据库是非常快的,(Redis在单个机器上可以完成每秒100,000以上操作)但是数据集超过内存RAM大小就不行. 而且 Durability (服务器当机恢复数据)也是一个问题
Memtables和SSTables缓冲 buffer是在内存中写(“memtable”), 写之前先追加一个用于durability的日志中.
但有足够多写入以后,这个memtable将被排序然后一次性作为“sstable.”写入磁盘中,这就提供了近似内存性能,因为没有磁盘的查询seeks开销, 同时又避免了纯内存操作的durability问题.(个人点评 其实Java中的Terracotta早就实现这两者结合)
B-Trees提供健壮的索引,但是性能很差,一般和其他缓存结合起来。
应用篇
eBay 架构经验
1、 Partition Everything 切分万物
2、 Asynchrony Everywhere 处处异步
3、 Automate Everything 全部自动
4、 Remember Everything Fails 记录失败
5、 Embrace Inconsistency 亲不同是谓大同
6、 Expect (R)evolution 预言演变
7、 Dependencies Matter 重视依赖
8、 Be Authoritative 独断专行
9、 Never Enough Data
10、Custom Infrastructure 自定义基础设施
淘宝架构经验
1、适当放弃一致性
2、备份和隔离解决稳定性问题
3、分割和异步解决性能问题(类似 eBay 的 Asynchrony Everywhere)
4、自动化降低人力成本(类似 eBay 的 Automate Everything)
5、产品化管理
Flickr架构经验
- 使得机器自动构建 (Teach machines to build themselves)
- 使得机器自监控(Teach machines to watch themselves)
- 使得机器自修复(Teach machines to fix themselves)
- 通过流程减少 MTTR (Reduce MTTR by streamlining)
Twitter运维经验
最近看到的另外一个介绍Twitter技术的视频[Slides] [Video (GFWed)],这是Twitter的John Adams在Velocity 2009的一个演讲,主要介绍了Twitter在系统运维方面一些经验。 本文大部分整理的观点都在Twitter(@xmpp)上发过,这里全部整理出来并补充完整。
Twitter没有自己的硬件,都是由NTTA来提供,同时NTTA负责硬件相关的网络、带宽、负载均衡等业务,Twitter operations team只关注核心的业务,包括Performance,Availability,Capacity Planning容量规划,配置管理等,这个可能跟国内一般的互联网公司有所区别。
运维经验
Metrics
Twitter的监控后台几乎都是图表(critical metrics),类似驾驶室的转速表,时速表,让操作者可以迅速的了解系统当前的运作状态。联想到我们做的类似监控后台,数据很多,但往往还需要浏览者 做二次分析判断,像这样满屏都是图表的方法做得还不够,可以学习下这方面经验。 据John介绍可以从图表上看到系统的瓶颈-系统最弱的环节(web, mq, cache, db?)
根据图表可以科学的制定系统容量规划,而不是事后救火。
配置管理
每个系统都需要一个自动配置管理系统,越早越好,这条一整理发到Twitter上去之后引起很多回应。
Darkmode
配置界面可以enable/disable 高计算消耗或高I/O的功能,也相当于优雅降级,系统压力过大时取消一些非核心但消耗资源大的功能。
进程管理
Twitter做了一个”Seppaku” patch, 就是将Daemon在完成了n个requests之后主动kill掉,以保持健康的low memory状态,这种做法据了解国内也有不少公司是这样做。
硬件
Twitter将CPU由AMD换成Xeon之后,获得30%性能提升,将CPU由双核/4核换成8核之后,减少了40%的CPU, 不过John也说,这种升级不适合自己购买硬件的公司。
代码协同经验
Review制度
Twitter有上百个模块,如果没有一个好的制度,容易引起代码修改冲突,并把问题带给最终用户。所以Twitter有一强制的source code review制度, 如果提交的代码的svn comment没有”reviewed by xxx”, 则pre-commit脚本会让提交失败, review过的代码提交后会通过自动配置管理系统应用到上百台服务器上。 有@xiaomics同学在Twitter上马上就问,时间成本能否接受?如果有紧急功能怎么办?个人认为紧急修改时有两人在场,一人修改一人 review也不是什么难事。
部署管理
从部署图表可以看到每个发布版本的CPU及latency变化,如果某个新版本latency图表有明显的向上跳跃,则说明该发布版本存在问题。另外在监控首页列出各个模块最后deploy版本的时间,可以清楚的看到代码库的现状。
团队沟通
Campfire来协同工作,campfire有点像群,但是更适合协同工作。对于Campfire就不做更多介绍,可参考Campfire官方说明。
Cache
- Memcache key hash, 使用FNV hash 代替 MD5 hash,因为FNV更快。
- 开发了Cache Money plugin(Ruby), 给应用程序提供read-through, write-through cache, 就像一个db访问的钩子,当读写数据库的时候会自动更新cache, 避免了繁琐的cache更新代码。
- “Evictions make the cache unreliable for important configuration data”,Twitter使用memcache的一条经验是,不同类型的数据需放在不同的mc,避免eviction,跟作者前文Memcached数据被踢(evictions>0)现象分析中的一些经验一致。
- Memcached SEGVs, Memcached崩溃(cold cache problem)据称会给这种高度依赖Cache的Web 2.0系统带来灾难,不知道Twitter具体怎么解决。
- 在Web层Twitter使用了Varnish作为反向代理,并对其评价较高。
云计算架构
作者认为,金字塔概念最能说明每一层的大小,它也表达了每 个层是依赖前层的消息传递。在概念上,硬件是基础和广泛层。SaaS层是顶峰,也是最轻层。这种观点是来自于将购买SaaS的的最终用户角度。对于一个非 常大的企业内部,PaaS平台层将是顶峰。使用内部开发的软件的内部各部门将实现他们的顶峰SaaS。还要注意:大小和层位置并不一定等同于重要性。硬件 层可能是最重要的,因为它是所有超过一定点的商品。
硬件层The Hardware Layer
必须考虑容错和冗余,大部分人认为没有容错硬件廉价商品。冗余和容错处理在软件层内,硬件预计要失败的,当然故障多电源容错服务器,RAID磁盘阵列也是必要的。
虚拟层The Virtualization Layer
基于操作系统OS的虚拟化层,虚拟资源能够在线即时增加拓展,允许供应商提供基础设施作为服务(SaaS),VMware,Citrix公司,Sun都提供虚拟化产品。
The IaaS Layer
提 供和控制的基于虚拟层的计算方式,终端用户能够精确控制每个虚拟机没分钟每小时耗费多少钱。比如提供一个共同的接口,如门户网站暴露的API,允许最终用 户创建和配置虚拟机模板的需求。最终用户还可以控制何时打开或破坏虚拟机,以及如何在虚拟机互相联网。在这个领域的主要竞争者例子是亚马逊网络服务的 EC2,S3和数据库服务。
The PaaS Layer
这一层的目的是尽量减少部署云的复杂性和麻烦,最终用户 利用和开发的这层的API和编程语言。两个很好的例子是谷歌的App Engine 和Force.com平台,在App Engine中,谷歌公开云存储,平台和数据库,以及使用Python和Java编程语言的API。开发人员能够编写应用程序并部署到这一层中,后端可伸缩性架构设计完全交给谷歌负责,最终用户完全不必担心管理基础设施。Force.com平台类似,但采用了自定义的编程语言名为Apex。如果你是一个大型企业寻求内部开发应用的部署,这层是你的顶峰。
The SaaS Layer
如 果您是中小型企业(SME)和大企业不希望开发自己的应用程序时,SaaS的层是你的顶峰(是你将直接面对的)。您只是进行有兴趣地采购如电子邮件或客户 关系管理服务,这些功能服务已经被供应商开发成功,并部署到云环境中了,您只需验证的应用是否符合你的使用需要,帐单可以基于包月租费等各种形式,,作为 最终用户的您不会产生开发和维护拓展应用程序软件的任何成本。越来越多的企业订阅Salesforce.com和Sugar CRM的SaaS产品。
反模式
单点失败(Single Point of Failure)=
大部分的人都坚持在单一的设备上部署我们的应用,因为这样部署的费用会比较低,但是我们要清楚任何的硬件设备都会有失败的风险的,这种单点失败会严重的影响用户体验甚至是拖垮你的应用,因此除非你的应用能容忍失败带来的损失,否则得话应该尽量的避免单点风险,比如做冗余,热备等。
同步调用
同步调用在任何软件系统中都是不可避免的,但是我们软件工程师必须明白同步调用给软件系统带来的问题。如果我们将应用程序串接起来,那么系统的可用性就会低于任何一个单一组件的可用性。比如组件A同步调用了组件B,组件A的可用性为99.9%,组件B的可用性为99.9%,那么组件A同步调用组件B的可用性就是99.9% * 99.9%=99.8%。同步调用使得系统的可用性受到了所有串接组件可用性的影响,因此我们在系统设计的时候应该清楚哪些地方应该同步调用,在不需要同步调用的时候尽量的进行异步的调用(而我这里所说的异步是一种基于应用的异步,是一种设计上的异步,因为J2EE目前的底层系统出了JMS是异步API以外,其它的API都是同步调用的,所以我们也就不能依赖于底层J2EE平台给我们提供异步性,我们必须从应用和设计的角度引入异步性)
不具备回滚能力
虽然对应用的每个版本进行回滚能力测试是非常耗时和昂贵的,但是我们应该清楚任何的业务操作都有可能失败,那么我们必须为这种失败作好准备,需要对系统的用户负责,这就要求系统一定要具有回滚的能力,当失败的时候能进行及时的回滚。(说到回滚大家可能第一时间想到的是事务的回滚,其实这里的回滚应该是一种更宽泛意义的回滚,比如我们记录每一次的失败的业务操作,这样在出现错误的时候就不是依靠于事务这种技术的手段,而是通过系统本身的回滚能力来进行回滚失败业务操作)。
不记录日志
日志记录对于一个成熟稳定的系统是非常重要的,如果我们不进行日志记录,那么我就很难统计系统的行为。
无切分的数据库
随着系统规模的慢慢变大,我们就需要打破单一数据的限制,需要对其进行切分。
无切分的应用
系统在规模小的时候,也许感觉不出无切分的应用带来的问题,但是在目前互联网高速发展的时代,谁能保证一个小应用在一夜或者是几夜以后还是小应用呢?说不定哪天,我们就发现应用在突如其来的访问量打击的支离破碎。因此我们就需要让我们的系统和我们一样具有生命力,要想让系统具有应付大负载的能力,这就要求我们的应用具有很好的伸缩性,这也就要求应用需要被良好的切分,只有进行了切分,我们才能对单一的部门进行伸缩,如果应用是一块死板的话,我们是没有办法进行伸缩的。就好比火车一样,如果火车设计之初就把他们设计为一体的,那么我们还怎么对火车的车厢进行裁剪?因此一个没有切分的应用是一个没有伸缩性和没有可用性的应用。
将伸缩性依赖于第三方厂商
如果我们的应用系统的伸缩性依赖于第三方的厂商,比如依赖于数据库集群,那么我们就为系统的伸缩性埋下了一个定时炸弹。因为只有我们自己最清楚我们自己的应用,我们应该从应用和设计的角度出发去伸缩我们的应用,而不是依赖于第三方厂商的特性。
OLAP
联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd于1993年提出的,他同时提出了关于OLAP的12条准则。OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理 (OLTP) 明显区分开来。
OLAP报表产品最大的难点在哪里?
目前报表工具最大的难点不在于报表的样式(如斜线等),样式虽较繁琐但并非本质困难。最根本的难点在于业务 部门知道报表代表的真正含义,却不知道报表的数据统计模型模型;而IT部门通过理解业务部门的描述,在数据库端进行设置数据统计模型,却对报表本身所代表 的价值很难理解。
说起来有点深奥,其实并不复杂,OLAP最基本的概念只有三个:多维观察、数据钻取、CUBE运算。
关于CUBE运算:OLAP分析所需的原始数据量是非常庞大的。一个分析模型,往往会涉及数百万、数千万条数据,甚至更多;而分析模型中包含多个维数据,这些维又可以由浏览者作任意的提取组合。这样的结果就是大量的实时运算导致时间的延滞。
我们可以设想,一个1000万条记录的分析模型,如果一次提取4个维度进行组合分析,那么实际的运算次数将 达到4的1000次方的数量。这样的运算量将导致数十分钟乃至更长的等待时间。如果用户对维组合次序进行调整,或增加、或减少某些维度的话,又将是一个重 新的计算过程。
从上面的分析中,我们可以得出结论,如果不能解决OLAP运算效率问题的话,OLAP将是一个毫无实用价值的概念。那么,一个成熟产品是如何解决这个问题的呢?这涉及到OLAP中一个非常重要的技术——数据CUBE预运算。
一个OLAP模型中,度量数据和维数据我们应该事先确定,一旦两者确定下来,我们可以对数据进行预先的处理。在正式发布之前,将数据根据维进行最大
限度的聚类运算,运算中会考虑到各种维组合情况,运算结果将生成一个数据CUBE,并保存在服务器上。
这样,当最终用户在调阅这个分析模型的时候,就可以直接使用这个CUBE,在此基础上根据用户的维选择和维组合进行复运算,从而达到实时响应的效果。
NOSQL们背后的共有原则
几个星期之前,我写了一篇文章描述了常被称作 NOSQL 的一类新型数据库的背后驱动。几个星期之前,我在Qcon上发表了一个演讲,其中,我介绍了一个可伸缩(scalable)的 twitter 应用的构建模式,在我们的讨论中,一个显而易见的问题就是数据库的可扩展性问题。要解答这个问题,我试图寻找隐藏在各种 NOSQL 之后的共有模式,并展示他们是如何解决数据库可扩展性问题的。在本文中,我将尽力勾勒出这些共有的原则。
假设失效是必然发生的
与我们先前通过昂贵硬件之类的手段尽力去避免失效的手段不同,NOSQL实现都建立在硬盘、机器和网络都会失效这些假设之上。我们需要认定,我们不 能彻底阻止这些时效,相反,我们需要让我们的系统能够在即使非常极端的条件下也能应付这些失效。Amazon S3 就是这种设计的一个好例子。你可以在我最近的文章 Why Existing Databases (RAC) are So Breakable! 中找到进一步描述。哪里,我介绍了一些来自 Jason McHugh 的讲演的面向失效的架构设计的内容(Jason 是在 Amazon 做 S3 相关工作的高级工程师)。
对数据进行分区
通过对数据进行分区,我们最小化了失效带来的影响,也将读写操作的负载分布到了不同的机器上。如果一个节点失效了,只有该节点上存储的数据受到影响,而不是全部数据。
保存同一数据的多个副本
大部分 NOSQL 实现都基于数据副本的热备份来保证连续的高可用性。一些实现提供了 API,可以控制副本的复制,也就是说,当你存储一个对象的时候,你可以在对象级指定你希望保存的副本数。在 GigaSpaces,我们还可以立即复制一个新的副本到其他节点,甚至在必要时启动一台新机器。这让我们不比在每个节点上保存太多的数据副本,从而降低 总存储量以节约成本。
你还可以控制副本复制是同步还是异步的,或者两者兼有。这决定了你的集群的一致性、可用性与性能三者。对于同步复制,可以牺牲性能保障一致性和可用 性(写操作之后的任意读操作都可以保证得到相同版本的数据,即使是发生失效也会如此)。而最为常见的 GigaSpaces 的配置是同步副本到被分界点,异步存储到后端存储。
动态伸缩
要掌控不断增长的数据,大部分 NOSQL 实现提供了不停机或完全重新分区的扩展集群的方法。一个已知的处理这个问题的算法称为一致哈希。有很多种不同算法可以实现一致哈希。
一个算法会在节点加入或失效时通知某一分区的邻居。仅有这些节点受到这一变化的影响,而不是整个集群。有一个协议用于掌控需要在原有集群和新节点之间重新分布的数据的变换区间。
另一个(简单很多)的算法使用逻辑分区。在逻辑分区中,分区的数量是固定的,但分区在机器上的分布式动态的。于是,例如有两台机器和1000个逻辑 分区,那么每500个逻辑分区会放在一台机器上。当我们加入了第三台机器的时候,就成了每 333 个分区放在一台机器上了。因为逻辑分区是轻量级的(基于内存中的哈希表),分布这些逻辑分区非常容易。
第二种方法的优势在于它是可预测并且一致的,而使用一致哈希方法,分区之间的重新分布可能并不平稳,当一个新节点加入网络时可能会消耗更长时间。一个用户在这时寻找正在转移的数据会得到一个异常。逻辑分区方法的缺点是可伸缩性受限于逻辑分区的数量。
更进一步的关于这一问题的讨论,建议阅读 Ricky Ho 的文章 NOSQL Patterns 。
查询支持
在这个方面,不同的实现有相当本质的区别。不同实现的一个共性在于哈希表中的 key/value 匹配。一些市县提供了更高级的查询支持,比如面向文档的方法,其中数据以 blob 的方式存储,关联一个键值对属性列表。这种模型是一种无预定义结构的(schema-less)存储,给一个文档增加或删除属性非常容易,无需考虑文档结 构的演进。而 GigaSpaces 支持很多 SQL 操作。如果 SQL查询没有指出特定的简直,那么这个查询就会被并行地 map 到所有的节点去,由客户端完成结果的汇聚。所有这些都是发生在幕后的,用户代码无需关注这些。
使用 Map/Reduce 处理汇聚
Map/Reduce 是一个经常被用来进行复杂分析的模型,经常会和 Hadoop 联系在一起。 map/reduce 常常被看作是并行汇聚查询的一个模式。大部分 NOSQL 实现并不提供 map/reduce 的内建支持,需要一个外部的框架来处理这些查询。对于 GigaSpaces 来说,我们在 SQL 查询中隐含了对 map/reduce 的支持,同时也显式地提供了一个称为 executors 的 API 来支持 map/reduce。在质疑模型中,你可以将代码发送到数据所在地地方,并在该节点上直接运行复杂的查询。
这方面的更多细节,建议阅读 Ricky Ho 的文章 Query Processing for NOSQL DB 。
基于磁盘的和内存中的实现
NOSQL 实现分为基于文件的方法和内存中的方法。有些实现提供了混合模型,将内存和磁盘结合使用。两类方法的最主要区别在于每 GB 成本和读写性能。
最近,斯坦福的一项称为“The Case for RAMCloud”的调查,对磁盘和内存两种方法给出了一些性能和成本方面的有趣的比较。总体上说,成本也是性能的一个函数。对于较低性能的实现,磁盘方 案的成本远低于基于内存的方法,而对于高性能需求的场合,内存方案则更加廉价。
内存云的显而易见的缺点就是单位容量的高成本和高能耗。对于这些指标,内存云会比纯粹的磁盘系统差50到100 倍,比使用闪存的系统差5-10倍(典型配置情况和指标参见参考文献[1])。内存云同时还比基于磁盘和闪存的系统需要更多的机房面积。这样,如果一个应 用需要存储大量的廉价数据,不需要高速访问,那么,内存云将不是最佳选择。
然而,对于高吞吐量需求的应用,内存云将更有竞争力。当 使用每次操作的成本和能量作为衡量因素的时候,内存云的效率是传统硬盘系统的 100 到 1000 倍,是闪存系统的 5-10 倍。因此,对于高吞吐量需求的系统来说,内存云不仅提供了高性能,也提供了高能源效率。同时,如果使用 DRAM 芯片提供的低功耗模式,也可以降低内存云的功耗,特别是在系统空闲的时候。此外,内存云还有一些缺点,一些内存云无法支持需要将数据在 多个数据中心之间进行数据复制。对于这些环境,更新的时延将主要取决于数据中心间数据传输的时间消耗,这就丧失了内存云的时延方面的优势。此外,跨数据中 心的数据复制会让内存云数据一致性更能难保证。不过,内存云仍然可以在夸数据中心的情况下提供低时延的读访问。
仅仅是炒作?
近来我见到的最多的问题就是 “NOSQL 是不是就是炒作?” 或 “NOSQL 会不会取代现在的数据库?”
我的回答是——NOSQL 并非始于今日。很多 NOSQL 实现都已经存在了十多年了,有很多成功案例。我相信有很多原因让它们在如今比以往更受欢迎了。首先是由于社会化网络和云计算的发展,一些原先只有很高端的 组织才会面临的问题,如今已经成为普遍问题了。其次,已有的方法已经被发现无法跟随需求一起扩展了。并且,成本的压力让很多组织需要去寻找更高性价比的方 案,并且研究证实基于普通廉价硬件的分布式存储解决方案甚至比现在的高端数据库更加可靠。(进一步阅读)所有这些导致了对这类“可伸缩性优先数据库”的需求。这里,我引用 AWS团队的接触工程师、VP, James Hamilton 在他的文章 One Size Does Not Fit All 中的一段话:
“伸缩性优先应用是那些必须具备无限可伸缩性的应用,能够不受限制的扩展比更丰富的功能更加重要。这些应用包括很多需要高 可伸缩性的网站,如 Facebook, MySpace, Gmail, Yahoo 以及 Amazon.com。有些站点实际上使用了关系型数据库,而大部分实际上并未使用。这些服务的共性在于可扩展性比功能公众要,他们无法泡在一个单一的 RDBMS 上。”
总结一下——我认为,现有的 SQL 数据库可能不会很快淡出历史舞台,但同时它们也不能解决世上的所有问题。NOSQL 这个名词现在也变成了 Not Only SQL,这个变化表达了我的观点。
附
本书不求利,只图学术之便。感谢诸位大牛写了那么多的资料,如果您不愿意被引用,学生会重写相应的章节。
引用网志多篇,由于涵盖太广难以一一校队,特此致歉。
感谢
感谢Jdon,dbanotes,infoq和Timyang.您们分享和撰写了那么多有用的资料。
版本志
V0.1版本在2010.2.21发布,提供了本书的主题框架
v0.2版本在2010.2.24发布,因为一些外界原因,提前发布。完善各个示例,勘误,翻译部分内容。
v0.3版本将在3月份或之后发布
引用
http://www.jdon.com/jivejdon/thread/37999
http://queue.acm.org/detail.cfm?id=1413264
http://www.dbanotes.net/arch/five-minute_rule.html
http://www.infoq.com/cn/news/2009/09/Do-Not-Delete-Data
http://www.infoq.com/cn/news/2010/02/ec2-oversubscribed
http://timyang.net/architecture/consistent-hashing-practice
http://en.wikipedia.org/wiki/Gossip_protocol
http://horicky.blogspot.com/2009/11/nosql-patterns.html
http://snarfed.org/space/transactions_across_datacenters_io.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf
http://en.wikipedia.org/wiki/Distributed_hash_table
http://hi.baidu.com/knuthocean/blog/item/cca1e711221dcfcca6ef3f1d.html
http://zh.wikipedia.org/wiki/MapReduce
http://labs.google.com/papers/mapreduce.html
http://nosql-database.org/
http://www.rackspacecloud.com/blog/2009/11/09/nosql-ecosystem/
http://www.infoq.com/cn/news/2008/02/ruby-mapreduce-skynet
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://labs.google.com/papers/bigtable.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.rackspacecloud.com/blog/2009/11/09/nosql-ecosystem/
http://timyang.net/tech/twitter-operations/
http://blog.s135.com/read.php?394
http://www.programmer.com.cn/1760/
|