前言:这些天一直奔波于长沙和武汉之间,忙着腾讯的笔试、面试,以至于对hadoop
RPC(Remote Procedure Call Protocol ,远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。可以参考:http://baike.baidu.com/view/32726.htm
)机制分析的博客一直耽搁了下来。昨天晚上胡老大和我抱怨说:最近乱的很。呵呵,老是往武汉跑,能不乱嘛。不过差不多腾讯面试的事就该告一段落了。五一期间,云计算小组的成员们,我们再搞起来吧。记住,我们还有一本hadoop的手册没出来呢。胡老大已经答应给我们写提纲了,在这期间,我们还是先把内功再修炼修炼吧。
分析对象:
hadoop版本:hadoop 0.20.203.0
一.RPC协议
在分析协议之前,我觉得我们很有必要先搞清楚协议是什么。下面我就谈一点自己的认识吧。如果你学过java的网络编程,你一定知道:当客户端发送一个字节给服务端时,服务端必须也要有一个读字节的方法在阻塞等待;反之亦然。
这种我把它称为底层的通信协议。可是对于一个大型的网络通信系统来说,很显然这种说法的协议粒度太小,不方便我们理解整个网络通信的流程及架构,所以我造了个说法:架构层次的协议。通俗一点说,就是我把某些接口和接口中的方法称为协议,客户端和服务端只要实现这些接口中的方法就可以进行通信了,从这个角度来说,架构层次协议的说法就可以成立了(注:如果从架构层次的协议来分析系统,我们就先不要太在意方法的具体实现,呵呵,我相信你懂得~)。
Hadoop的RPC机制正是采用了这种“架构层次的协议”,有一整套作为协议的接口。如图:
下面就几个重点的协议介绍一下吧
VersionedProtocol :它是所有RPC协议接口的父接口,其中只有一个方法:getProtocolVersion()
(1)HDFS相关
ClientDatanodeProtocol :一个客户端和datanode之间的协议接口,用于数据块恢复
ClientProtocol :client与Namenode交互的接口,所有控制流的请求均在这里,如:创建文件、删除文件等;
DatanodeProtocol : Datanode与Namenode交互的接口,如心跳、blockreport等;
NamenodeProtocol :SecondaryNode与Namenode交互的接口。
(2)Mapreduce相关
InterDatanodeProtocol :Datanode内部交互的接口,用来更新block的元数据;
InnerTrackerProtocol :TaskTracker与JobTracker交互的接口,功能与DatanodeProtocol相似;
JobSubmissionProtocol :JobClient与JobTracker交互的接口,用来提交Job、获得Job等与Job相关的操作;
TaskUmbilicalProtocol :Task中子进程与母进程交互的接口,子进程即map、reduce等操作,母进程即TaskTracker,该接口可以回报子进程的运行状态(词汇扫盲:
umbilical 脐带的, 关系亲密的) 。
一下子罗列了这么多的协议,有些人可能要问了,hadoop是怎么使用它们的呢?呵呵,不要着急哦,其实本篇博客所分析的是hadoop的RPC机制底层的具体实现,而这些协议却是应用层上的东西,比如hadoop是怎么样保持“心跳”的啊。所以在我的下一篇博客:源码级分析hadoop的心跳机制中会详细说明以上协议是怎样被使用的。尽请期待哦~。现在就开始我们的RPC源码之旅吧???
二.ipc.RPC源码分析
ipc.RPC类中有一些内部类,为了大家对RPC类有个初步的印象,就先罗列几个我们感兴趣的分析一下吧:
Invocation :用于封装方法名和参数,作为数据传输层,相当于VO吧。
ClientCache :用于存储client对象,用socket factory作为hash
key,存储结构为hashMap <SocketFactory, Client>。
Invoker :是动态代理中的调用实现类,继承了InvocationHandler.
Server :是ipc.Server的实现类。
从以上的分析可以知道,Invocation类仅作为VO,ClientCache类只是作为缓存,而Server类用于服务端的处理,他们都和客户端的数据流和业务逻辑没有关系。现在就只剩下Invoker类了。如果你对动态代理(参考:http://weixiaolu.iteye.com/blog/1477774
)比较了解的话,你一下就会想到,我们接下来去研究的就是RPC.Invoker类中的invoke()方法了。代码如下:
代码一:
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
ObjectWritable value = (ObjectWritable)
client.call(new Invocation(method, args), remoteId);
return value.get();
}
|
呵呵,如果你发现这个invoke()方法实现的有些奇怪的话,那你就对了。一般我们看到的动态代理的invoke()方法中总会有
method.invoke(ac, arg); 这句代码。而上面代码中却没有,这是为什么呢?其实使用 method.invoke(ac,
arg); 是在本地JVM中调用;而在hadoop中,是将数据发送给服务端,服务端将处理的结果再返回给客户端,所以这里的invoke()方法必然需要进行网络通信。而网络通信就是下面的这段代码实现的:
代码二:
ObjectWritable value = (ObjectWritable)
client.call(new Invocation(method, args), remoteId);
|
Invocation类在这里封装了方法名和参数,充当VO。其实这里网络通信只是调用了Client类的call()方法。那我们接下来分析一下ipc.Client源码吧。不过在分析ipc.Client源码之前,为了不让我们像盲目的苍蝇一样乱撞,我想先确定一下我们分析的目的是什么,我总结出了三点需要解决的问题:
1. 客户端和服务端的连接是怎样建立的?
2. 客户端是怎样给服务端发送数据的?
3. 客户端是怎样获取服务端的返回数据的?
基于以上三个问题,我们开始吧!!!
三.ipc.Client源码分析
同样,为了对Client类有个初步的了解,我们也先罗列几个我们感兴趣的内部类:
Call :用于封装Invocation对象,作为VO,写到服务端,同时也用于存储从服务端返回的数据
Connection :用以处理远程连接对象。继承了Thread
ConnectionId :唯一确定一个连接
问题1:客户端和服务端的连接是怎样建立的?
下面我们来看看Client类中的cal()方法吧:
代码三:
public Writable call(Writable param, ConnectionId remoteId)
throws InterruptedException, IOException {
Call call = new Call(param); //将传入的数据封装成call对象
Connection connection = getConnection(remoteId, call); //获得一个连接
connection.sendParam(call); // 向服务端发送call对象
boolean interrupted = false;
synchronized (call) {
while (!call.done) {
try {
call.wait(); // 等待结果的返回,在Call类的callComplete()方法里有notify()方法用于唤醒线程
} catch (InterruptedException ie) {
// 因中断异常而终止,设置标志interrupted为true
interrupted = true;
}
}
if (interrupted) {
Thread.currentThread().interrupt();
}
if (call.error != null) {
if (call.error instanceof RemoteException) {
call.error.fillInStackTrace();
throw call.error;
} else { // 本地异常
throw wrapException(remoteId.getAddress(), call.error);
}
} else {
return call.value; //返回结果数据
}
}
}
|
具体代码的作用我已做了注释,所以这里不再赘述。但到目前为止,你依然不知道RPC机制底层的网络连接是怎么建立的。呵呵,那我们只好再去深究了,分析代码后,我们会发现和网络通信有关的代码只会是下面的两句了:
代码四:
Connection connection = getConnection(remoteId, call); //获得一个连接
connection.sendParam(call); // 向服务端发送call对象
|
先看看是怎么获得一个到服务端的连接吧,下面贴出ipc.Client类中的getConnection()方法。
代码五:
private Connection getConnection(ConnectionId remoteId,
Call call)
throws IOException, InterruptedException {
if (!running.get()) {
// 如果client关闭了
throw new IOException("The client is stopped");
}
Connection connection;
//如果connections连接池中有对应的连接对象,就不需重新创建了;如果没有就需重新创建一个连接对象。
//但请注意,该//连接对象只是存储了remoteId的信息,其实还并没有和服务端建立连接。
do {
synchronized (connections) {
connection = connections.get(remoteId);
if (connection == null) {
connection = new Connection(remoteId);
connections.put(remoteId, connection);
}
}
} while (!connection.addCall(call)); //将call对象放入对应连接中的calls池,就不贴出源码了
//这句代码才是真正的完成了和服务端建立连接哦~
connection.setupIOstreams();
return connection;
}
|
如果你还有兴趣继续分析下去,那我们就一探建立连接的过程吧,下面贴出Client.Connection类中的setupIOstreams()方法:
代码六:
private synchronized void setupIOstreams() throws InterruptedException {
try {
while (true) {
setupConnection(); //建立连接
InputStream inStream = NetUtils.getInputStream(socket); //获得输入流
OutputStream outStream = NetUtils.getOutputStream(socket); //获得输出流
writeRpcHeader(outStream);
this.in = new DataInputStream(new BufferedInputStream
(new PingInputStream(inStream))); //将输入流装饰成DataInputStream
this.out = new DataOutputStream
(new BufferedOutputStream(outStream)); //将输出流装饰成DataOutputStream
writeHeader();
// 跟新活动时间
touch();
//当连接建立时,启动接受线程等待服务端传回数据,注意:Connection继承了Tread
start();
return;
}
} catch (IOException e) {
markClosed(e);
close();
}
}
|
再有一步我们就知道客户端的连接是怎么建立的啦,下面贴出Client.Connection类中的setupConnection()方法:
代码七:
private synchronized void setupConnection() throws IOException {
short ioFailures = 0;
short timeoutFailures = 0;
while (true) {
try {
this.socket = socketFactory.createSocket(); //终于看到创建socket的方法了
this.socket.setTcpNoDelay(tcpNoDelay);
// 设置连接超时为20s
NetUtils.connect(this.socket, remoteId.getAddress(), 20000);
this.socket.setSoTimeout(pingInterval);
return;
} catch (SocketTimeoutException toe) {
/* 设置最多连接重试为45次。
* 总共有20s*45 = 15 分钟的重试时间。
*/
handleConnectionFailure(timeoutFailures++, 45, toe);
} catch (IOException ie) {
handleConnectionFailure(ioFailures++, maxRetries, ie);
}
}
}
|
终于,我们知道了客户端的连接是怎样建立的了,其实就是创建一个普通的socket进行通信。呵呵,那服务端是不是也是创建一个ServerSocket进行通信的呢?呵呵,先不要急,到这里我们只解决了客户端的第一个问题,下面还有两个问题没有解决呢,我们一个一个地来解决吧。
问题2:客户端是怎样给服务端发送数据的?
我们回顾一下代码四吧。第一句为了完成连接的建立,我们已经分析完毕;而第二句是为了发送数据,呵呵,分析下去,看能不能解决我们的问题呢。下面贴出Client.Connection类的sendParam()方法吧:
代码八:
public void sendParam(Call call) {
if (shouldCloseConnection.get()) {
return;
}
DataOutputBuffer d=null;
try {
synchronized (this.out) {
if (LOG.isDebugEnabled())
LOG.debug(getName() + " sending #" + call.id);
//创建一个缓冲区
d = new DataOutputBuffer();
d.writeInt(call.id);
call.param.write(d);
byte[] data = d.getData();
int dataLength = d.getLength();
out.writeInt(dataLength); //首先写出数据的长度
out.write(data, 0, dataLength); //向服务端写数据
out.flush();
}
} catch(IOException e) {
markClosed(e);
} finally {
IOUtils.closeStream(d);
}
}
|
其实这就是java io的socket发送数据的一般过程哦,没有什么特别之处。到这里问题二也解决了,来看看问题三吧。
问题3:客户端是怎样获取服务端的返回数据的?
我们再回顾一下代码六吧。代码六中,当连接建立时会启动一个线程用于处理服务端返回的数据,我们看看这个处理线程是怎么实现的吧,下面贴出Client.Connection类和Client.Call类中的相关方法吧:
代码九:
方法一:
public void run() {
???
while (waitForWork()) {
receiveResponse(); //具体的处理方法
}
close();
}
方法二:
private void receiveResponse() {
if (shouldCloseConnection.get()) {
return;
}
touch();
try {
int id = in.readInt(); // 阻塞读取id
if (LOG.isDebugEnabled())
LOG.debug(getName() + " got value #" + id);
Call call = calls.get(id); //在calls池中找到发送时的那个对象
int state = in.readInt(); // 阻塞读取call对象的状态
if (state == Status.SUCCESS.state) {
Writable value = ReflectionUtils.newInstance(valueClass, conf);
value.readFields(in); // 读取数据
//将读取到的值赋给call对象,同时唤醒Client等待线程,贴出setValue()代码方法三
call.setValue(value);
calls.remove(id); //删除已处理的call
} else if (state == Status.ERROR.state) {
} else if (state == Status.FATAL.state) {
}
} catch (IOException e) {
markClosed(e);
}
}
方法三:
public synchronized void setValue(Writable value) {
this.value = value;
callComplete(); //具体实现
}
protected synchronized void callComplete() {
this.done = true;
notify(); // 唤醒client等待线程
}
|
代码九完成的功能主要是:启动一个处理线程,读取从服务端传来的call对象,将call对象读取完毕后,唤醒client处理线程。就这么简单,客户端就获取了服务端返回的数据了哦~。客户端的源码分析就到这里了哦,下面我们来分析Server端的源码吧。
四.ipc.Server源码分析
同样,为了让大家对ipc.Server有个初步的了解,我们先分析一下它的几个内部类吧:
Call :用于存储客户端发来的请求
Listener : 监听类,用于监听客户端发来的请求,同时Listener内部还有一个静态类,Listener.Reader,当监听器监听到用户请求,
让Reader读取用户请求。
Responder :响应RPC请求类,请求处理完毕,由Responder发送给请求客户端。
Connection :连接类,真正的客户端请求读取逻辑在这个类中。
Handler :请求处理类,会循环阻塞读取callQueue中的call对象,并对其进行操作。
如果你看过ipc.Server的源码,你会发现其实ipc.Server是一个abstract修饰的抽象类。那随之而来的问题就是:hadoop是怎样初始化RPC的Server端的呢?这个问题着实也让我想了好长时间。不过后来我想到Namenode初始化时一定初始化了RPC的Sever端,那我们去看看Namenode的初始化源码吧:
1. 初始化Server
代码十:
private void initialize(Configuration conf) throws IOException {
// 创建 rpc server
InetSocketAddress dnSocketAddr = getServiceRpcServerAddress(conf);
if (dnSocketAddr != null) {
int serviceHandlerCount =
conf.getInt(DFSConfigKeys.DFS_NAMENODE_SERVICE_HANDLER_COUNT_KEY,
DFSConfigKeys.DFS_NAMENODE_SERVICE_HANDLER_COUNT_DEFAULT);
//获得serviceRpcServer
this.serviceRpcServer = RPC.getServer(this, dnSocketAddr.getHostName(),
dnSocketAddr.getPort(), serviceHandlerCount,
false, conf, namesystem.getDelegationTokenSecretManager());
this.serviceRPCAddress = this.serviceRpcServer.getListenerAddress();
setRpcServiceServerAddress(conf);
}
//获得server
this.server = RPC.getServer(this, socAddr.getHostName(),
socAddr.getPort(), handlerCount, false, conf, namesystem
.getDelegationTokenSecretManager());
this.server.start(); //启动 RPC server Clients只允许连接该server
if (serviceRpcServer != null) {
serviceRpcServer.start(); //启动 RPC serviceRpcServer 为HDFS服务的server
}
startTrashEmptier(conf);
}
|
查看Namenode初始化源码得知:RPC的server对象是通过ipc.RPC类的getServer()方法获得的。下面咱们去看看ipc.RPC类中的getServer()源码吧:
代码十一:
public static Server getServer(final Object instance, final String bindAddress, final int port, final int numHandlers, final boolean verbose, Configuration conf, SecretManager<? extends TokenIdentifier> secretManager) throws IOException { return new Server(instance, conf, bindAddress, port, numHandlers, verbose, secretManager); }
|
这时我们发现getServer()是一个创建Server对象的工厂方法,但创建的却是RPC.Server类的对象。哈哈,现在你明白了我前面说的“RPC.Server是ipc.Server的实现类”了吧。不过RPC.Server的构造函数还是调用了ipc.Server类的构造函数的,因篇幅所限,就不贴出相关源码了。
2. 运行Server
如代码十所示,初始化Server后,Server端就运行起来了,看看ipc.Server的start()源码吧:
代码十二:
/** 启动服务 */
public synchronized void start() {
responder.start(); //启动responder
listener.start(); //启动listener
handlers = new Handler[handlerCount];
for (int i = 0; i < handlerCount; i++) {
handlers[i] = new Handler(i);
handlers[i].start(); //逐个启动Handler
}
}
|
3. Server处理请求
1)建立连接
分析过ipc.Client源码后,我们知道Client端的底层通信直接采用了阻塞式IO编程,当时我们曾做出猜测:Server端是不是也采用了阻塞式IO。现在我们仔细地分析一下吧,如果Server端也采用阻塞式IO,当连接进来的Client端很多时,势必会影响Server端的性能。hadoop的实现者们考虑到了这点,所以他们采用了java
NIO来实现Server端,java NIO可参考博客:http://weixiaolu.iteye.com/blog/1479656
。那Server端采用java NIO是怎么建立连接的呢?分析源码得知,Server端采用Listener监听客户端的连接,下面先分析一下Listener的构造函数吧:
代码十三:
public Listener() throws IOException {
address = new InetSocketAddress(bindAddress, port);
// 创建ServerSocketChannel,并设置成非阻塞式
acceptChannel = ServerSocketChannel.open();
acceptChannel.configureBlocking(false);
// 将server socket绑定到本地端口
bind(acceptChannel.socket(), address, backlogLength);
port = acceptChannel.socket().getLocalPort();
// 获得一个selector
selector= Selector.open();
readers = new Reader[readThreads];
readPool = Executors.newFixedThreadPool(readThreads);
//启动多个reader线程,为了防止请求多时服务端响应延时的问题
for (int i = 0; i < readThreads; i++) {
Selector readSelector = Selector.open();
Reader reader = new Reader(readSelector);
readers[i] = reader;
readPool.execute(reader);
}
// 注册连接事件
acceptChannel.register(selector, SelectionKey.OP_ACCEPT);
this.setName("IPC Server listener on " + port);
this.setDaemon(true);
}
|
在启动Listener线程时,服务端会一直等待客户端的连接,下面贴出Server.Listener类的run()方法:
代码十四:
public void run() {
while (running) {
SelectionKey key = null;
try {
selector.select();
Iterator iter = selector.selectedKeys().iterator();
while (iter.hasNext()) {
key = iter.next();
iter.remove();
try {
if (key.isValid()) {
if (key.isAcceptable())
doAccept(key); //具体的连接方法
}
} catch (IOException e) {
}
key = null;
}
} catch (OutOfMemoryError e) {
}
|
代码十五:
void doAccept(SelectionKey key) throws IOException, OutOfMemoryError {
Connection c = null;
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel channel;
while ((channel = server.accept()) != null) { //建立连接
channel.configureBlocking(false);
channel.socket().setTcpNoDelay(tcpNoDelay);
Reader reader = getReader(); //从readers池中获得一个reader
try {
reader.startAdd(); // 激活readSelector,设置adding为true
SelectionKey readKey = reader.registerChannel(channel);//将读事件设置成兴趣事件
c = new Connection(readKey, channel, System.currentTimeMillis());//创建一个连接对象
readKey.attach(c); //将connection对象注入readKey
synchronized (connectionList) {
connectionList.add(numConnections, c);
numConnections++;
}
} finally {
//设置adding为false,采用notify()唤醒一个reader,其实代码十三中启动的每个reader都使
//用了wait()方法等待。因篇幅有限,就不贴出源码了。
reader.finishAdd();
}
}
}
|
当reader被唤醒,reader接着执行doRead()方法。
2)接收请求
下面贴出Server.Listener.Reader类中的doRead()方法和Server.Connection类中的readAndProcess()方法源码:
代码十六:
方法一:
void doRead(SelectionKey key) throws InterruptedException {
int count = 0;
Connection c = (Connection)key.attachment(); //获得connection对象
if (c == null) {
return;
}
c.setLastContact(System.currentTimeMillis());
try {
count = c.readAndProcess(); // 接受并处理请求
} catch (InterruptedException ieo) {
}
}
方法二:
public int readAndProcess() throws IOException, InterruptedException {
while (true) {
if (!rpcHeaderRead) {
if (rpcHeaderBuffer == null) {
rpcHeaderBuffer = ByteBuffer.allocate(2);
}
//读取请求头
count = channelRead(channel, rpcHeaderBuffer);
if (count < 0 || rpcHeaderBuffer.remaining() > 0) {
return count;
}
// 读取请求版本号
int version = rpcHeaderBuffer.get(0);
byte[] method = new byte[] {rpcHeaderBuffer.get(1)};
data = ByteBuffer.allocate(dataLength);
}
// 读取请求
count = channelRead(channel, data);
if (data.remaining() == 0) {
if (useSasl) {
} else {
processOneRpc(data.array());//处理请求
}
}
}
return count;
}
}
|
3)获得call对象
下面贴出Server.Connection类中的processOneRpc()方法和processData()方法的源码。
代码十七:
方法一:
private void processOneRpc(byte[] buf) throws IOException,
InterruptedException {
if (headerRead) {
processData(buf);
} else {
processHeader(buf);
headerRead = true;
if (!authorizeConnection()) {
throw new AccessControlException("Connection from " + this
+ " for protocol " + header.getProtocol()
+ " is unauthorized for user " + user);
}
}
}
方法二:
private void processData(byte[] buf) throws IOException, InterruptedException {
DataInputStream dis =
new DataInputStream(new ByteArrayInputStream(buf));
int id = dis.readInt(); // 尝试读取id
Writable param = ReflectionUtils.newInstance(paramClass, conf);//读取参数
param.readFields(dis);
Call call = new Call(id, param, this); //封装成call
callQueue.put(call); // 将call存入callQueue
incRpcCount(); // 增加rpc请求的计数
}
|
4)处理call对象
你还记得Server类中还有个Handler内部类吗?呵呵,对call对象的处理就是它干的。下面贴出Server.Handler类中run()方法中的关键代码:
代码十八:
while (running) {
try {
final Call call = callQueue.take(); //弹出call,可能会阻塞
???
//调用ipc.Server类中的call()方法,但该call()方法是抽象方法,具体实现在RPC.Server类中
value = call(call.connection.protocol, call.param, call.timestamp);
synchronized (call.connection.responseQueue) {
setupResponse(buf, call,
(error == null) ? Status.SUCCESS : Status.ERROR,
value, errorClass, error);
//给客户端响应请求
responder.doRespond(call);
}
}
|
|