求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
  
 
 
     
   
分享到
HFile存储格式
 

发布于2013-5-7

 

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括两种文件类型:

1. HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

2. HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

下面主要通过代码理解一下HFile的存储格式。

HFile

下图是HFile的存储格式:

HFile由6部分组成的,其中数据KeyValue保存在Block 0 … N中,其他部分的功能有:确定Block Index的起始位置;确定某个key所在的Block位置(如block index);判断一个key是否在这个HFile中(如Meta Block保存了Bloom Filter信息)。具体代码是在HFile.java中实现的,HFile内容是按照从上到下的顺序写入的(Data Block、Meta Block、File Info、Data Block Index、Meta Block Index、Fixed File Trailer)。

KeyValue: HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:

开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是 RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

Data Block:由DATABLOCKMAGIC和若干个record组成,其中record就是一个KeyValue(key length, value length, key, value),默认大小是64k,小的数据块有利于随机读操作,而大的数据块则有利于scan操作,这是因为读KeyValue的时候,HBase会将查询到的data block全部读到Lru Block Cache中去,而不是仅仅将这个record读到cache中去。

private void append(final byte [] key, final int koffset, final int klength, final 
byte [] value, final int voffset, final int vlength) throws IOException {

this.out.writeInt(klength);

this.keylength += klength;

this.out.writeInt(vlength);

this.valuelength += vlength;

this.out.write(key, koffset, klength);

this.out.write(value, voffset, vlength);

}

Meta Block:由METABLOCKMAGIC和Bloom Filter信息组成。

public void close() throws IOException {

if (metaNames.size() > 0) {

for (int i = 0 ; i < metaNames.size() ; ++ i ) {

dos.write(METABLOCKMAGIC);

metaData.get(i).write(dos);

}

}

}

File Info: 由MapSize和若干个key/value,这里保存的是HFile的一些基本信息,如hfile.LASTKEY, hfile.AVG_KEY_LEN, hfile.AVG_VALUE_LEN, hfile.COMPARATOR。

private long writeFileInfo(FSDataOutputStream o) throws IOException {

if (this.lastKeyBuffer != null) {

// Make a copy.  The copy is stuffed into HMapWritable.  Needs a clean

// byte buffer.  Won’t take a tuple.

byte [] b = new byte[this.lastKeyLength];

System.arraycopy(this.lastKeyBuffer, this.lastKeyOffset, b, 0, this.lastKeyLength);

appendFileInfo(this.fileinfo, FileInfo.LASTKEY, b, false);

}

int avgKeyLen = this.entryCount == 0? 0: (int)(this.keylength/this.entryCount);

appendFileInfo(this.fileinfo, FileInfo.AVG_KEY_LEN, Bytes.toBytes(avgKeyLen), false);

int avgValueLen = this.entryCount == 0? 0: (int)(this.valuelength/this.entryCount);

appendFileInfo(this.fileinfo, FileInfo.AVG_VALUE_LEN,

Bytes.toBytes(avgValueLen), false);

appendFileInfo(this.fileinfo, FileInfo.COMPARATOR, Bytes.toBytes(this.comparator.getClass().getName()), false);

long pos = o.getPos();

this.fileinfo.write(o);

return pos;

}

Data/Meta Block Index: 由INDEXBLOCKMAGIC和若干个record组成,而每一个record由3个部分组成 — block的起始位置,block的大小,block中的第一个key。

static long writeIndex(final FSDataOutputStream o, final List keys, final List offsets, final List sizes) throws IOException {

long pos = o.getPos();

// Don’t write an index if nothing in the index.

if (keys.size() > 0) {

o.write(INDEXBLOCKMAGIC);

// Write the index.

for (int i = 0; i < keys.size(); ++i) {

o.writeLong(offsets.get(i).longValue());

o.writeInt(sizes.get(i).intValue());

byte [] key = keys.get(i);

Bytes.writeByteArray(o, key);

}

}

return pos;

}

Fixed file trailer: 大小固定,主要是可以根据它查找到File Info, Block Index的起始位置。

public void close() throws IOException {

trailer.fileinfoOffset = writeFileInfo(this.outputStream);

trailer.dataIndexOffset = BlockIndex.writeIndex(this.outputStream,

this.blockKeys, this.blockOffsets, this.blockDataSizes);

if (metaNames.size() > 0) {

trailer.metaIndexOffset = BlockIndex.writeIndex(this.outputStream,

this.metaNames, metaOffsets, metaDataSizes);

}

trailer.dataIndexCount = blockKeys.size();

trailer.metaIndexCount = metaNames.size();

trailer.totalUncompressedBytes = totalBytes;

trailer.entryCount = entryCount;

trailer.compressionCodec = this.compressAlgo.ordinal();

trailer.serialize(outputStream);
 

}

注:上面的代码剪切自HFile.java中的代码,更多信息可以查看Hbase源代码。

相关文章 相关文档 相关视频



我们该如何设计数据库
数据库设计经验谈
数据库设计过程
数据库编程总结
数据库性能调优技巧
数据库性能调整
数据库性能优化讲座
数据库系统性能调优系列
高性能数据库设计与优化
高级数据库架构师
数据仓库和数据挖掘技术
Hadoop原理、部署与性能调优
 
分享到
 
 


MySQL索引背后的数据结构
MySQL性能调优与架构设计
SQL Server数据库备份与恢复
让数据库飞起来 10大DB2优化
oracle的临时表空间写满磁盘
数据库的跨平台设计
更多...   


并发、大容量、高性能数据库
高级数据库架构设计师
Hadoop原理与实践
Oracle 数据仓库
数据仓库和数据挖掘
Oracle数据库开发与管理


GE 区块链技术与实现培训
航天科工某子公司 Nodejs高级应用开发
中盛益华 卓越管理者必须具备的五项能力
某信息技术公司 Python培训
某博彩IT系统厂商 易用性测试与评估
中国邮储银行 测试成熟度模型集成(TMMI)
中物院 产品经理与产品管理
更多...