MapReduce概论
大家都熟悉文件系统,在对HDFS进行分析前,我们并没有花很多的时间去介绍HDFS的背景,毕竟大家对文件系统的还是有一定的理解的,而且也有很好的文档。在分析Hadoop的MapReduce部分前,我们还是先了解系统是如何工作的,然后再进入我们的分析部分。下面的图来是我看到的讲MapReduce最好的图。
以Hadoop带的wordcount为例子(下面是启动行):
hadoop jar hadoop-0.19.0-examples.jar wordcount /usr/input /usr/output |
用户提交一个任务以后,该任务由JobTracker协调,先执行Map阶段(图中M1,M2和M3),然后执行Reduce阶段(图中R1和R2)。Map阶段和Reduce阶段动作都受TaskTracker监控,并运行在独立于TaskTracker的Java虚拟机中。
我们的输入和输出都是HDFS上的目录(如上图所示)。输入由InputFormat接口描述,它的实现如ASCII文件,JDBC数据库等,分别处理对于的数据源,并提供了数据的一些特征。通过InputFormat实现,可以获取InputSplit接口的实现,这个实现用于对数据进行划分(图中的splite1到splite5,就是划分以后的结果),同时从InputFormat也可以获取RecordReader接口的实现,并从输入中生成<k,v>对。有了<k,v>,就可以开始做map操作了。
map操作通过context.collect(最终通过OutputCollector. collect)将结果写到context中。当Mapper的输出被收集后,它们会被Partitioner类以指定的方式区分地写出到输出文件里。我们可以为Mapper提供Combiner,在Mapper输出它的<k,v>时,键值对不会被马上写到输出里,他们会被收集在list里(一个key值一个list),当写入一定数量的键值对时,这部分缓冲会被Combiner中进行合并,然后再输出到Partitioner中(图中M1的黄颜色部分对应着Combiner和Partitioner)。
Map的动作做完以后,进入Reduce阶段。这个阶段分3个步骤:混洗(Shuffle),排序(sort)和reduce。
混洗阶段,Hadoop的MapReduce框架会根据Map结果中的key,将相关的结果传输到某一个Reducer上(多个Mapper产生的同一个key的中间结果分布在不同的机器上,这一步结束后,他们传输都到了处理这个key的Reducer的机器上)。这个步骤中的文件传输使用了HTTP协议。
排序和混洗是一块进行的,这个阶段将来自不同Mapper具有相同key值的<key,value>对合并到一起。Reduce阶段,上面通过Shuffle和sort后得到的<key,
(list of values)>会送到Reducer. reduce方法中处理,输出的结果通过OutputFormat,输出到DFS中。
MapTask
接下来我们来分析Task的两个子类,MapTask和ReduceTask。MapTask的相关类图如下:
MapTask其实不是很复杂,复杂的是支持MapTask工作的一些辅助类。MapTask的成员变量少,只有split和splitClass。我们知道,Map的输入是split,是原始数据的一个切分,这个切分由org.apache.hadoop.mapred.InputSplit的子类具体描述(前面我们是通过org.apache.hadoop.mapreduce.InputSplit介绍了InputSplit,它们对外的API是一样的)。splitClass是InputSplit子类的类名,通过它,我们可以利用Java的反射机制,创建出InputSplit子类。而split是一个BytesWritable,它是InputSplit子类串行化以后的结果,再通过InputSplit子类的readFields方法,我们可以回复出对应的InputSplit对象。
MapTask最重要的方法是run。run方法相当简单,配置完系统的TaskReporter后,就根据情况执行runJobCleanupTask,runJobSetupTask,runTaskCleanupTask或执行Mapper。由于MapReduce现在有两套API,MapTask需要支持这两套API,使得MapTask执行Mapper分为runNewMapper和runOldMapper,run*Mapper后,MapTask会调用父类的done方法。
接下来我们来分析runOldMapper,最开始部分是构造Mapper处理的InputSplit,更新Task的配置,然后就开始创建Mapper的RecordReader,rawIn是原始输入,然后分正常(使用TrackedRecordReader,后面讨论)和跳过部分记录(使用SkippingRecordReader,后面讨论)两种情况,构造对应的真正输入in。
跳过部分记录是Map的一种出错恢复策略,我们知道,MapReduce处理的数据集合非常大,而有些任务对一部分出错的数据不进行处理,对结果的影响很小(如大数据集合的一些统计量),那么,一小部分的数据出错导致已处理的大量结果无效,是得不偿失的,跳过这部分记录,成了Mapper的一种选择。
Mapper的输出,是通过MapOutputCollector进行的,也分两种情况,如果没有Reducer,那么,用DirectMapOutputCollector(后面讨论),否则,用MapOutputBuffer(后面讨论)。
构造完Mapper的输入输出,通过构造配置文件中配置的MapRunnable,就可以执行Mapper了。目前系统有两个MapRunnable:MapRunner和MultithreadedMapRunner,如下图。
原有API在这块的处理上和新API有很大的不一样。接口MapRunnable是原有API中Mapper的执行器,run方法就是用于执行用户的Mapper。MapRunner是单线程执行器,相当简单,首先,当MapTask调用:
MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner
=ReflectionUtils.newInstance(job.getMapRunnerClass(), job); |
MapRunner的configure会在newInstance的最后被调用,configure执行的过程中,对应的Mapper会通过反射机制构造出来。
MapRunner的run方法,会先创建对应的key,value对象,然后,对InputSplit的每一对<key,value>,调用Mapper的map方法,循环结束后,Mapper对应的清理方法会被调用。我们需要注意,key,value对象在run方法中是被重复使用的,就是说,每次传入Mapper的map方法的key,value都是同一个对象,只不过是里面的内容变了,对象并没有变。如果你需要保留key,value的内容,需要实现clone机制,克隆出对象的一个新备份。
相对于新API的多线程执行器,老API的MultithreadedMapRunner就比较复杂了,总体来说,就是通过阻塞队列配合Java的多线程执行器,将<key,value>分发到多个线程中去处理。需要注意的是,在这个过程中,这些线程共享一个Mapper实例,如果Mapper有共享的资源,需要有一定的保护机制。runNewMapper用于执行新版本的Mapper,比runOldMapper稍微复杂,我们就不再讨论了。
辅助类1:
MapTask的辅助类主要针对Mapper的输入和输出。首先我们来看MapTask中用的的Mapper输入,在类图中,这部分位于右上角。
MapTask.TrackedRecordReader是一个Wrapper,在原有输入RecordReader的基础上,添加了收集上报统计数据的功能。
MapTask.SkippingRecordReader也是一个Wrapper,它在MapTask.TrackedRecordReader的基础上,添加了忽略部分输入的功能。在分析MapTask.SkippingRecordReader之前,我们先看一下类SortedRanges和它相关的类。
类SortedRanges.Ranges表示了一个范围,以开始位置和范围长度(这样的话就可以表示长度为0的范围)来表示一个范围,并提供了一系列的范围操作方法。注意,方法getEndIndex得到的右端点并不包含在范围内(应理解为开区间)。SortedRanges包含了一系列不重叠的范围,为了保证包含的范围不重叠,在add方法和remove方法上需要做一些处理,保证不重叠的约束。SkipRangeIterator是访问SortedRanges包含的Ranges的迭代器。
MapTask.SkippingRecordReader的实现很简单,因为要忽略的输入都保持在SortedRanges.Ranges,只需要在next方法中,判断目前范围时候落在SortedRanges.Ranges中,如果是,忽略,并将忽略的记录写文件(可配置)
NewTrackingRecordReader和NewOutputCollector被新API使用,我们不分析。
MapTask的输出辅助类都继承自MapOutputCollector,它只是在OutputCollector的基础上添加了close和flush方法。
DirectMapOutputCollector用在Reducer的数目为0,就是不需要Reduce阶段的时候。它是直接通过out
= job.getOutputFormat().getRecordWriter(fs,job, finalName,
reporter);得到对应的RecordWriter,collect直接到RecordWriter上。
如果Mapper后续有reduce任务,系统会使用MapOutputBuffer做为输出,这是个比较复杂的类,有1k行左右的代码。
我们知道,Mapper是通过OutputCollector将Map的结果输出,输出的量很大,Hadoop的机制是通过一个circle
buffer 收集Mapper的输出, 到了io.sort.mb * percent量的时候,就spill到disk,如下图。图中出现了两个数组和一个缓冲区,kvindices保持了记录所属的(Reduce)分区,key在缓冲区开始的位置和value在缓冲区开始的位置,通过kvindices,我们可以在缓冲区中找到对应的记录。kvoffets用于在缓冲区满的时候对kvindices的partition进行排序,排完序的结果将输出到输出到本地磁盘上,其中索引(kvindices)保持在spill{spill号}.out.index中,数据保存在spill{spill号}.out中。
当Mapper任务结束后,有可能会出现多个spill文件,这些文件会做一个归并排序,形成Mapper的一个输出(spill.out和spill.out.index),如下图:
这个输出是按partition排序的,这样的话,Mapper的输出被分段,Reducer要获取的就是spill.out中的一段。(注意,内存和硬盘上的索引结构不一样)
辅助类2:
有了上面Mapper输出的内存存储结构和硬盘存储结构讨论,我们来仔细分析MapOutputBuffer的流程。
首先是成员变量。最先初始化的是作业配置job和统计功能reporter。通过配置,MapOutputBuffer可以获取本地文件系统(localFs和rfs),Reducer的数目和Partitioner。
SpillRecord是文件spill.out{spill号}.index在内存中的对应抽象(内存数据和文件数据就差最后的校验和),该文件保持了一系列的IndexRecord,如下图:
IndexRecord有3个字段,分别是startOffset:记录偏移量,rawLength:初始长度,partLength:实际长度(可能有压缩)。SpillRecord保持了一系列的IndexRecord,并提供方法用于添加记录(没有删除记录的操作,因为不需要),获取记录,写文件,读文件(通过构造函数)。
接下来是一些和输出缓存区kvbuffer,缓存区记录索引kvindices和缓存区记录索引排序工作数组kvoffsets相关的处理,下面的图有助于说明这段代码。
这部分依赖于3个配置参数,io.sort.spill.percent是kvbuffer,kvindices和kvoffsets的总大小(以M为单位,缺省是100,就是100M,这一部分是MapOutputBuffer中占用存储最多的)。io.sort.record.percent是kvindices和kvoffsets占用的空间比例(缺省是0.05)。前面的分析我们已经知道kvindices和kvoffsets,如果记录数是N的话,它占用的空间是4N*4bytes,根据这个关系和io.sort.record.percent的值,我们可以计算出kvindices和kvoffsets最多能有多少个记录,并分配相应的空间。参数io.sort.spill.percent指示当输出缓冲区或kvindices和kvoffsets记录数量到达对应的占用率的时候,会启动spill,将内存缓冲区的记录存放到硬盘上,softBufferLimit和softRecordLimit为对应的字节数。
值对<key, value>输出到缓冲区是通过Serializer串行化的,这部分的初始化跟在上面输出缓存后面。接下来是一些计数器和可能的数据压缩处理器的初始化,可能的Combiner和combiner工作的一些配置。
最后是启动spillThread,该Thread会检查内存中的输出缓存区,在满足一定条件的时候将缓冲区中的内容spill到硬盘上。这是一个标准的生产者-消费者模型,MapTask的collect方法是生产者,spillThread是消费者,它们之间同步是通过spillLock(ReentrantLock)和spillLock上的两个条件变量(spillDone和spillReady)完成的。
先看生产者,MapOutputBuffer.collect的主要流程是:
1.报告进度和参数检测(<K, V>符合Mapper的输出约定);
2.spillLock.lock(),进入临界区;
3.如果达到spill条件,设置变量并通过spillReady.signal(),通知spillThread;并等待spill结束(通过spillDone.await()等待);
4.spillLock.unlock();
5.输出key,value并更新kvindices和kvoffsets(注意,方法collect是synchronized,key和value各自输出,它们也会占用连续的输出缓冲区);
kvstart,kvend和kvindex三个变量在判断是否需要spill和spill是否结束的过程中很重要,kvstart是有效记录开始的下标,kvindex是下一个可做记录的位置,kvend的作用比较特殊,它在一般情况下kvstart==kvend,但开始spill的时候它会被赋值为kvindex的值,spill结束时,它的值会被赋给kvstart,这时候kvstart==kvend。这就是说,如果kvstart不等于kvend,系统正在spill,否则,kvstart==kvend,系统处于普通工作状态。其实在代码中,我们可以看到很多kvstart==kvend的判断。
下面我们分情况,讨论kvstart,kvend和kvindex的配合。初始化的时候,它们都被赋值0。
下图给出了一个没有spill的记录添加过程:
注意kvindex和kvnext的关系,取模实现了循环缓冲区
如果在添加记录的过程中,出现spill(多种条件),那么,主要的过程如下:
首先还是计算kvnext,主要,这个时候kvend==kvstart(图中没有画出来)。如果spill条件满足,那么,kvindex的值会赋给kvend(这是kvend不等于kvstart),从kvstart和kvend的大小关系,我们可以知道记录位于数组的那一部分(左边是kvstart<kvend的情况,右边是另外的情况)。Spill结束的时候,kvend值会被赋给kvstart,
kvend==kvstart又重新满足,同时,我们可以发现kvindex在这个过程中没有变化,新的记录还是写在kvindex指向的位置,然后,kvindex=kvnect,kvindex移到下一个可用位置。
大家体会一下上面的过程,特别是kvstart,kvend和kvindex的配合,其实,<key,value>对输出使用的缓冲区,也有类似的过程。
Collect在处理<key,value>输出时,会处理一个MapBufferTooSmallException,这是value的串行化结果太大,不能一次放入缓冲区的指示,这种情况下我们需要调用spillSingleRecord,特殊处理。
辅助类3:
接下来讨论的是key,value的输出,这部分比较复杂,不过有了前面kvstart,kvend和kvindex配合的分析,有利于我们理解这部分的代码。输出缓冲区中,和kvstart,kvend和kvindex对应的是bufstart,bufend和bufmark。这部分还涉及到变量bufvoid,用于表明实际使用的缓冲区结尾(见后面BlockingBuffer.reset分析),和变量bufmark,用于标记记录的结尾。这部分代码需要bufmark,是因为key或value的输出是变长的,(前面元信息记录大小是常量,就不需要这样的变量)。最好的情况是缓冲区没有翻转和value串行化结果很小,如下图:
先对key串行化,然后对value做串行化,临时变量keystart,valstart和valend分别记录了key结果的开始位置,value结果的开始位置和value结果的结束位置。
串行化过程中,往缓冲区写是最终调用了Buffer.write方法,我们后面再分析。
如果key串行化后出现bufindex < keystart,那么会调用BlockingBuffer的reset方法。原因是在spill的过程中需要对<key,value>排序,这种情况下,传递给RawComparator的必须是连续的二进制缓冲区,通过BlockingBuffer.reset方法,解决这个问题。下图解释了如何解决这个问题:
当发现key的串行化结果出现不连续的情况时,我们会把bufvoid设置为bufmark,见缓冲区开始部分往后挪,然后将原来位于bufmark到bufvoid出的结果,拷到缓冲区开始处,这样的话,key串行化的结果就连续存放在缓冲区的最开始处。
上面的调整有一个条件,就是bufstart前面的缓冲区能够放下整个key串行化的结果,如果不能,处理的方式是将bufindex置0,然后调用BlockingBuffer内部的out的write方法直接输出,这实际调用了Buffer.write方法,会启动spill过程,最终我们会成功写入key串行化的结果。
下面我们看write方法。key,value串行化过程中,往缓冲区写数据是最终调用了Buffer.write方法,又是一个复杂的方法。
do-while循环,直到我们有足够的空间可以写数据(包括缓冲区和kvindices和kvoffsets)
首先我们计算缓冲区连续写是否写满标志buffull和缓冲区非连续情况下有足够写空间标志wrap(这个实在拗口),见下面的讨论;条件(buffull
&& !wrap)用于判断目前有没有足够的写空间;
在spill没启动的情况下(kvstart == kvend),分两种情况,如果数组中有记录(kvend
!= kvindex),那么,根据需要(目前输出空间不足或记录数达到spill条件)启动spill过程;否则,如果空间还是不够(buffull
&& !wrap),表明这个记录非常大,以至于我们的内存缓冲区不能容下这么大的数据量,抛MapBufferTooSmallException异常;
如果空间不足同时spill在运行,等待spillDone;
写数据,注意,如果buffull,则写数据会不连续,则写满剩余缓冲区,然后设置bufindex=0,并从bufindex处接着写。否则,就是从bufindex处开始写。
下图给出了缓冲区连续写是否写满标志buffull和缓冲区非连续情况下有足够写空间标志wrap计算的几种可能:
情况1和情况2中,buffull判断为从bufindex到bufvoid是否有足够的空间容纳写的内容,wrap是图中白颜色部分的空间是否比输入大,如果是,wrap为true;情况3和情况4中,buffull判断bufindex到bufstart的空间是否满足条件,而wrap肯定是false。明显,条件(buffull
&& !wrap)满足时,目前的空间不够一次写。
接下来我们来看spillSingleRecord,只是用于写放不进内存缓冲区的<key,value>对。过程很流水,首先是创建SpillRecord记录,输出文件和IndexRecord记录,然后循环,构造SpillRecord并在恰当的时候输出记录(如下图),最后输出spill{n}.index文件。
前面我们提过spillThread,在这个系统中它是消费者,这个消费者相当简单,需要spill时调用函数sortAndSpill,进行spill。sortAndSpill和spillSingleRecord类似,函数的开始也是创建SpillRecord记录,输出文件和IndexRecord记录,然后,需要在kvoffsets上做排序,排完序后顺序访问kvoffsets,也就是按partition顺序访问记录。
按partition循环处理排完序的数组,如果没有combiner,则直接输出记录,否则,调用combineAndSpill,先做combin然后输出。循环的最后记录IndexRecord到SpillRecord。
sortAndSpill最后是输出spill{n}.index文件。
combineAndSpill比价简单,我们就不分析了。
BlockingBuffer中最后要分析的方法是flush方法。调用flush方法,意味着Mapper的结果都已经collect了,需要对缓冲区做一些最后的清理,并合并spill{n}文件产生最后的输出。
缓冲区处理部分很简单,先等待可能的spill过程完成,然后判断缓冲区是否为空,如果不是,则调用sortAndSpill,做最后的spill,然后结束spill线程。
flush合并spill{n}文件是通过mergeParts方法。如果Mapper最后只有一个spill{n}文件,简单修改该文件的文件名就可以。如果Mapper没有任何输出,那么我们需要创建哑输出(dummy
files)。如果spill{n}文件多于1个,那么按partition循环处理所有文件,将处于处理partition的记录输出。处理partition的过程中可能还会再次调用combineAndSpill,最记录再做一次combination,其中还涉及到工具类Merger,我们就不再深入研究了。
从前面的图中,我们可以发现Task有很多内部类,并拥有大量类成员变量,这些类配合Task完成相关的工作,如下图。
MapOutputFile管理着Mapper的输出文件,它提供了一系列get方法,用于获取Mapper需要的各种文件,这些文件都存放在一个目录下面。我们假设传入MapOutputFile的JobID为job_200707121733_0003,TaskID为task_200707121733_0003_m_000005。MapOutputFile的根为{mapred.local.dir}/taskTracker/jobcache/{jobid}/{taskid}/output在下面的讨论中,我们把上面的路径记为{MapOutputFileRoot}
以上面JogID和TaskID为例,我们有:{mapred.local.dir}/taskTracker/jobcache/job_200707121733_0003/task_200707121733_0003_m_000005/output需要注意的是,{mapred.local.dir}可以包含一系列的路径,那么,Hadoop会在这些根路径下找一个满足要求的目录,建立所需的文件。MapOutputFile的方法有两种,结尾带ForWrite和不带ForWrite,带ForWrite用于创建文件,它需要一个文件大小作为参数,用于检查磁盘空间。不带ForWrite用于获取以建立的文件。
getOutputFile:文件名为{MapOutputFileRoot}/file.out; getOutputIndexFile:文件名为{MapOutputFileRoot}/file.out.indexgetSpillFile:文件名为{MapOutputFileRoot}/spill{spillNumber}.outgetSpillIndexFile:文件名为{MapOutputFileRoot}/spill{spillNumber}.out.index以上四个方法用于Task子类MapTask中;getInputFile:文件名为{MapOutputFileRoot}/map_{mapId}.out用于ReduceTask中。我们到使用到他们的地方再介绍相应的应用场景。
介绍完临时文件管理以后,我们来看Task.CombineOutputCollector,它继承自org.apache.hadoop.mapred.OutputCollector,很简单,只是一个OutputCollector到IFile.Writer的Adapter,活都让IFile.Writer干了。
ValuesIterator用于从RawKeyValueIterator(Key,Value都是DataInputBuffer,ValuesIterator要求该输入已经排序)中获取符合RawComparator<KEY>
comparator的值的迭代器。它在Task中有一个简单子类,CombineValuesIterator。
Task.TaskReporter用于向JobTracker提交计数器报告和状态报告,它实现了计数器报告Reporter和状态报告StatusReporter。为了不影响主线程的工作,TaskReporter有一个独立的线程,该线程通过TaskUmbilicalProtocol接口,利用Hadoop的RPC机制,向JobTracker报告Task执行情况。
FileSystemStatisticUpdater用于记录对文件系统的对/写操作字节数,是个简单的工具类。 |