您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
MongoDB高可用集群配置的几种方案
 
作者:邴越 来源:云栖社区 发布于 2016-10-28
   次浏览      
 

摘要: 高可用性即HA(High Availability)指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非计划)所导致的停机时间,以提高系统和应用的可用性。

>>高可用集群的解决方案

高可用性即HA(High Availability)指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非计划)所导致的停机时间,以提高系统和应用的可用性。

计算机系统的高可用在不同的层面上有不同的表现:

(1)网络高可用

由于网络存储的快速发展,网络冗余技术被不断提升,提高IT系统的高可用性的关键应用就是网络高可用性,网络高可用性与网络高可靠性是有区别的,网络高可用性是通过匹配冗余的网络设备实现网络设备的冗余,达到高可用的目的。

比如冗余的交换机,冗余的路由器等

(2)服务器高可用

服务器高可用主要使用的是服务器集群软件或高可用软件来实现。

(3)存储高可用

使用软件或硬件技术实现存储的高度可用性。其主要技术指标是存储切换功能,数据复制功能,数据快照功能等。当一台存储出现故障时,另一台备用的存储可以快速切换,达一存储不停机的目的。

>>MongoDB的高可用集群配置

高可用集群,即High Availability Cluster,简称HA Cluster。

集群(cluster)就是一组计算机,它们作为一个整体向用户提供一组网络资源。

这些单个的计算机系统 就是集群的节点(node)。

搭建高可用集群需要合理的配置多台计算机之间的角色,数据恢复,一致性等,主要有以下几种方式:

(1)主从方式 (非对称方式)

主机工作,备机处于监控准备状况;当主机宕机时,备机接管主机的一切工作,待主机恢复正常后,按使用者的设定以自动或手动方式将服务切换到主机上运行,数据的一致性通过共享存储系统解决。

(2)双机双工方式(互备互援)

两台主机同时运行各自的服务工作且相互监测情况,当任一台主机宕机时,另一台主机立即接管它的一切工作,保证工作实时,应用服务系统的关键数据存放在共享存储系统中。

(3)集群工作方式(多服务器互备方式)

多台主机一起工作,各自运行一个或几个服务,各为服务定义一个或多个备用主机,当某个主机故障时,运行在其上的服务就可以被其它主机接管。

MongoDB集群配置的实践也遵循了这几个方案,主要有主从结构,副本集方式和Sharding分片方式。

>>Master-Slave主从结构

主从架构一般用于备份或者做读写分离。一般有一主一从设计和一主多从设计。

由两种角色构成:

(1)主(Master)

可读可写,当数据有修改的时候,会将oplog同步到所有连接的salve上去。

(2)从(Slave)

只读不可写,自动从Master同步数据。

特别的,对于Mongodb来说,并不推荐使用Master-Slave架构,因为Master-Slave其中Master宕机后不能自动恢复,推荐使用Replica Set,后面会有介绍,除非Replica的节点数超过50,才需要使用Master-Slave架构,正常情况是不可能用那么多节点的。

还有一点,Master-Slave不支持链式结构,Slave只能直接连接Master。Redis的Master-Slave支持链式结构,Slave可以连接Slave,成为Slave的Slave。

>>Relica Set副本集方式

Mongodb的Replica Set即副本集方式主要有两个目的,一个是数据冗余做故障恢复使用,当发生硬件故障或者其它原因造成的宕机时,可以使用副本进行恢复。

另一个是做读写分离,读的请求分流到副本上,减轻主(Primary)的读压力。

1.Primary和Secondary搭建的Replica Set

Replica Set是mongod的实例集合,它们有着同样的数据内容。包含三类角色:

(1)主节点(Primary)

接收所有的写请求,然后把修改同步到所有Secondary。一个Replica Set只能有一个Primary节点,当Primary挂掉后,其他Secondary或者Arbiter节点会重新选举出来一个主节点。默认读请求也是发到Primary节点处理的,需要转发到Secondary需要客户端修改一下连接配置。

(2)副本节点(Secondary)

与主节点保持同样的数据集。当主节点挂掉的时候,参与选主。

(3)仲裁者(Arbiter)

不保有数据,不参与选主,只进行选主投票。使用Arbiter可以减轻数据存储的硬件需求,Arbiter跑起来几乎没什么大的硬件资源需求,但重要的一点是,在生产环境下它和其他数据节点不要部署在同一台机器上。

注意,一个自动failover的Replica Set节点数必须为奇数,目的是选主投票的时候要有一个大多数才能进行选主决策。

(4)选主过程

其中Secondary宕机,不受影响,若Primary宕机,会进行重新选主:

2.使用Arbiter搭建Replica Set

偶数个数据节点,加一个Arbiter构成的Replica Set方式:

>>Sharding分片技术

当数据量比较大的时候,我们需要把数据分片运行在不同的机器中,以降低CPU、内存和IO的压力,Sharding就是数据库分片技术。

MongoDB分片技术类似MySQL的水平切分和垂直切分,数据库主要由两种方式做Sharding:垂直扩展和横向切分。

垂直扩展的方式就是进行集群扩展,添加更多的CPU,内存,磁盘空间等。

横向切分则是通过数据分片的方式,通过集群统一提供服务:

(1)MongoDB的Sharding架构

(2)MongoDB分片架构中的角色

A.数据分片(Shards)

用来保存数据,保证数据的高可用性和一致性。可以是一个单独的mongod实例,也可以是一个副本集。

在生产环境下Shard一般是一个Replica Set,以防止该数据片的单点故障。所有Shard中有一个PrimaryShard,里面包含未进行划分的数据集合:

B.查询路由(Query Routers)

路由就是mongos的实例,客户端直接连接mongos,由mongos把读写请求路由到指定的Shard上去。

一个Sharding集群,可以有一个mongos,也可以有多mongos以减轻客户端请求的压力。

C.配置服务器(Config servers)

保存集群的元数据(metadata),包含各个Shard的路由规则。

 

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]

MySQL索引背后的数据结构
MySQL性能调优与架构设计
SQL Server数据库备份与恢复
让数据库飞起来 10大DB2优化
oracle的临时表空间写满磁盘
数据库的跨平台设计
更多...   

并发、大容量、高性能数据库
高级数据库架构设计师
Hadoop原理与实践
Oracle 数据仓库
数据仓库和数据挖掘
Oracle数据库开发与管理

GE 区块链技术与实现培训
航天科工某子公司 Nodejs高级应用开发
中盛益华 卓越管理者必须具备的五项能力
某信息技术公司 Python培训
某博彩IT系统厂商 易用性测试与评估
中国邮储银行 测试成熟度模型集成(TMMI)
中物院 产品经理与产品管理
更多...