您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
全面了解MySql中的事务
 
 来源:jb51  发布于 2017-2-24
   次浏览      
 

最近一直在做订单类的项目,使用了事务。我们的数据库选用的是MySql,存储引擎选用innoDB,innoDB对事务有着良好的支持。这篇文章我们一起来扒一扒事务相关的知识。

为什么要有事务?

事务广泛的运用于订单系统、银行系统等多种场景。如果有以下一个场景:A用户和B用户是银行的储户。现在A要给B转账500元。那么需要做以下几件事:

1. 检查A的账户余额>500元;

2. A账户扣除500元;

3. B账户增加500元;

正常的流程走下来,A账户扣了500,B账户加了500,皆大欢喜。那如果A账户扣了钱之后,系统出故障了呢?A白白损失了500,而B也没有收到本该属于他的500。以上的案例中,隐藏着一个前提条件:A扣钱和B加钱,要么同时成功,要么同时失败。事务的需求就在于此。

事务是什么?

与其给事务定义,不如说一说事务的特性。众所周知,事务需要满足ACID四个特性。

1. A(atomicity) 原子性。一个事务的执行被视为一个不可分割的最小单元。事务里面的操作,要么全部成功执行,要么全部失败回滚,不可以只执行其中的一部分。

2. C(consistency) 一致性。一个事务的执行不应该破坏数据库的完整性约束。如果上述例子中第2个操作执行后系统崩溃,保证A和B的金钱总计是不会变的。

3. I(isolation) 隔离性。通常来说,事务之间的行为不应该互相影响。然而实际情况中,事务相互影响的程度受到隔离级别的影响。文章后面会详述。

4. D(durability) 持久性。事务提交之后,需要将提交的事务持久化到磁盘。即使系统崩溃,提交的数据也不应该丢失。

事务的四种隔离级别

前文中提到,事务的隔离性受到隔离级别的影响。那么事务的隔离级别是什么呢?事务的隔离级别可以认为是事务的"自私"程度,它定义了事务之间的可见性。隔离级别分为以下几种:

1.READ UNCOMMITTED(未提交读)。在RU的隔离级别下,事务A对数据做的修改,即使没有提交,对于事务B来说也是可见的,这种问题叫脏读。这是隔离程度较低的一种隔离级别,在实际运用中会引起很多问题,因此一般不常用。

2.READ COMMITTED(提交读)。在RC的隔离级别下,不会出现脏读的问题。事务A对数据做的修改,提交之后会对事务B可见,举例,事务B开启时读到数据1,接下来事务A开启,把这个数据改成2,提交,B再次读取这个数据,会读到最新的数据2。在RC的隔离级别下,会出现不可重复读的问题。这个隔离级别是许多数据库的默认隔离级别。

3.REPEATABLE READ(可重复读)。在RR的隔离级别下,不会出现不可重复读的问题。事务A对数据做的修改,提交之后,对于先于事务A开启的事务是不可见的。举例,事务B开启时读到数据1,接下来事务A开启,把这个数据改成2,提交,B再次读取这个数据,仍然只能读到1。在RR的隔离级别下,会出现幻读的问题。幻读的意思是,当某个事务在读取某个范围内的值的时候,另外一个事务在这个范围内插入了新记录,那么之前的事务再次读取这个范围的值,会读取到新插入的数据。Mysql默认的隔离级别是RR,然而mysql的innoDB引擎间隙锁成功解决了幻读的问题。

4.SERIALIZABLE(可串行化)。可串行化是最高的隔离级别。这种隔离级别强制要求所有事物串行执行,在这种隔离级别下,读取的每行数据都加锁,会导致大量的锁征用问题,性能最差。

为了帮助理解四种隔离级别,这里举个例子。如图1,事务A和事务B先后开启,并对数据1进行多次更新。四个小人在不同的时刻开启事务,可能看到数据1的哪些值呢?

图1

第一个小人,可能读到1-20之间的任何一个。因为未提交读的隔离级别下,其他事务对数据的修改也是对当前事务可见的。第二个小人可能读到1,10和20,他只能读到其他事务已经提交了的数据。第三个小人读到的数据去决于自身事务开启的时间点。在事务开启时,读到的是多少,那么在事务提交之前读到的值就是多少。第四个小人,只有在A end 到B start之间开启,才有可能读到数据,而在事务A和事务B执行的期间是读不到数据的。因为第四小人读数据是需要加锁的,事务A和B执行期间,会占用数据的写锁,导致第四个小人等待锁。

图2罗列了不同隔离级别所面对的问题。

图2

很显然,隔离级别越高,它所带来的资源消耗也就越大(锁),因此它的并发性能越低。准确的说,在可串行化的隔离级别下,是没有并发的。

图3

MySql中的事务

事务的实现是基于数据库的存储引擎。不同的存储引擎对事务的支持程度不一样。mysql中支持事务的存储引擎有innoDB和NDB。innoDB是mysql默认的存储引擎,默认的隔离级别是RR,并且在RR的隔离级别下更进一步,通过多版本并发控制(MVCC,Multiversion Concurrency Control )解决不可重复读问题,加上间隙锁(也就是并发控制)解决幻读问题。因此innoDB的RR隔离级别其实实现了串行化级别的效果,而且保留了比较好的并发性能。

事务的隔离性是通过锁实现,而事务的原子性、一致性和持久性则是通过事务日志实现。说到事务日志,不得不说的就是redo和undo。

1.redo log

在innoDB的存储引擎中,事务日志通过重做(redo)日志和innoDB存储引擎的日志缓冲(InnoDB Log Buffer)实现。事务开启时,事务中的操作,都会先写入存储引擎的日志缓冲中,在事务提交之前,这些缓冲的日志都需要提前刷新到磁盘上持久化,这就是DBA们口中常说的“日志先行”(Write-Ahead Logging)。当事务提交之后,在Buffer Pool中映射的数据文件才会慢慢刷新到磁盘。此时如果数据库崩溃或者宕机,那么当系统重启进行恢复时,就可以根据redo log中记录的日志,把数据库恢复到崩溃前的一个状态。未完成的事务,可以继续提交,也可以选择回滚,这基于恢复的策略而定。

在系统启动的时候,就已经为redo log分配了一块连续的存储空间,以顺序追加的方式记录Redo Log,通过顺序IO来改善性能。所有的事务共享redo log的存储空间,它们的Redo Log按语句的执行顺序,依次交替的记录在一起。如下一个简单示例:

记录1:<trx1, insert...>

记录2:<trx2, delete...>

记录3:<trx3, update...>

记录4:<trx1, update...>

记录5:<trx3, insert...>

2.undo log

undo log主要为事务的回滚服务。在事务执行的过程中,除了记录redo log,还会记录一定量的undo log。undo log记录了数据在每个操作前的状态,如果事务执行过程中需要回滚,就可以根据undo log进行回滚操作。单个事务的回滚,只会回滚当前事务做的操作,并不会影响到其他的事务做的操作。

以下是undo+redo事务的简化过程

假设有2个数值,分别为A和B,值为1,2

1. start transaction;

2. 记录 A=1 到undo log;

3. update A = 3;

4. 记录 A=3 到redo log;

5. 记录 B=2 到undo log;

6. update B = 4;

7. 记录B = 4 到redo log;

8. 将redo log刷新到磁盘

9. commit

在1-8的任意一步系统宕机,事务未提交,该事务就不会对磁盘上的数据做任何影响。如果在8-9之间宕机,恢复之后可以选择回滚,也可以选择继续完成事务提交,因为此时redo log已经持久化。若在9之后系统宕机,内存映射中变更的数据还来不及刷回磁盘,那么系统恢复之后,可以根据redo log把数据刷回磁盘。

所以,redo log其实保障的是事务的持久性和一致性,而undo log则保障了事务的原子性。

分布式事务

分布式事务的实现方式有很多,既可以采用innoDB提供的原生的事务支持,也可以采用消息队列来实现分布式事务的最终一致性。这里我们主要聊一下innoDB对分布式事务的支持。

如图,mysql的分布式事务模型。模型中分三块:应用程序(AP)、资源管理器(RM)、事务管理器(TM)。

应用程序定义了事务的边界,指定需要做哪些事务;

资源管理器提供了访问事务的方法,通常一个数据库就是一个资源管理器;

事务管理器协调参与了全局事务中的各个事务。

分布式事务采用两段式提交(two-phase commit)的方式。第一阶段所有的事务节点开始准备,告诉事务管理器ready。第二阶段事务管理器告诉每个节点是commit还是rollback。如果有一个节点失败,就需要全局的节点全部rollback,以此保障事务的原子性。

总结

什么时候需要使用事务呢?我想,只要业务中需要满足ACID的场景,都需要事务的支持。尤其在订单系统、银行系统中,事务是不可或缺的。这篇文章主要介绍了事务的特性,以及mysql innoDB对事务的支持。事务相关的知识远不止文中所说,本文仅作抛砖引玉,不足之处还望读者多多见谅。

 

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]

MySQL索引背后的数据结构
MySQL性能调优与架构设计
SQL Server数据库备份与恢复
让数据库飞起来 10大DB2优化
oracle的临时表空间写满磁盘
数据库的跨平台设计
更多...   

并发、大容量、高性能数据库
高级数据库架构设计师
Hadoop原理与实践
Oracle 数据仓库
数据仓库和数据挖掘
Oracle数据库开发与管理

GE 区块链技术与实现培训
航天科工某子公司 Nodejs高级应用开发
中盛益华 卓越管理者必须具备的五项能力
某信息技术公司 Python培训
某博彩IT系统厂商 易用性测试与评估
中国邮储银行 测试成熟度模型集成(TMMI)
中物院 产品经理与产品管理
更多...