您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
数据湖应用解析:Spark on Elasticsearch 一致性问题
 
作者:华为云开发者社区
   次浏览      
2020-8-21 
 
编辑推荐:
脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入Elasticsearch数据的可靠性与正确性。
本文来infoq,由火龙果软件Anna编辑、推荐。

概述

Spark与Elasticsearch(es)的结合,是近年来大数据解决方案很火热的一个话题。一个是出色的分布式计算引擎,另一个是出色的搜索引擎。近年来,越来越多的成熟方案落地到行业产品中,包括我们耳熟能详的Spark+ES+HBase日志分析平台。

目前,华为云数据湖探索(DLI)服务已全面支持Spark/Flink跨源访问Elasticsearch。而之前在实现过程中也遇到过很多场景化问题,本文将挑选其中比较经典的分布式一致性问题进行探讨。

分布式一致性问题

问题描述

数据容错是大数据计算引擎面临的主要问题之一。目前,主流的开源大数据比如Apache Spark和Apache Flink已经完全实现了Exactly Once语义,保证了内部数据处理的正确性。但是在将计算结果写入到外部数据源时,因为外部数据源架构与访问方式的多样性,始终没能找到一个统一的解决方案来保证一致性(我们称为Sink算子一致性问题)。再加上es本身没有事务处理的能力,因此如何保证写入es数据一致性成为了热点话题。

我们举一个简单的例子来说明一下,图1在SparkRDD中(这里假设是一个task),每一条蓝色的线代表100万条数据,那么10条蓝色的线表示了有1000万条数据准备写入到CSS(华为云搜索服务,内部为es)的某个index中。在写入过程中,系统发生了故障,导致只有一半(500万条)数据成功写入。

task是Spark执行任务的最小单元,如果task失败了,当前task需要整个重新执行。所以,当我们重新执行写入操作(图2),并最终重试成功之后(这次用红色来表示相同的1000万条数据),上一次失败留下的500万条数据依然存在(蓝色的线),变成脏数据。脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入es数据的可靠性与正确性。

图1 Spark task失败时向es写入了部分数据

图2 task重试成功后上一次写入的部分数据成为脏数据

解决方案

1.写覆盖

从上图中,我们可以很直观的看出来,每次task插入数据前,先将es的index中的数据都清空就可以了。那么,每次写入操作可以看成是以下3个步骤的组合:

步骤一 判断当前index中是否有数据

步骤二 清空当前index中的数据

步骤三 向index中写入数据

换一种角度,我们可以理解为,不管之前是否执行了数据写入,也不管之前数据写入了多少次,我们只想要保证当前这一次写入能够独立且正确地完成,这种思想我们称为幂等。

幂等式写入是大数据sink算子解决一致性问题的一种常见思路,另一种说法叫做最终一致性,其中最简单的做法就是“insert overwrite”。当Spark数据写入es失败并尝试重新执行的时候,利用覆盖式写入,可以将index中的残留数据覆盖掉。

图 使用overwrite模式,task重试时覆盖上一次数据

在DLI中,可以在DataFrame接口里将mode设置成“overwrite”来实现覆盖写es:

val dfWriter = sparkSession.createDataFrame(rdd, schema)

//
// 写入数据至es
//
dfWriter.write
.format("es")
.option("es.resource", resource)
.option("es.nodes", nodes)
.mode(SaveMode.Overwrite)
.save()

 

也可以直接使用sql语句:

// 插入数据至es
sparkSession.sql ("insert overwrite table es_table values (1, 'John'),(2, 'Bob')")

2.最终一致性

利用上述“overwrite”的方式解决容错问题有一个很大的缺陷。如果es已经存在了正确的数据,这次只是需要追加写入。那么overwrite会把之前index的正确的数据都覆盖掉。

比如说,有多个task并发执行写入数据的操作,其中一个task执行失败而其他task执行成功,重新执行失败的task进行“overwrite”会将其他已经成功写入的数据覆盖掉。再比如说,Streaming场景中,每一批次数据写入都变成覆盖,这是不合理的方式。

图 Spark追加数据写入es

图 用overwrite写入会将原先正确的数据覆盖掉

其实,我们想做的事情,只是清理脏数据而不是所有index中的数据。因此,核心问题变成了如何识别脏数据?借鉴其他数据库解决方案,我们似乎可以找到方法。在MySQL中,有一个insert ignore into的语法,如果遇到主键冲突,能够单单对这一行数据进行忽略操作,而如果没有冲突,则进行普通的插入操作。这样就可以将覆盖数据的力度细化到了行级别。

es中有类似的功能么?假如es中每一条数据都有主键,主键冲突时可以进行覆盖(忽略和覆盖其实都能解决这个问题),那么在task失败重试时,就可以仅针对脏数据进行覆盖。

我们先来看一下Elasticsearch中的概念与关系型数据库之间的一种对照关系:

我们知道,MySQL中的主键是对于一行数据(Row)的唯一标识。从表中可以看到,Row对应的就是es中的Document。那么,Document有没有唯一的标识呢?

答案是肯定的,每一个Document都有一个id,即doc_id。doc_id是可配置的,index、type、doc_id三者指定了唯一的一条数据(Document)。并且,在插入es时,index、type、doc_id相同,原先的document数据将会被覆盖掉。因此,doc_id可以等效于“MySQL主键冲突忽略插入”功能,即“doc_id冲突覆盖插入”功能。

因此,DLI的SQL语法中提供了配置项“es.mapping.id”,可以指定一个字段作为Document id,例如:

create table es_table(id int, name string) using es options(
'es.nodes' 'localhost:9200',
'es.resource' '/mytest/anytype',
'es.mapping.id' 'id')")

这里指定了字段“id”作为es的doc_id,当插入数据时,字段“id”的值将成为插入Document的id。值得注意的是,“id”的值要唯一,否则相同的“id”将会使数据被覆盖。

这时,如果遇到作业或者task失败的情况,直接重新执行即可。当最终作业执行成功时,es中将不会出现残留的脏数据,即实现了最终一致性。

图 在插入数据时将主键设为doc_id,利用幂等插入来实现最终一致性

总结

本文可以一句话总结为“利用doc_id实现写入es的最终一致性”。而这种问题,实际上不需要如此大费周章的探索,因为在es的原生API中,插入数据是需要指定doc_id,这应该是一个基本常识:详细API说明可以参考.

图 es使用bulk接口进行数据写入

权当消遣,聊以慰藉。

得益于Base理论,最终一致性成为分布式计算中重要的解决方案之一。尽管该解决方案还有一定的限制(比如本文的解决方案中数据必须使用主键),而业界还有很多分布式一致性的解决方案(比如2PC、3PC)。但个人认为,衡量工作量与最终效果,最终一致性是一种很有效且很简约的解决方案。

扩展阅读:Elasticsearch Datasource

简介

Datasource是Apache Spark提供的访问外部数据源的统一接口。Spark提供了SPI机制对Datasource进行了插件式管理,可以通过Spark的Datasource模块自定义访问Elasticsearch的逻辑。

华为云DLI(数据湖探索)服务已完全实现了es datasource功能,用户只要通过简单的SQL语句或者Spark DataFrame API就能实现Spark访问es。

功能描述

通过Spark访问es,可以在DLI官方文档中找到详细资料,(Elasticsearch是由华为云CSS云搜索服务提供)。

可以使用Spark DataFrame API方式来进行数据的读写:

//
// 初始化设置
//

// 设置es的/index/type(es 6.x版本不支持同一个index中存在多个type,7.x版本不支持设置type)
val resource = "/mytest/anytype";

// 设置es的连接地址(格式为”node1:port, node2:port...”,因为es的replica机制,即使访问es集群,只需要配置一个地址即可.)
val nodes = "localhost:9200"

// 构造数据
val schema = StructType(Seq (StructField("id", IntegerType, false), StructField("name", StringType, false)))
val rdd = sparkSession.sparkContext.parallelize (Seq(Row(1, "John"), Row(2,"Bob")))
val dfWriter = sparkSession.createDataFrame (rdd, schema)

//
// 写入数据至es
//
dfWriter.write
.format("es")
.option("es.resource", resource)
.option("es.nodes", nodes)
.mode(SaveMode.Append)
.save()

//
// 从es读取数据
//
val dfReader = sparkSession.read.format( "es" ).option ("es.resource",resource ).option ("es.nodes", nodes ).load()
dfReader.show()

也可以使用Spark SQL来访问:

// 创建一张关联es /index/type的Spark临时表,该表并不存放实际数据
val sparkSession = SparkSession.builder( ).getOrCreate()
sparkSession.sql ("create table es_table(id int, name string) using es options(
'es.nodes' 'localhost:9200',
'es.resource' '/mytest/anytype')")

// 插入数据至es
sparkSession.sql("insert into es_table values(1, 'John'),(2, 'Bob')")

// 从es中读取数据
val dataFrame = sparkSession.sql("select * from es_table")
dataFrame.show()

 

 

 

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]
 
最新文章
InfluxDB概念和基本操作
InfluxDB TSM存储引擎之数据写入
深度漫谈数据系统架构——Lambda architecture
Lambda架构实践
InfluxDB TSM存储引擎之数据读取
最新课程
Oracle数据库性能优化、架构设计和运行维护
并发、大容量、高性能数据库设计与优化
NoSQL数据库(原理、应用、最佳实践)
企业级Hadoop大数据处理最佳实践
Oracle数据库性能优化最佳实践
更多...   
成功案例
某金融公司 Mysql集群与性能优化
北京 并发、大容量、高性能数据库设计与优化
知名某信息通信公司 NoSQL缓存数据库技术
北京 oracle数据库SQL优化
中国移动 IaaS云平台-主流数据库及存储技术
更多...