您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
批量将本地gis数据导入postgis数据库
 
作者:韩锋
   次浏览      
2020-12-4 
 
编辑推荐:

本文主要介绍了geojsonio包导入、使用rgdal包、使用sf包导入、geojson、topojson等相关内容。
本文来自微信公众号 - 数据小魔方,由火龙果软件Anna编辑、推荐。

以前在处理gis数据的时候,都是直接导入本地shp素材、本地geojson素材,本地topojson素材,自从接触postgis数据之后,深感使用规范的存储系统来统一管理gis数据的好处,特别是数据量大了之后,优势便更加明显,你可以选择将很多需要做空间计算的步骤转移到Postgis数据库内进行计算,要知道Postgis提供的空间计算能力与R和Python这种应用导向的工具相比,优势要大得多。

在批量导入素材之前,我们可以先看下R语言目前提供的各种导入接口在I/O性能上相比有何异同。

#install.packages("geojsonio")
#devtools:: install_github("ropensci/geojsonio")
library("geojsonio")
library("rgdal")
library("sf")
library("maptools")

使用maptools包中的readShapePoly函数进行导入(已快被遗弃了,推荐使用sf和rgdal包)

system.time(china_map <- readShapePoly("D:/R/rstudy/CHN_adm/bou2_4p.shp"))
用户 系统 流逝
0.23 0.00 0.23
Warning message:
use rgdal::readOGR or sf::st_read
china_map@data
ggplot2::fortify(china_map)

geojsonio包导入:

system.time(geojson1 <- geojson_read(
"D:/R/rstudy/CHN_adm/bou2_4p.shp",
method = "local",
parse = TRUE,
what = "sp",
encoding="utf-8",
use_iconv=TRUE
))
用户 系统 流逝
0.69 0.03 0.71
 

使用rgdal包:

system.time(map_data <- readOGR(
"D:/R/rstudy/CHN_adm/bou2_4p.shp",
encoding="utf-8",
use_iconv=TRUE
))
OGR data source with driver: ESRI Shapefile
Source: "D:\R\rstudy\CHN_adm\bou2_4p.shp",
layer: "bou2_4p"with 925 features
It has 7 fields
Integer64 fields read as strings: BOU2_4M_ BOU2_4M_ID
用户 系统 流逝
0.66 0.09 0.75

使用sf包导入:

system.time(nepal_shp <- read_sf(
"D:/R/rstudy/CHN_adm/bou2_4p.shp",
options = "ENCODING=gbk"
))
用户 系统 流逝
0.05 0.00 0.05

可以看到在同一个shp文件单项导入的情况下,纯粹从时间上来看:

sf > maptools > rgdal > geojsonio

这里值得一提的是,geojsonio包是封装的rgdal服务,性能上自然略逊rgdal一筹,以上四个包中,除sf包是基于simple features标准的模型之外,其他基本都是基于sp模型的。sf模型的性能由此可见一斑。

当然,以上sf包、rgdal包和sf包都是兼容性很好地包,可以支持非常广泛的数据源,以下分别是在json标准下的两种素材上进行测试。

geojson

system.time(geojson <- geojson_read(
"D:/R/mapdata/State/china.geojson",
method = "local",
parse = TRUE,
encoding="utf-8",
use_iconv=TRUE,
what = "sp"
))
用户 系统 流逝
0.80 0.02 0.81

system.time(map_data <- readOGR(
"D:/R/mapdata/State/china.geojson",
encoding="utf-8",
use_iconv=TRUE,
stringsAsFactors = FALSE
))
OGR data source with driver: GeoJSON
Source: "D:\R\mapdata\State\china.geojson", layer: "china"with 34 features
It has 2 fields
用户 系统 流逝
0.77 0.00 0.76
system.time(nepal_shp <- read_sf(
"D:/R/mapdata/State/china.geojson"
))
用户 系统 流逝
0.03 0.00 0.03

topojson

system.time(map_data <- readOGR(
"D:/R/mapdata/china.topojson",
use_iconv=TRUE,
encoding = "utf-8",
stringsAsFactors = FALSE
))
OGR data source with driver: GeoJSON
Source: "D:\R\mapdata\china.topojson", layer: " china"with 34 features
It has 2 fields
用户 系统 流逝
0.52 0.01 0.59
system.time(geojson <- topojson_read(
"D:/R/mapdata/china.topojson",
encoding="utf-8",
use_iconv=TRUE
))
OGR data source with driver: GeoJSON
Source: "D:\R\mapdata\china.topojson", layer: "china"with 34 features
It has 2 fields
用户 系统 流逝
0.59 0.00 0.59
system.time(nepal_shp <- read_sf(
"D:/R/mapdata/china.topojson"
))
用户 系统 流逝
0.02 0.00 0.01

是不是看完这个性能大比拼之后大吃一惊,为sf包的超强IO能力所折服,sf包是一个非常强大的包,实现了基于simple features的所有特性,如果你了解一点儿Postgis的话,你会发现作者把大部分空间运算的函数名称设计的和Postgis中的函数一模一样,这就意味着你无论是只了解过sf包函数,或者只了解过Postgis函数,都可以低成本的迁移到两一个平台,因为同名函数往往功能一致。

如果你要想将sf包导入的数据模型转换为普通的数据框模式,仅仅只需使用其提供的as(sf,’Spatial’)函数一次转化即可,当然sf有自己的ggplot2通道函数geom_sf(),这意味着你不必多此一举。(当然对于sf不甚熟悉,习惯于使用geom_polygon来实现地理信息可视化的小伙伴儿,可以采取这种办法,但是仍然要推荐大家学习sf包,因为它代表着未来)。

R语言-gis数据批量入库:

#定义读写函数:
task <- function(filename,conn){
#此处为写入本地gis数据(可以是任意格式,可以使用任意一种导入工具)
map_data <- readOGR(filename, use_iconv=TRUE,encoding = "utf-8",stringsAsFactors = FALSE)
file_name <- sub('.json','',basename(filename))
#此处是写入数据库的函数,可以使用sf包、rgdal包以及RPostgreSQL包提供的写出函数。
writeOGR(obj = map_data ,dsn = conn,driver = "PostgreSQL",layer=file_name, encoding="gbk",overwrite_layer = TRUE)
}
#此处使用l_ply函数创建批量执行任务
Project_io <- function(path){
setwd(path)
input_list = list.files(path)
conn <- "PG:dbname='mytest' host='localhost' port='5432' user='postgres' password='708965'"
l_ply(input_list,task,conn)
}
#启动任务
Project_io("D:/R/mapdata/Province")

Python-gis数据批量入库:

import geopandas as gpd
import pandas as pd
from sqlalchemy import create_engine
from geoalchemy2 import Geometry,WKTElement
import numpy as np
import os
import re
import json
#数据写入函数:
def write_gis(path):
map_data = gpd.GeoDataFrame.from_file(path)
map_data['geometry'] = map_data['geometry'].apply(lambda x: WKTElement(x.wkt,4326))
map_data.drop(['center','parent'], axis = 1, inplace=True)
map_data.to_sql(
name = re.split('\\.',path)[0],
con = engine,
if_exists= 'replace',
dtype = {'geometry': Geometry(geometry_type ='POLYGON', srid = 4326)}
)
return None
#创建批量任务
def to_do(file_path,username,password,dbname):
os.chdir(file_path)
link = "postgresql://{0}: {1}@localhost:5432/{2}".format(username, password,dbname)
engine = create_engine(link,encoding = 'utf-8')
file_list = os.listdir()
map(lambda x: write_gis(x),file_list)
return None
#执行任务计划
if __name__ == '__main__':
file_path = 'D:/R/mapdata/Province'
username = 'postgres'
password = *****
dbname = 'mytest'
to_do(file_path,username,password,dbname)
print('DODE')

 

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]
 
最新文章
InfluxDB概念和基本操作
InfluxDB TSM存储引擎之数据写入
深度漫谈数据系统架构——Lambda architecture
Lambda架构实践
InfluxDB TSM存储引擎之数据读取
最新课程
Oracle数据库性能优化、架构设计和运行维护
并发、大容量、高性能数据库设计与优化
NoSQL数据库(原理、应用、最佳实践)
企业级Hadoop大数据处理最佳实践
Oracle数据库性能优化最佳实践
更多...   
成功案例
某金融公司 Mysql集群与性能优化
北京 并发、大容量、高性能数据库设计与优化
知名某信息通信公司 NoSQL缓存数据库技术
北京 oracle数据库SQL优化
中国移动 IaaS云平台-主流数据库及存储技术
更多...