您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
深入对比数据仓库模式:Kimball vs Inmon
 
   次浏览      
 2018-9-13
 
编辑推荐:
本文来自于csdn,本文详细介绍了Kimball和Inmon是两种主流的数据仓库方法,以及两者的差异对比等相关知识。

概述

Kimball和Inmon是两种主流的数据仓库方法论,分别由 Ralph Kimbal大神 和 Bill Inmon大神提出,在实际数据仓库建设中,业界往往会相互借鉴使用两种开发模式。本文将详细介绍 Kimball 和 Inmon 理论在实际数据仓库建设中的应用与对比,通过数据仓库理论武装数据仓库实践。

什么是Kimball

概念

Kimball 模式从流程上看是是自底向上的,即从数据集市到数据仓库再到数据源(先有数据集市再有数据仓库)的一种敏捷开发方法。对于Kimball模式,数据源往往是给定的若干个数据库表,数据较为稳定但是数据之间的关联关系比较复杂,需要从这些OLTP中产生的事务型数据结构抽取出分析型数据结构,再放入数据集市中方便下一步的BI与决策支持。

流程

通常,Kimball都是以最终任务为导向。首先,在得到数据后需要先做数据的探索,尝试将数据按照目标先拆分出不同的表需求。其次,在明确数据依赖后将各个任务再通过ETL由Stage层转化到DM层。这里DM层数据则由若干个事实表和维度表组成。接着,在完成DM层的事实表维度表拆分后,数据集市一方面可以直接向BI环节输出数据了,另一方面可以先DW层输出数据,方便后续的多维分析。

Kimball往往意味着快速交付、敏捷迭代,不会对数据仓库架构做过多复杂的设计,在变换莫测的互联网行业,这种架构方式逐渐成为一种主流范式。

什么是Inmon

概念

Inmon 模式从流程上看是自顶向下的,即从数据源到数据仓库再到数据集市的(先有数据仓库再有数据市场)一种瀑布流开发方法。对于Inmon模式,数据源往往是异构的,比如从自行定义的爬虫数据就是较为典型的一种,数据源是根据最终目标自行定制的。这里主要的数据处理工作集中在对异构数据的清洗,包括数据类型检验,数据值范围检验以及其他一些复杂规则。在这种场景下,数据无法从stage层直接输出到dm层,必须先通过ETL将数据的格式清洗后放入dw层,再从dw层选择需要的数据组合输出到dm层。在Inmon模式中,并不强调事实表和维度表的概念,因为数据源变化的可能性较大,需要更加强调数据的清洗工作,从中抽取实体-关系。

流程

通常,Inmon都是以数据源头为导向。首先,需要探索性地去获取尽量符合预期的数据,尝试将数据按照预期划分为不同的表需求。其次,明确数据的清洗规则后将各个任务通过ETL由Stage层转化到DW层,这里DW层通常涉及到较多的UDF开发,将数据抽象为实体-关系模型。接着,在完成DW的数据治理之后,可以将数据输出到数据集市中做基本的数据组合。最后,将数据集市中的数据输出到BI系统中去辅助具体业务。

特征对比

特性

优劣比较

具体例子

相信一通理论之后可能还是能困惑,现在举一个具体的例子。

数据

股票交易为例:

(OLTP)原始数据包含了如下几张事务表:(真实场景字段设计更为复杂,此处已经简化)

交易记录表:记录用户下单情况

成交日志表:记录用户下单且成交的情况

用户信息表

对比

如果是 Inmon 模式,我们需要将数据库拆分成 用户实体表、成交日志实体表、用户与成交日志关系表等多个子模块。如果是 Kimball 模式,我们则需要将数据库拆分成 用户维度表、用户资产事实表、成交事实表。在Kimball模式中,我们不需要单独维护关系表,因为关系已经冗余在维度表和事实表中。

Inmon 模式:

用户实体表

成交关系表

用户资产关系表

Kimball 模式

用户维度表

可以看到这里的用户维度表不包含业务交易信息,变化相对缓慢(静态)而风险评级、用户类型也需要由风险评级维度表、用户类型维度表来维护

用户资产事实表

这里的用户资产事实表通常数据是由用户资产交易日志产生的,因为日志存在只插入,不更新的特点(快速增加、最细粒度)

总结

对于大多数互联网公司由于需求的快速变化,处心积虑设计(Inmon)实体-关系的设计哲学似乎并不能满足快速迭代的业务需要。所以,更多场景下趋向于使用(Kimball)维度-事实的设计哲学反而可以更快地完成任务。

数据仓库建设通常以日为粒度,将OLTP数据变化的不情况增量同步到数据仓库中。

在数据仓库的实际工作中,80%的时间会花费在任务调度、数据清洗和业务梳理上,只有20%的时间会投入到数据挖掘上。

   
次浏览       
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训