编辑推荐: |
本文来自于csdn,本文详细介绍了Kimball和Inmon是两种主流的数据仓库方法,以及两者的差异对比等相关知识。 |
|
概述
Kimball和Inmon是两种主流的数据仓库方法论,分别由 Ralph Kimbal大神 和 Bill
Inmon大神提出,在实际数据仓库建设中,业界往往会相互借鉴使用两种开发模式。本文将详细介绍 Kimball
和 Inmon 理论在实际数据仓库建设中的应用与对比,通过数据仓库理论武装数据仓库实践。
什么是Kimball
概念
Kimball 模式从流程上看是是自底向上的,即从数据集市到数据仓库再到数据源(先有数据集市再有数据仓库)的一种敏捷开发方法。对于Kimball模式,数据源往往是给定的若干个数据库表,数据较为稳定但是数据之间的关联关系比较复杂,需要从这些OLTP中产生的事务型数据结构抽取出分析型数据结构,再放入数据集市中方便下一步的BI与决策支持。
流程
通常,Kimball都是以最终任务为导向。首先,在得到数据后需要先做数据的探索,尝试将数据按照目标先拆分出不同的表需求。其次,在明确数据依赖后将各个任务再通过ETL由Stage层转化到DM层。这里DM层数据则由若干个事实表和维度表组成。接着,在完成DM层的事实表维度表拆分后,数据集市一方面可以直接向BI环节输出数据了,另一方面可以先DW层输出数据,方便后续的多维分析。
Kimball往往意味着快速交付、敏捷迭代,不会对数据仓库架构做过多复杂的设计,在变换莫测的互联网行业,这种架构方式逐渐成为一种主流范式。
什么是Inmon
概念
Inmon 模式从流程上看是自顶向下的,即从数据源到数据仓库再到数据集市的(先有数据仓库再有数据市场)一种瀑布流开发方法。对于Inmon模式,数据源往往是异构的,比如从自行定义的爬虫数据就是较为典型的一种,数据源是根据最终目标自行定制的。这里主要的数据处理工作集中在对异构数据的清洗,包括数据类型检验,数据值范围检验以及其他一些复杂规则。在这种场景下,数据无法从stage层直接输出到dm层,必须先通过ETL将数据的格式清洗后放入dw层,再从dw层选择需要的数据组合输出到dm层。在Inmon模式中,并不强调事实表和维度表的概念,因为数据源变化的可能性较大,需要更加强调数据的清洗工作,从中抽取实体-关系。
流程
通常,Inmon都是以数据源头为导向。首先,需要探索性地去获取尽量符合预期的数据,尝试将数据按照预期划分为不同的表需求。其次,明确数据的清洗规则后将各个任务通过ETL由Stage层转化到DW层,这里DW层通常涉及到较多的UDF开发,将数据抽象为实体-关系模型。接着,在完成DW的数据治理之后,可以将数据输出到数据集市中做基本的数据组合。最后,将数据集市中的数据输出到BI系统中去辅助具体业务。
特征对比
特性
优劣比较
具体例子
相信一通理论之后可能还是能困惑,现在举一个具体的例子。
数据
股票交易为例:
(OLTP)原始数据包含了如下几张事务表:(真实场景字段设计更为复杂,此处已经简化)
交易记录表:记录用户下单情况
成交日志表:记录用户下单且成交的情况
用户信息表
对比
如果是 Inmon 模式,我们需要将数据库拆分成 用户实体表、成交日志实体表、用户与成交日志关系表等多个子模块。如果是
Kimball 模式,我们则需要将数据库拆分成 用户维度表、用户资产事实表、成交事实表。在Kimball模式中,我们不需要单独维护关系表,因为关系已经冗余在维度表和事实表中。
Inmon 模式:
用户实体表
成交关系表
用户资产关系表
Kimball 模式
用户维度表
可以看到这里的用户维度表不包含业务交易信息,变化相对缓慢(静态)而风险评级、用户类型也需要由风险评级维度表、用户类型维度表来维护
用户资产事实表
这里的用户资产事实表通常数据是由用户资产交易日志产生的,因为日志存在只插入,不更新的特点(快速增加、最细粒度)
总结
对于大多数互联网公司由于需求的快速变化,处心积虑设计(Inmon)实体-关系的设计哲学似乎并不能满足快速迭代的业务需要。所以,更多场景下趋向于使用(Kimball)维度-事实的设计哲学反而可以更快地完成任务。
数据仓库建设通常以日为粒度,将OLTP数据变化的不情况增量同步到数据仓库中。
在数据仓库的实际工作中,80%的时间会花费在任务调度、数据清洗和业务梳理上,只有20%的时间会投入到数据挖掘上。 |