您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
.NET设计模式(7):创建型模式专题总结(Creational Pattern)
 
作者 李会军,火龙果软件    发布于 2014-09-16
   次浏览      
 

概述

创建型模式,就是用来创建对象的模式,抽象了实例化的过程。它帮助一个系统独立于如何创建、组合和表示它的那些对象。本文对五种常用创建型模式进行了比较,通过一个游戏开发场景的例子来说该如何使用创建型模式。

为什么需要创建型模式

所有的创建型模式都有两个永恒的主旋律:第一,它们都将系统使用哪些具体类的信息封装起来;第二,它们隐藏了这些类的实例是如何被创建和组织的。外界对于这些对象只知道它们共同的接口,而不清楚其具体的实现细节。正因如此,创建型模式在创建什么(what),由谁(who)来创建,以及何时(when)创建这些方面,都为软件设计者提供了尽可能大的灵活性。

假定在一个游戏开发场景中,会用到一个现代风格房屋的对象,按照我们的一般想法,既然需要对象就创建一个:

ModernRoom room = new ModernRoom();

好了,现在现代风格房屋的对象已经有了,如果这时房屋的风格变化了,需要的是古典风格的房屋,修改一下:

ClassicalRoom room = new ClassicalRoom();

试想一下,在我们的程序中有多少处地方用到了这样的创建逻辑,而这里仅仅是房屋的风格变化了,就需要修改程序中所有的这样的语句。现在我们封装对象创建的逻辑,把对象的创建放在一个工厂方法中:

ModernFactory factory = new ModernFactory();

ModernRoom room = factory.Create();

当房屋的风格变化时,只需要修改

ClassicalFactory factory = new ClassicalFactory();

ClassicalRoom room = factory.Create();

而其它的用到room的地方仍然不变。这就是为什么需要创建型模式了。创建者模式作用可以概括为如下两点:

1.封装创建逻辑,绝不仅仅是new一个对象那么简单。

2.封装创建逻辑变化,客户代码尽量不修改,或尽量少修改。

常见的五种创建型模式

1.单件模式(Singleton Pattern)解决的是实体对象的个数问题,其他的都是解决new所带来的耦合关系问题。

2.工厂方法模式(Factory Pattern)在工厂方法中,工厂类成为了抽象类,其实际的创建工作将由其具体子类来完成。工厂方法的用意是定义一个创建产品对象的工厂接口,将实际创建工作推迟到子类中去,强调的是“单个对象”的变化。

3.抽象工厂模式(Abstract Factory)抽象工厂是所有工厂模式中最为抽象和最具有一般性的一种形态。抽象工厂可以向客户提供一个接口,使得客户可以在不必指定产品的具体类型的情况下,创建多个产品族中的产品对象,强调的是“系列对象”的变化。

4.生成器模式(Builder Pattern)把构造对象实例的逻辑移到了类的外部,在这个类的外部定义了这个类的构造逻辑。他把一个复杂对象的构造过程从对象的表示中分离出来。其直接效果是将一个复杂的对象简化为一个比较简单的目标对象。他强调的是产品的构造过程。

5.原型模式(Prototype Pattern)和工厂模式一样,同样对客户隐藏了对象创建工作,但是,与通过对一个类进行实例化来构造新对象不同的是,原型模式是通过拷贝一个现有对象生成新对象的。

如何选择使用创建型模式

继续考虑上面提到的游戏开发场景,假定在这个游戏场景中我们使用到的有墙(Wall),屋子(Room),门(Door)几个部件。在这个过程中,同样是对象的创建问题,但是会根据所要解决的问题不同而使用不同的创建型模式。

如果在游戏中,一个屋子只允许有一个门存在,那么这就是一个使用Signleton模式的例子,确保只有一个Door类的实例被创建。解决的是对象创建个数的问题。

示例代码:

using System;

public sealed class SigletonDoor

{

    static readonly SigletonDoor instance=new SigletonDoor();

    static SigletonDoor()

    {

    }

    public static SigletonDoor Instance

    {

        get

        {

            return instance;

        }

    }

}

在游戏中需要创建墙,屋子的实例时,为了避免直接对构造器的调用而实例化类,这时就是工厂方法模式了,每一个部件都有它自己的工厂类。解决的是“单个对象”的需求变化问题。

示例代码:

using System;

public abstract class Wall

{

    public abstract void Display();

}

public class ModernWall:Wall

{

    public override void Display()

    {

        Console.WriteLine("ModernWall Builded");
    }
}
public abstract class WallFactory
{
    public abstract Wall Create();
}
public class ModernFactory:WallFactory
{
    public override Wall Create()
    {
        return new ModernWall();;
    }
}

在游戏场景中,不可能只有一种墙或屋子,有可能有现代风格(Modern),古典风格(Classical)等多系列风格的部件。这时就是一系列对象的创建问题了,是一个抽象工厂的例子。解决的是“系列对象”的需求变化问题。

示例代码:

using System;

public abstract class Wall

{

    public abstract void Display();

}

public class ModernWall:Wall

{

    public override void Display()

    {

        Console.WriteLine("ModernWall Builded");
    }
}
public class ClassicalWall:Wall
{
    public override void Display()
    {
        Console.WriteLine("ClassicalWall Builded");
    }
}
public abstract class Room
{
    public abstract void Display();
}
 
public class ModernRoom:Room
{
    public override void Display()
    {
        Console.WriteLine("ModernRoom Builded");
    }
}

public class ClassicalRoom:Room
{
    public override void Display()
    {
        Console.WriteLine("ClassicalRoom Builded");
    }
}

public abstract class AbstractFactory
{
    public abstract Wall CreateWall();
    public abstract Room CreateRoom();
}

public class ModernFactory:AbstractFactory
{
    public override Wall CreateWall()
    {
        return new ModernWall();
    }

    public override Room CreateRoom()
    {
        return new ModernRoom();
    }
}

public class ClassicalFactory:AbstractFactory
{
    public override Wall CreateWall()
    {
        return new ClassicalWall();
    }

    public override Room CreateRoom()
    {
        return new ClassicalRoom();
    }
}

如果在游戏场景中,构成某一个场景的算法比较稳定,例如:这个场景就是用四堵墙,一个屋子,一扇门来构成的,但具体是用什么风格的墙、屋子和门则是不停的变化的,这就是一个生成器模式的例子。解决的是“对象部分”的需求变化问题。

示例代码:

using System;

using System.Collections;

public class Director

{

    public void Construct( Builder builder )

    {

        builder.BuildWall();

        builder.BuildRoom();

        builder.BuildDoor();

    }

}

 

public abstract class Builder

{

    public abstract void BuildWall();

    public abstract void BuildRoom();

    public abstract void BuildDoor();

    public abstract GameScene GetResult();

}

 

public class GameBuilder : Builder

{

    private GameScene g;

    public override void BuildWall()

    {

        g = new GameScene();

        g.Add( "Wall" );
    }

    public override void BuildRoom()
    {
        g.Add( "Room" );
    }
    public override void BuildDoor()
    {
        g.Add( "Door" );
    }

    public override GameScene GetResult()
    {
        return g;
    }
}

public class GameScene
{
    ArrayList parts = new ArrayList();
    public void Add( string part )
    {
        parts.Add( part );
    }

    public void Display()
    {
        Console.WriteLine( " GameScene Parts:" );
        foreach( string part in parts )
            Console.WriteLine( part );
    }
}

如果在游戏中,需要大量的古典风格或现代风格的墙或屋子,这时可以通过拷贝一个已有的原型对象来生成新对象,就是一个原型模式的例子了。通过克隆来解决“易变对象”的创建问题。

示例代码:

using System;

 

public abstract class RoomPrototype

{

    public abstract RoomPrototype Clone();

}

 

public class ModernPrototype:RoomPrototype

{

    public override RoomPrototype Clone()

    {

        return (RoomPrototype)this.MemberwiseClone();

    }

}

 

public class ClassicalPrototype:RoomPrototype

{

    public override RoomPrototype Clone()

    {

        return (RoomPrototype)this.MemberwiseClone();

    }

}

究竟选用哪一种模式最好取决于很多的因素。使用Abstract Factory、Prototype Pattern或Builder Pattern的设计比使用Factory Method的设计更加灵活,但是也更加复杂,尤其Abstract Factory需要庞大的工厂类来支持。通常,设计以使用Factory Method开始,并且当设计者发现需要更大的灵活性时,设计便会向其他设计模式演化,当你在多个设计模式之间进行权衡的时候,了解多个设计模式可以给你提供更多的选择余地。

总结

使用创建者模式是为了提高系统的可维护性和可扩展性,提高应对需求变化的能力!

 

   
次浏览       
相关文章

为什么要做持续部署?
剖析“持续交付”:五个核心实践
集成与构建指南
持续集成工具的选择-装载
 
相关文档

持续集成介绍
使用Hudson持续集成
持续集成之-依赖管理
IPD集成产品开发管理
相关课程

配置管理、日构建与持续集成
软件架构设计方法、案例与实践
单元测试、重构及持续集成
基于Android的单元、性能测试
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]

重构-使代码更简洁优美
Visitor Parttern
由表及里看模式
设计模式随笔系列
深入浅出设计模式-介绍
.NET中的设计模式
更多...   

相关培训课程

J2EE设计模式和性能调优
应用模式设计Java企业级应用
设计模式原理与应用
J2EE设计模式指南
单元测试+重构+设计模式
设计模式及其CSharp实现


某电力公司 设计模式原理
蓝拓扑 设计模式原理及应用
卫星导航 UML & OOAD
汤森路透研发中心 UML& OOAD
中达电通 设计模式原理
西门子 嵌入式设计模式
更多...