您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
Spark:用Scala和Java实现WordCount
 
作者:BYRHuangQiang 来源:博客园 发布于 2015-02-27
   次浏览      
 

为了在IDEA中编写scala,今天安装配置学习了IDEA集成开发环境。IDEA确实很优秀,学会之后,用起来很顺手。关于如何搭建scala和IDEA开发环境,请看文末的参考资料。

用Scala和Java实现WordCount,其中Java实现的JavaWordCount是spark自带的例子($SPARK_HOME/examples/src/main/java/org/apache/spark/examples/JavaWordCount.java)

1.环境

OS:Red Hat Enterprise Linux Server release 6.4 (Santiago)

Hadoop:Hadoop 2.4.1

JDK:1.7.0_60

Spark:1.1.0

Scala:2.11.2

集成开发环境:IntelliJ IDEA 13.1.3

注意:需要在客户端windows环境下安装IDEA、Scala、JDK,并且为IDEA下载scala插件。

2.Scala实现单词计数

package com.hq
2
3 /**
4 * User: hadoop
5 * Date: 2014/10/10 0010
6 * Time: 18:59
7 */
8 import org.apache.spark.SparkConf
9 import org.apache.spark.SparkContext
10 import org.apache.spark.SparkContext._
11
12 /**
13 * 统计字符出现次数
14 */
15 object WordCount {
16 def main(args: Array[String]) {
17 if (args.length < 1) {
18 System.err.println("Usage: <file>")
19 System.exit(1)
20 }
21
22 val conf = new SparkConf()
23 val sc = new SparkContext(conf)
24 val line = sc.textFile(args(0))
25
26 line.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect().foreach(println)
27
28 sc.stop()
29 }
30 }

3.Java实现单词计数

1 package com.hq;
2
3 /**
4 * User: hadoop
5 * Date: 2014/10/10 0010
6 * Time: 19:26
7 */
8
9 import org.apache.spark.SparkConf;
10 import org.apache.spark.api.java.JavaPairRDD;
11 import org.apache.spark.api.java.JavaRDD;
12 import org.apache.spark.api.java.JavaSparkContext;
13 import org.apache.spark.api.java.function.FlatMapFunction;
14 import org.apache.spark.api.java.function.Function2;
15 import org.apache.spark.api.java.function.PairFunction;
16 import scala.Tuple2;
17
18 import java.util.Arrays;
19 import java.util.List;
20 import java.util.regex.Pattern;
21
22 public final class JavaWordCount {
23 private static final Pattern SPACE = Pattern.compile(" ");
24
25 public static void main(String[] args) throws Exception {
26
27 if (args.length < 1) {
28 System.err.println("Usage: JavaWordCount <file>");
29 System.exit(1);
30 }
31
32 SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
33 JavaSparkContext ctx = new JavaSparkContext(sparkConf);
34 JavaRDD<String> lines = ctx.textFile(args[0], 1);
35
36 JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
37 @Override
38 public Iterable<String> call(String s) {
39 return Arrays.asList(SPACE.split(s));
40 }
41 });
42
43 JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
44 @Override
45 public Tuple2<String, Integer> call(String s) {
46 return new Tuple2<String, Integer>(s, 1);
47 }
48 });
49
50 JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
51 @Override
52 public Integer call(Integer i1, Integer i2) {
53 return i1 + i2;
54 }
55 });
56
57 List<Tuple2<String, Integer>> output = counts.collect();
58 for (Tuple2<?, ?> tuple : output) {
59 System.out.println(tuple._1() + ": " + tuple._2());
60 }
61 ctx.stop();
62 }
63 }

4.IDEA打包和运行

4.1 IDEA的工程结构

在IDEA中建立Scala工程,并导入spark api编程jar包(spark-assembly-1.1.0-hadoop2.4.0.jar:$SPARK_HOME/lib/里面)

4.2 打成jar包

File ---> Project Structure

配置完成后,在菜单栏中选择Build->Build Artifacts...,然后使用Build等命令打包。打包完成后会在状态栏中显示“Compilation completed successfully...”的信息,去jar包输出路径下查看jar包,如下所示。

ScalaTest1848.jar就是我们编程所产生的jar包,里面包含了三个类HelloWord、WordCount、JavaWordCount。

可以用这个jar包在spark集群里面运行java或者scala的单词计数程序。

4.3 以Spark集群standalone方式运行单词计数

上传jar包到服务器,并放置在/home/ebupt/test/WordCount.jar路径下。

上传一个text文本文件到HDFS作为单词计数的输入文件:hdfs://eb170:8020/user/ebupt/text

内容如下

1 import org apache spark api java JavaPairRDD   
2 import org apache spark api java JavaRDD
3 import org apache spark api java JavaSparkContext
4 import org apache spark api java function FlatMapFunction
5 import org apache spark api java function Function
6 import org apache spark api java function Function2
7 import org apache spark api java function PairFunction
8 import scala Tuple2

用spark-submit命令提交任务运行,具体使用查看:spark-submit --help

1 [ebupt@eb174 bin]$ spark-submit --help
2 Spark assembly has been built with Hive, including Datanucleus jars on classpath
3 Usage: spark-submit [options] <app jar | python file> [app options]
4 Options:
5 --master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
6 --deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
7 on one of the worker machines inside the cluster ("cluster")
8 (Default: client).
9 --class CLASS_NAME Your application's main class (for Java / Scala apps).
10 --name NAME A name of your application.
11 --jars JARS Comma-separated list of local jars to include on the driver
12 and executor classpaths.
13 --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
14 on the PYTHONPATH for Python apps.
15 --files FILES Comma-separated list of files to be placed in the working
16 directory of each executor.
17
18 --conf PROP=VALUE Arbitrary Spark configuration property.
19 --properties-file FILE Path to a file from which to load extra properties. If not
20 specified, this will look for conf/spark-defaults.conf.
21
22 --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 512M).
23 --driver-java-options Extra Java options to pass to the driver.
24 --driver-library-path Extra library path entries to pass to the driver.
25 --driver-class-path Extra class path entries to pass to the driver. Note that
26 jars added with --jars are automatically included in the
27 classpath.
28
29 --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
30
31 --help, -h Show this help message and exit
32 --verbose, -v Print additional debug output
33
34 Spark standalone with cluster deploy mode only:
35 --driver-cores NUM Cores for driver (Default: 1).
36 --supervise If given, restarts the driver on failure.
37
38 Spark standalone and Mesos only:
39 --total-executor-cores NUM Total cores for all executors.
40
41 YARN-only:
42 --executor-cores NUM Number of cores per executor (Default: 1).
43 --queue QUEUE_NAME The YARN queue to submit to (Default: "default").
44 --num-executors NUM Number of executors to launch (Default: 2).
45 --archives ARCHIVES Comma separated list of archives to be extracted into the
46 working directory of each executor.

①提交scala实现的单词计数:

[ebupt@eb174 test]$ spark-submit --master spark://eb174:7077 --name WordCountByscala --class com.hq.WordCount --executor-memory 1G --total-executor-cores 2 ~/test/WordCount.jar hdfs://eb170:8020/user/ebupt/text

②提交java实现的单词计数:

[ebupt@eb174 test]$ spark-submit --master spark://eb174:7077 --name JavaWordCountByHQ --class com.hq.JavaWordCount --executor-memory 1G --total-executor-cores 2 ~/test/WordCount.jar hdfs://eb170:8020/user/ebupt/text

③2者运行结果类似,所以只写了一个:

1 Spark assembly has been built with Hive, including Datanucleus jars on classpath 
2 Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
3 14/10/10 19:24:51 INFO SecurityManager: Changing view acls to: ebupt,
4 14/10/10 19:24:51 INFO SecurityManager: Changing modify acls to: ebupt,
5 14/10/10 19:24:51 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(ebupt, ); users with modify permissions: Set(ebupt, )
6 14/10/10 19:24:52 INFO Slf4jLogger: Slf4jLogger started
7 14/10/10 19:24:52 INFO Remoting: Starting remoting
8 14/10/10 19:24:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@eb174:56344]
9 14/10/10 19:24:52 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@eb174:56344]
10 14/10/10 19:24:52 INFO Utils: Successfully started service 'sparkDriver' on port 56344.
11 14/10/10 19:24:52 INFO SparkEnv: Registering MapOutputTracker
12 14/10/10 19:24:52 INFO SparkEnv: Registering BlockManagerMaster
13 14/10/10 19:24:52 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20141010192452-3398
14 14/10/10 19:24:52 INFO Utils: Successfully started service 'Connection manager for block manager' on port 41110.
15 14/10/10 19:24:52 INFO ConnectionManager: Bound socket to port 41110 with id = ConnectionManagerId(eb174,41110)
16 14/10/10 19:24:52 INFO MemoryStore: MemoryStore started with capacity 265.4 MB
17 14/10/10 19:24:52 INFO BlockManagerMaster: Trying to register BlockManager
18 14/10/10 19:24:52 INFO BlockManagerMasterActor: Registering block manager eb174:41110 with 265.4 MB RAM
19 14/10/10 19:24:52 INFO BlockManagerMaster: Registered BlockManager
20 14/10/10 19:24:52 INFO HttpFileServer: HTTP File server directory is /tmp/spark-8051667e-bfdb-4ecd-8111-52992b16bb13
21 14/10/10 19:24:52 INFO HttpServer: Starting HTTP Server
22 14/10/10 19:24:52 INFO Utils: Successfully started service 'HTTP file server' on port 48233.
23 14/10/10 19:24:53 INFO Utils: Successfully started service 'SparkUI' on port 4040.
24 14/10/10 19:24:53 INFO SparkUI: Started SparkUI at http://eb174:4040
25 14/10/10 19:24:53 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
26 14/10/10 19:24:53 INFO SparkContext: Added JAR file:/home/ebupt/test/WordCountByscala.jar at http://10.1.69.174:48233/jars/WordCountByscala.jar with timestamp 1412940293532
27 14/10/10 19:24:53 INFO AppClient$ClientActor: Connecting to master spark://eb174:7077...
28 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
29 14/10/10 19:24:53 INFO MemoryStore: ensureFreeSpace(163705) called with curMem=0, maxMem=278302556
30 14/10/10 19:24:53 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 159.9 KB, free 265.3 MB)
31 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20141010192453-0009
32 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor added: app-20141010192453-0009/0 on worker-20141008204132-eb176-49618 (eb176:49618) with 1 cores
33 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: Granted executor ID app-20141010192453-0009/0 on hostPort eb176:49618 with 1 cores, 1024.0 MB RAM
34 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor added: app-20141010192453-0009/1 on worker-20141008204132-eb175-56337 (eb175:56337) with 1 cores
35 14/10/10 19:24:53 INFO SparkDeploySchedulerBackend: Granted executor ID app-20141010192453-0009/1 on hostPort eb175:56337 with 1 cores, 1024.0 MB RAM
36 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor updated: app-20141010192453-0009/0 is now RUNNING
37 14/10/10 19:24:53 INFO AppClient$ClientActor: Executor updated: app-20141010192453-0009/1 is now RUNNING
38 14/10/10 19:24:53 INFO MemoryStore: ensureFreeSpace(12633) called with curMem=163705, maxMem=278302556
39 14/10/10 19:24:53 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 12.3 KB, free 265.2 MB)
40 14/10/10 19:24:53 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on eb174:41110 (size: 12.3 KB, free: 265.4 MB)
41 14/10/10 19:24:53 INFO BlockManagerMaster: Updated info of block broadcast_0_piece0
42 14/10/10 19:24:54 INFO FileInputFormat: Total input paths to process : 1
43 14/10/10 19:24:54 INFO SparkContext: Starting job: collect at WordCount.scala:26
44 14/10/10 19:24:54 INFO DAGScheduler: Registering RDD 3 (map at WordCount.scala:26)
45 14/10/10 19:24:54 INFO DAGScheduler: Got job 0 (collect at WordCount.scala:26) with 2 output partitions (allowLocal=false)
46 14/10/10 19:24:54 INFO DAGScheduler: Final stage: Stage 0(collect at WordCount.scala:26)
47 14/10/10 19:24:54 INFO DAGScheduler: Parents of final stage: List(Stage 1)
48 14/10/10 19:24:54 INFO DAGScheduler: Missing parents: List(Stage 1)
49 14/10/10 19:24:54 INFO DAGScheduler: Submitting Stage 1 (MappedRDD[3] at map at WordCount.scala:26), which has no missing parents
50 14/10/10 19:24:54 INFO MemoryStore: ensureFreeSpace(3400) called with curMem=176338, maxMem=278302556
51 14/10/10 19:24:54 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.3 KB, free 265.2 MB)
52 14/10/10 19:24:54 INFO MemoryStore: ensureFreeSpace(2082) called with curMem=179738, maxMem=278302556
53 14/10/10 19:24:54 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.0 KB, free 265.2 MB)
54 14/10/10 19:24:54 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on eb174:41110 (size: 2.0 KB, free: 265.4 MB)
55 14/10/10 19:24:54 INFO BlockManagerMaster: Updated info of block broadcast_1_piece0
56 14/10/10 19:24:54 INFO DAGScheduler: Submitting 2 missing tasks from Stage 1 (MappedRDD[3] at map at WordCount.scala:26)
57 14/10/10 19:24:54 INFO TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
58 14/10/10 19:24:56 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@eb176:35482/user/Executor#1456950111] with ID 0
59 14/10/10 19:24:56 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 0, eb176, ANY, 1238 bytes)
60 14/10/10 19:24:56 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@eb175:35502/user/Executor#-1231100997] with ID 1
61 14/10/10 19:24:56 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 1, eb175, ANY, 1238 bytes)
62 14/10/10 19:24:56 INFO BlockManagerMasterActor: Registering block manager eb176:33296 with 530.3 MB RAM
63 14/10/10 19:24:56 INFO BlockManagerMasterActor: Registering block manager eb175:32903 with 530.3 MB RAM
64 14/10/10 19:24:57 INFO ConnectionManager: Accepted connection from [eb176/10.1.69.176:39218]
65 14/10/10 19:24:57 INFO ConnectionManager: Accepted connection from [eb175/10.1.69.175:55227]
66 14/10/10 19:24:57 INFO SendingConnection: Initiating connection to [eb176/10.1.69.176:33296]
67 14/10/10 19:24:57 INFO SendingConnection: Initiating connection to [eb175/10.1.69.175:32903]
68 14/10/10 19:24:57 INFO SendingConnection: Connected to [eb175/10.1.69.175:32903], 1 messages pending
69 14/10/10 19:24:57 INFO SendingConnection: Connected to [eb176/10.1.69.176:33296], 1 messages pending
70 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on eb175:32903 (size: 2.0 KB, free: 530.3 MB)
71 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on eb176:33296 (size: 2.0 KB, free: 530.3 MB)
72 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on eb176:33296 (size: 12.3 KB, free: 530.3 MB)
73 14/10/10 19:24:57 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on eb175:32903 (size: 12.3 KB, free: 530.3 MB)
74 14/10/10 19:24:58 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 1) in 1697 ms on eb175 (1/2)
75 14/10/10 19:24:58 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 0) in 1715 ms on eb176 (2/2)
76 14/10/10 19:24:58 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
77 14/10/10 19:24:58 INFO DAGScheduler: Stage 1 (map at WordCount.scala:26) finished in 3.593 s
78 14/10/10 19:24:58 INFO DAGScheduler: looking for newly runnable stages
79 14/10/10 19:24:58 INFO DAGScheduler: running: Set()
80 14/10/10 19:24:58 INFO DAGScheduler: waiting: Set(Stage 0)
81 14/10/10 19:24:58 INFO DAGScheduler: failed: Set()
82 14/10/10 19:24:58 INFO DAGScheduler: Missing parents for Stage 0: List()
83 14/10/10 19:24:58 INFO DAGScheduler: Submitting Stage 0 (ShuffledRDD[4] at reduceByKey at WordCount.scala:26), which is now runnable
84 14/10/10 19:24:58 INFO MemoryStore: ensureFreeSpace(2096) called with curMem=181820, maxMem=278302556
85 14/10/10 19:24:58 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.0 KB, free 265.2 MB)
86 14/10/10 19:24:58 INFO MemoryStore: ensureFreeSpace(1338) called with curMem=183916, maxMem=278302556
87 14/10/10 19:24:58 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 1338.0 B, free 265.2 MB)
88 14/10/10 19:24:58 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on eb174:41110 (size: 1338.0 B, free: 265.4 MB)
89 14/10/10 19:24:58 INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
90 14/10/10 19:24:58 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (ShuffledRDD[4] at reduceByKey at WordCount.scala:26)
91 14/10/10 19:24:58 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
92 14/10/10 19:24:58 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 2, eb175, PROCESS_LOCAL, 1008 bytes)
93 14/10/10 19:24:58 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 3, eb176, PROCESS_LOCAL, 1008 bytes)
94 14/10/10 19:24:58 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on eb175:32903 (size: 1338.0 B, free: 530.3 MB)
95 14/10/10 19:24:58 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on eb176:33296 (size: 1338.0 B, free: 530.3 MB)
96 14/10/10 19:24:58 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to sparkExecutor@eb175:59119
97 14/10/10 19:24:58 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 144 bytes
98 14/10/10 19:24:58 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to sparkExecutor@eb176:39028
99 14/10/10 19:24:58 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 3) in 109 ms on eb176 (1/2)
100 14/10/10 19:24:58 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 2) in 120 ms on eb175 (2/2)
101 14/10/10 19:24:58 INFO DAGScheduler: Stage 0 (collect at WordCount.scala:26) finished in 0.123 s
102 14/10/10 19:24:58 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
103 14/10/10 19:24:58 INFO SparkContext: Job finished: collect at WordCount.scala:26, took 3.815637915 s
104 (scala,1)
105 (Function2,1)
106 (JavaSparkContext,1)
107 (JavaRDD,1)
108 (Tuple2,1)
109 (,1)
110 (org,7)
111 (apache,7)
112 (JavaPairRDD,1)
113 (java,7)
114 (function,4)
115 (api,7)
116 (Function,1)
117 (PairFunction,1)
118 (spark,7)
119 (FlatMapFunction,1)
120 (import,8)
121 14/10/10 19:24:58 INFO SparkUI: Stopped Spark web UI at http://eb174:4040
122 14/10/10 19:24:58 INFO DAGScheduler: Stopping DAGScheduler
123 14/10/10 19:24:58 INFO SparkDeploySchedulerBackend: Shutting down all executors
124 14/10/10 19:24:58 INFO SparkDeploySchedulerBackend: Asking each executor to shut down
125 14/10/10 19:24:58 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb176,33296)
126 14/10/10 19:24:58 INFO ConnectionManager: Removing ReceivingConnection to ConnectionManagerId(eb176,33296)
127 14/10/10 19:24:58 ERROR ConnectionManager: Corresponding SendingConnection to ConnectionManagerId(eb176,33296) not found
128 14/10/10 19:24:58 INFO ConnectionManager: Removing ReceivingConnection to ConnectionManagerId(eb175,32903)
129 14/10/10 19:24:58 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb175,32903)
130 14/10/10 19:24:58 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb175,32903)
131 14/10/10 19:24:58 INFO ConnectionManager: Key not valid ? sun.nio.ch.SelectionKeyImpl@5e92c11b
132 14/10/10 19:24:58 INFO ConnectionManager: key already cancelled ? sun.nio.ch.SelectionKeyImpl@5e92c11b
133 java.nio.channels.CancelledKeyException
134 at org.apache.spark.network.ConnectionManager.run(ConnectionManager.scala:310)
135 at org.apache.spark.network.ConnectionManager$$anon$4.run(ConnectionManager.scala:139)
136 14/10/10 19:24:59 INFO MapOutputTrackerMasterActor: MapOutputTrackerActor stopped!
137 14/10/10 19:24:59 INFO ConnectionManager: Selector thread was interrupted!
138 14/10/10 19:24:59 INFO ConnectionManager: Removing ReceivingConnection to ConnectionManagerId(eb176,33296)
139 14/10/10 19:24:59 ERROR ConnectionManager: Corresponding SendingConnection to ConnectionManagerId(eb176,33296) not found
140 14/10/10 19:24:59 INFO ConnectionManager: Removing SendingConnection to ConnectionManagerId(eb176,33296)
141 14/10/10 19:24:59 WARN ConnectionManager: All connections not cleaned up
142 14/10/10 19:24:59 INFO ConnectionManager: ConnectionManager stopped
143 14/10/10 19:24:59 INFO MemoryStore: MemoryStore cleared
144 14/10/10 19:24:59 INFO BlockManager: BlockManager stopped
145 14/10/10 19:24:59 INFO BlockManagerMaster: BlockManagerMaster stopped
146 14/10/10 19:24:59 INFO SparkContext: Successfully stopped SparkContext
147 14/10/10 19:24:59 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
148 14/10/10 19:24:59 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
149 14/10/10 19:24:59 INFO Remoting: Remoting shut down
150 14/10/10 19:24:59 INFO RemoteActorRefProvider$RemotingTerminator: Remoting shut down.

 

   
次浏览       
 
相关文章

云计算的架构
对云计算服务模型
云计算核心技术剖析
了解云计算的漏洞
 
相关文档

云计算简介
云计算简介与云安全
下一代网络计算--云计算
软浅析云计算
 
相关课程

云计算原理与应用
云计算应用与开发
CMMI体系与实践
基于CMMI标准的软件质量保证
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]

专家视角看IT与架构
软件架构设计
面向服务体系架构和业务组件的思考
人人网移动开发架构
架构腐化之谜
谈平台即服务PaaS
更多...   
相关培训课程

云计算原理与应用
Windows Azure 云计算应用

摩托罗拉 云平台的构建与应用
通用公司GE Docker原理与实践
某研发中心 Openstack实践
知名电子公司 云平台架构与应用
某电力行业 基于云平台构建云服务
云计算与Windows Azure培训
北京 云计算原理与应用