您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
技术分享:新浪SCE的Docker实践经验
 
作者:wangzi19870227 来源:CSDN 发布于 2015-7-15
   次浏览      
 

本文主要从IaaS视角,分享SCE通过怎样的实践来支持上层产品线的容器化诉求。首先聊聊我们为什么做支持Docker技术这件事情,然后介绍下Docker支持实践的方方面面。最后给出实践过程中总结出来的一些经验及踩过的一些坑,以及后续需要深耕的点。

先假定今晚的听众至少已经小范围使用过Docker技术,熟悉相关概念及原理。

前几期DockOne技术分享已经针对Docker的几个技术要点做了深入分析,所以我今晚主要从IaaS视角,分享SCE通过怎样的实践来支持上层产品线的容器化诉求。

为何支持Docker技术

为何做这件事

先介绍下我浪SCE。SCE是新浪研发中心主推私有云产品,已经覆盖到公司内部所有产品线。基于OpenStack定制,整合了公司通道机、CMDB,为公司内部全产品线提供IaaS服务。公有云版本近期开始内测。

首先,OpenStack与Docker天生互补。

1.OpenStack面向IaaS,以资源为中心,打包OS;能够提供成熟的资源限制与隔离能力;多OS系列支持;

2.Docker则面向PaaS,以服务为中心,打包service;轻快好省;

目前IaaS业界主要以提供云主机服务为主,有着成熟的资源限制、资源隔离能力,但本质上是对OS的打包,无法满足在应对峰值访问、快速伸缩、快速部署等方面诉求。而docker与生俱来的特性”轻、快、好、省“,则恰恰可以弥补IaaS在此方面的不足。当然OpenStack社区为了能够更好的支持docker也尝试做了很多努力,这个后面会讲到。

其次,SCE运维过程发现,产品线对容器技术需求相当旺盛。

1.快速部署;

2.快速起停、创建与销毁;

3.一致的开发测试环境;

4.演示、试用环境;

5.解决设备成本,充分利用资源;

6.技术方案快速验证;

7.更多......

IaaS短板+需求驱动,让我们意识到:SCE很有必要也很适合做支持容器技术这件事。

IaaS厂商Docker支持概况

调研分析了几个IaaS圈子比较有代表性的巨头及新贵,从调研结果可以看出,目前IaaS厂商对Docker的支持还比较薄弱。

只有阿里云为Docker用户多做了一些事情,提供了阿里官方Registry。但没有提供较新的支持Docker的云主机,只有一个第三方提供了一个很老的镜像,几乎没有可用性。

UnitedStack和青云只提供了CoreOS。而实际上,CoreOS的用户接受度很低。我们SCE也尝试过提供CoreOS,但由于和公司CentOS系统使用方式差异太大,基本没有产品线愿意使用并迁移到CoreOS上面来。

Docker支持实践的方方面面

基于以上需求及调研,SCE主要在Registry、Hub、支持Docker的虚拟机镜像、日志存储与检索、网络及存储驱动等方面做了一些实践,致力于让产品线用户更方便高效的使用Docker技术,推动Docker在公司内的使用。

Registry+Hub方案

Registry后端存储方案方面,其实大家已分享较多,大多是用dev及s3。SCE当然使用自家新浪 S3了,当时的第一个方案就是Docker Registry sinastorage driver + sina s3。可靠性性自然不用多言,但由于依赖storage driver,追查问题过程中,调试及维护都比较麻烦,并且更新后还需要自动构建新镜像。

既然自家提供可靠云硬盘,为什么不为自己提供服务呢。果断将忍了老鼻子时间的方案一改为了localstorage + SCE云硬盘,不再依赖driver的日子舒服多了,另外还能享受到云硬盘的snapshot、resize等高级特性。

所以,对于正在Registry storage backend选型的朋友,给出一些建议以供参考:

对镜像存储可靠性无要求的使用场景,建议直接使用dev;

对镜像存储可靠性要求较高的使用场景,如果你是在IaaS上跑,强烈建议使用localstorage + 云硬盘方案;

对镜像存储可靠性要求较高的使用场景,如果你没在IaaS上跑,可以拿点大洋出来用S3等;

对镜像存储可靠性要求较高的使用场景,如果你没在IaaS上跑,又不想花钱,想用自家存储,就只能写个自家的driver了。我才不会告诉你,这种情况排查问题有多么糟心。

为了给产品线提供便捷的镜像查看及检索服务,SCE与微博平台合作,共同推出了SCE docker hub,基于docker-registry-frontend开发实现。与SCE现有服务打通,并支持repo、tag、详细信息、 Dockerfile的查看、检索与管理等。

为了产品线更方便使用Docker官方镜像,我们的自动同步工具会依据镜像注册表,周期性的自动同步Docker官方镜像到SCE分布式后端存储集群,使得产品线用户可以通过内网快速pull到Docker官方镜像。

由于SCE不保证也不可能保证Docker Hub官方镜像的安全性,所以建议产品线最好使用SCE官方发布的image或构建自己的baseimage。

对于产品线私有Registry的需求,SCE也提供了相应的一键构建工具集。

CentOS 7 + Docker镜像

SCE在Docker支持方面主要做了如下一些工作:

1)集成Docker 1.5、Docker-Compose 1.2环境;

2)提供docker-ip、docker-pid、docker-enter等cli,简化用户使用;

3)与DIP合作,支持rsyslog-kafka,解决日志监控检索问题;

4)与微博平台合作,提供muti-if-adapter工具,解决同一主宿机相同服务端口冲突的问题;

5) 更多......

SCE上使用Docker

有了如上工作支撑,在SCE上使用docker就变得相当便捷。

日志方案

目前SCE主要支持3中日志方案:

1.app打container logfile;

2.app打stdout,stderr;

3.app+agent打远端;

前两种方案适用于对日志要求不高的使用场景,如开发测试。

第三种方案则适用于真实的业务场景、生产环境,这些场景对日志持久化、检索、监控、告警等方面都有较强需求;

Docker 1.6的syslog driver目前可用性、易用性都还不太理想,但值得关注。

app+rsyslog-kafka方案

上面提到的第三种日志方案,我们是通过ELK方案实现的。

架构图

日志流

app >>> container rsyslog-kafka >>> kafka >>> logstash >>> elasticsearch >>> kibana

业务流

1.产品线走DIP实时日志分析服务接入;

DIP审批;

config_web基于Docker Swarm api动态扩展logstash集群;

2. 给出用户接入所需数据,如Kafka broker、topic;

产品线依据接入数据创建container;

1)

docker run -d -e KAFKA_ADDR=... -e KAFKA_TOPIC=... -e LOG_FILE=... -v
 $(pwd)/kafka_config.sh:${SOME_DIR}/kafka_config.sh ...

2)遵守SCE log接入规范,container中的run.sh需要调用SCE提供给的日志配置工具docker/tools/rsyslog_config.sh;

3) rsyslog_config.sh会按需自动配置rsyslog,接入过程及细节对产品线透明;

网络模式

目前产品线大多使用的还是bridge和host,虽然这两种模式都存在一些问题。

两者虽存在一些问题,但还是能够满足中小规模集群网络需求的。

但规模上来后,上面两种模式就不适用了。对于大规模网络解决方案,我们后续将积极跟进,主要计划调研ovs/weave/Flannel等方案。

Libnetwork driver除了平移过来的bridge、host、null,还提供了remote,以支持分布式bridge;后续计划提供更多driver以解决目前的网络问题,值得重点关注。

另外,对于产品线提出的一些有意义的需求,如微博平台提出的“同一主宿机相同服务端口冲突的问题”,SCE会和产品线一道积极探索相应的解决方案;

存储驱动选型

这部分主要是开始时,存储驱动方案选型的一些考虑。

aufs。Docker最初采用的文件系统,一直没能合入内核,因此兼容性差,仅有Ubuntu支持。需要用户自己编译,使用起来比较麻烦;

btrfs。数据并没有直接被写入而是先是被写入到日志,在有连续地写入流的情况下,性能可能会折半;

overlayfs。一种新的unionfs,但对内核版本要求太高,需要kernel 3.18+;

devicemapper。默认driver。可以说是目前一般情况下的最优方案了。SCE就是采用此driver。

devicemapper相关的一些实践及坑会在稍后提到。

集群管理

目前SCE主要推荐3个集群管理工具:Shipyard、Swarm、Kubernetes。

Shipyard

支持跨主机的container集群管理

轻量级,学习成本低

支持简单的资源调度

支持GUI图表展示

支持实例横向扩展

Swarm

Docker官方主推的集群管理方案

相对轻量级,学习成本较低

支持多discovery backend

丰富的资源调度Filter

Rest API,完全兼容Docker API

尚有一些坑

目前产品线最易接受,且使用率最多的方案

Kubernetes

Google Borg/Omega开源实现

更新迭代太块,架构及实现相对复杂,学习成本、改造成本较高

资源调度

扩容缩容

故障自动恢复

多实例负载均衡

对OpenStack支持较好

跟进中

三者各有优劣,具体使用哪个工具还是需要依据具体的业务需要而定,而并不是说Kubernetes强大就一定是好的。

根据目前产品线使用及反馈来看,swarm还是更容易被接收一些。

与OpenStack集成进展

接下来,我们是IaaS,所以必须要说一下与OpenStack集成进展。如何与OpenStack更好的集成,充分发挥两者优势,是我们一直关注的一个点。

目前主要有三种方案:

1.nova + docker driver;

2.heat + docker driver;

3.magnum;

Nova driver及heat driver两种方案,都存在一些硬伤。如nova driver方案把container当作VM处理,会牺牲掉Docker的所有高级特性,这显然是不能被接收的;又如heat driver方案,没有资源调度,创建时必须要指定host,这显然只能适用于小微规模。

OpenStack社区本年初终于开始发力CaaS新项目magnum。通过集成Heat,来支持使用Docker的高级功能;可以集成 Swarm、Gantt或Mesos,实现Docker集群资源调度(现计划是使用swarm做调度);Magnum还将与Kubernetes深度整合。

Magnum已找准此前两种解决方案的痛点,并正在用恰当的方式解决此问题。非常值得跟进。

另外,此次温哥华OpenStack Summit上,OpenStack基金会除了还表示将积极推进Magnum子项目,在技术上实现容器与OpenStack的深度整合。

实践经验&踩过的坑

下面介绍的内容,大多是产品线问到的,以及SCE在Docker实践过程中总结出来的经验教训,都已文档化到SCE官方Docker wiki。从SCE Docker wiki里摘取了一些实践经验&踩过的坑,想必大家或多或少已经实践过或踩过。如果还没遇到这些问题,希望我们的这些经验总结能对你有所帮助。

镜像制作方面

建议用Dockerfile build镜像,镜像文档化;

Dockerfile中,value千万别加""。因为docker会把你的""作为value的一部分;

最小化镜像大小,分层设计,尽量复用;

运行容器方面

一容器一进程,便于服务监控与资源隔离;

不建议用latest

对于提供服务的container,建议养成加--restart的习惯

数据存放方面

建议采用volume挂载方式

不依赖host目录,便于共享与迁移;

资源限制方面

cgroup允许进程超限使用,即:在有空余资源的情况下,允许使用超出资源限制的更多资源。

cgroup仅在必要时(资源不足时)限制资源使用,比如:当若干进程同时大量地使用CPU。

cpu share enforcement仅会在多个进程运行在相同核上的情况下发生。也就是说,即使你机器上的两个container cpu限制不同,如果你把一个container绑定在core1,而把另外一个container绑定在core2,那么这两个container都能打满各自的核。

资源隔离方面

user ns是通过将container的uid、gid映射为node上的uid、gid来实现user隔离的;

也就是说,你在node上只能看到container的uid,而看不到uname,除非这个uid在container和node上的uname相同;

也就是说,你在node上看到的container上的进程的所属用户的uname不一定是container上运行这个进程的uname,但uid一定是container上运行这个进程的uid;

swarm & compose使用方面

注意swarm strategies尚不成熟,binpack strategy实现存在一些问题,会导致最后调度出来的node不是你预期的。

注意compose尚不成熟,可能会遇到单个启container没问题,放到compose启就失败的问题。如:部署启动时间依赖性强的容器很可能会导致失败;

container方面

注意dm默认pool及container存储空间大小问题。container默认10G,pool默认100G,你可能需要通过dm.basesize、dm.loopdatasize按需扩容;

注意nsenter进容器,看不到配置在container里的env变量;查看env建议用docker exec或docker inspect;

注意docker daemon、docker daemon的default-ulimit和docker run的ulimit三者间的继承关系;

由于篇幅所限,这里就不再过多列举。

   
次浏览       
 
相关文章

云计算的架构
对云计算服务模型
云计算核心技术剖析
了解云计算的漏洞
 
相关文档

云计算简介
云计算简介与云安全
下一代网络计算--云计算
软浅析云计算
 
相关课程

云计算原理与应用
云计算应用与开发
CMMI体系与实践
基于CMMI标准的软件质量保证
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]

专家视角看IT与架构
软件架构设计
面向服务体系架构和业务组件的思考
人人网移动开发架构
架构腐化之谜
谈平台即服务PaaS
更多...   
相关培训课程

云计算原理与应用
Windows Azure 云计算应用

摩托罗拉 云平台的构建与应用
通用公司GE Docker原理与实践
某研发中心 Openstack实践
知名电子公司 云平台架构与应用
某电力行业 基于云平台构建云服务
云计算与Windows Azure培训
北京 云计算原理与应用