编辑推荐: |
本文主要讲解了Qunar 容器化发展时间线、落地过程与实践、容器化落地过程中碰到的问题及对未来的展望。
本文来自于微信公众号青云技术社区,由Linda编辑、推荐。 |
|
背景
近几年,云原生和容器技术非常火爆,且日趋成熟,众多企业慢慢开始容器化建设,并在云原生技术方向上不断的探索和实践。基于这个大的趋势,
2020 年底 Qunar 也向云原生迈出了第一步——容器化。
云原生是一系列可以为业务赋能的技术架构准则,遵循它可以使应用具有扩展性、伸缩性、移植性、韧性等特点。云原生也是下一代技术栈的必选项,它可以让业务更敏捷。通过实践
DevOps、微服务、容器化、可观测性、反脆弱性(chaos engineering)、ServiceMesh、Serverless
等云原生技术栈,我们便可以享受到云原生带来的技术红利。
Qunar 容器化发展时间线
一项新技术要在企业内部落地从来都不是一蹴而就的,Qunar 的容器化落地也同样如此。Qunar 的容器后落地主要经历了
4 个时间节点:
2014 - 2015:
业务线同学开始尝试通过 Docker、Docker-Compose 来解决联调环境搭建困难的问题,不过由于
Docker-Compose 的编排能力有限、无法解决真实的环境问题,因此容器化最后也没有推行起来。
2015 - 2017:
ops 团队把为了提高 ELK 集群的运维效率,把 ES 集群迁移到了 Mesos 平台上。后来随着
K8s 生态的成熟,把 ES 集群从 Mesos 迁移到了 K8s 平台,运维效率得到了进一步的提升。
2018 - 2019:
在业务需求不断增加的过程中,业务对测试环境的交付速度和质量有了更高的要求,为了解决 MySQL 的交付效率问题(
并发量大时,网络 IO 成为了瓶颈,导致单个实例交付时长在分钟级),为了解这个问题,我们把 MySQL
容器化,通过 Docker on host 的模式可以在 10 秒之内就可以交付一个 MySQL 实例。
2020 - 2021:
云原生技术已经非常成熟了,Qunar 也决定通过拥抱云原生来为业务增加势能。在各个团队齐心协力的努力下,300+
的 P1、P2 应用已经完成了容器化,并且计划在 2021 年年底全部业务应用实现容器化。
落地过程与实践
容器化整体方案介绍
Qunar 在做容器化过程中,各个系统 Portal 平台、中间件、ops 基础设施、监控等都做了相应的适配改造,改造后的架构矩阵如下图所示。
Portal:Qunar 的 PaaS 平台入口,提供 CI/CD 能力、资源管理、自助运维、应用画像、应用授权(db
授权、支付授权、应用间授权)等功能。
运维工具:提供应用的可观测性工具, 包括 watcher(监控和报警)、bistoury (Java
应用在线 Debug)、qtrace(tracing 系统)、loki/elk(提供实时日志/离线日志查看)。
中间件:应用用到的所有中间件,mq、配置中心、分布式调度系统 qschedule、dubbo 、mysql
sdk 等。
虚拟化集群:底层的 K8s 和 OpenStack 集群。
Noah:测试环境管理平台,支持应用 KVM/容器混合部署。
CI/CD 流程改造
CI/CD 改造前
CI/CD 改造后
主要改造点:
应用画像: 把应用相关的运行时配置、白名单配置、发布参数等收敛到一起,为容器发布提供统一的声明式配置。
授权系统: 应用所有的授权操作都通过一个入口进行,并实现自动化的授权。
K8s 多集群方案: 通过调研对比,KubeSphere 对运维优化、压测评估后也满足我们对性能的要求,最终我们选取了
KubeSphere 作为多集群方案。
中间件适配改造
改造关注点:由于容器化后,IP 经常变化是常态,所以各个公共组件和中间件要适配和接受这种变化。
应用平滑迁移方案设计
为了帮助业务快速平滑地迁移到容器,我们制定了一些规范和自动化测试验证等操作来实现这个目标。
容器化的前置条件: 应用无状态、不存在 post_offline hook(服务下线后执行的脚本)、check_url
中不存在预热操作。
测试环境验证: 自动升级 SDK、自动迁移。我们会在编译阶段帮助业务自动升级和更改 pom 文件来完成
SDK 的升级,并在测试环境部署和验证,如果升级失败会通知用户并提示。
线上验证: 第一步线上发布,但不接线上流量,然后通过自动化测试验证,验证通过后接入线上流量。
线上 KVM 与容器混部署:保险起见,线上的容器和 KVM 会同时在线一段时间,等验证期过后再逐步下线
KVM。
线上全量发布: 确认服务没问题后,下线 KVM。
观察: 观察一段时间,如果没有问题则回收 KVM。
容器化落地过程中碰到的问题
如何兼容过去 KVM 的使用方式,并支持 preStart、preOnline hook 自定义脚本?
KVM 场景中 hook 脚本使用场景介绍:
preStart hook : 用户在这个脚本中会自定义命令,比如环境准备。
preOnline hook:用户会定义一些数据预热操作等,这个动作需要在应用 checkurl
通过并且接入流量前执行。
问题点:
K8s 原生只提供了 preStop、postStart 2 种 hook, 它们的执行时机没有满足上述
2 个 KVM 场景下业务用到的 hook。
分析与解决过程:
preStart hook:在 entrypoint 中注入 preStart hook 阶段,容器启动过程中发现有自定义的
preStart 脚本则执行该脚本,至于这个脚本的位置目前规范是定义在代码指定目录下。
preOnline hook:由于 preOnline 脚本执行时机是在应用 checkurl 通过后,而应用容器是单进程,所以在应用容器中执行这个是行不通的。而
postStart hook 的设计就是异步的,与应用容器的启动也是解耦的, 所以我们初步的方案选择了
postStart hook 做这个事情。实施方案是 postStart hook 执行后会不断轮询应用的健康状态,如果健康检测
checkurl 通过了, 则执行 preOnline 脚本。脚本成功后则进行上线操作, 即在应用目录下创建
healthcheck.html 文件,OpenResty 和中间件发现这个文件后就会把流量接入到这个实例中。
按照上面的方案,Pod 的组成设计如下:
发布过程读不到标准输入输出
场景介绍:
在容器发布过程中如果应用启动失败,我们通过 K8s API 是拿不到实时的标准输入输出流,只能等到发布设置的超时阈值,这个过程中发布人员心里是很焦急的,因为不确定发生了什么。如下图所示,部署过程中应用的更新工作流中什么都看不到。
问题点:
K8s API 为什么拿不到标准输入输出?
分析与解决过程:
通过 kubectl logs 查看当时的 Pod 日志,什么都没有拿到,超时时间过后才拿到。说明问题不在程序本身,而是在
K8s 的机制上;
查看 postStart Hook 的相关文档,有一段介绍提到了 postHook 如果执行时间长或者
hang 住,容器的状态也会 hang 住,不会进入 running 状态, 看到这条信息,大概猜测到罪魁祸首就是这个
postStart hook 了。
基于上面的猜测,把 postStart hook 去掉后测试,应用容器的标准输入可以实时拿到了。
找到问题后,解决方法也就简单了,把 postStart hook 中实现的功能放到 Sidecar
中就可以解决。至于 Sidecar 如何在应用容器的目录中创建 healthcheck.html 文件,就需要用到共享卷了。新的方案设计如下:
使用上述方案后,发布流程的标准输入输出、自定义 hook 脚本的输出、Pod 事件等都是实时可见的了,
发布过程更透明了。
并发拉取镜像超时
场景介绍:
我们的应用是多机房多集群部署的,当一个应用的新版本发布时,由于应用的实例数较多,有 50+ 个并发从
harbor 拉取镜像时,其中一些任务收到了镜像拉取超时的报错信息,进而导致整个发布任务失败。超时时间是
kubelet 默认设置的 1 分钟。
分析与解决:
通过排查最终确认是 harbor 在并发拉取镜像时存在性能问题,我们采取的优化方案是通用的 p2p
方案,DragonFly + Harbor。
并发大时授权接口抗不住
场景介绍:
应用发布过程中调用授权接口失败,K8s 的自愈机制会不断重建容器并重新授权,并发量比较大,最终把授权服务拖垮。
我们的容器授权方案如下:
Pod init 容器启动时进行调研授权接口进行授权操作,包括 ACL 和 mysql 的白名单。
容器销毁时会执行 Sidecar 容器的 preStop hook 中执行权限回收操作。
问题点:
ACL 授权接口涉及到了防火墙,QPS 比较低,大量容器进行 ACL 授权时把服务拖垮 。
分析与解决:
为了解决上述的问题,限量和降低授权接口调用次数是有效的解决方式。我们采取了下面几个措施:
init 容器中的重试次数限制为 1 次。
授权接口按应用和 IP 限流, 超过 3 次则直接返回失败,不会再进行授权操作。
ACL 中涉及的一些通用的端口,我们统一做了白名单,应用无需再进行授权操作。
Java 应用在容器场景下如何支持远程 Debug
KVM 场景 Debug 介绍:
在开发 Java 应用的过程中,通过远程 Debug 可以快速排查定位问题,因此是开发人员必不可少的一个功能。Debug
具体流程: 开发人员在 Noah 环境管理平台的界面点击开启 Debug, Noah 会自动为该 Java
应用配置上 Debug 选项,-Xdebug -Xrunjdwp: transport=dt_socket,
server=y, suspend=n, address=127.0.0.1:50005,并重启该
Java 应用,之后开发人员就可以在 IDE 中配置远程 Debug 并进入调试模式了。
容器场景的 Debug 方案:
测试环境的 Java 应用默认开启 Debug 模式,这样也避免了更改 Debug 重建 Pod
的过程,速度从 KVM 的分钟级到现在的秒级。当用户想开启 Debug 时,Noah 会调用 K8s
exec 接口执行 socat 相关命令进行端口映射转发,让开发人员可以通过 socat 开的代理连接到
Java 应用的 Debug 端口。
问题点:
容器场景下在用户 Debug 过程中,当请求走到了设置的断点后,Debug 功能失效。
分析与解决过程:
复现容器场景下 Debug,观察该 Pod 的各项指标,发现 Debug 功能失效的时候系统收到了一个
liveness probe failed,kill pod 的事件。根据这个事件可以判断出当时 liveness
check 失败,应用容器才被 kill 的,应用容器重启代理进程也就随之消失了,Debug 也就失效了。
关于 Debug 过程 checkurl 为什么失败的问题,得到的答案是 Debug 时当请求走到断点时,整个
JVM 是 hang 住的,这个时候任何请求过来也会被 hang 住,当然也包括 checkurl,于是我们也特地在
KVM 场景和容器场景分布做了测试,结果也确实是这样的。
临时解决方案是把断点的阻断级别改为线程级的,这样就不会阻断 checkurl 了, idea 中默认的选项是
Suspend All,改为 Suspend Thread 即可。不过这个也不是最优解,因为这个需要用户手工配置阻断级别,有认知学习成本。
回到最初的问题上,为什么容器场景下遇到这个问题,而 KVM 没有,主要是因为容器场景 K8s 提供了自愈能力,K8s
会定时执行 liveness check, 当失败次数达到指定的阈值时,K8s 会 kill 掉容器并重新拉起一个新的容器。
那我们只好从 K8s 的 liveness 探针上着手了,探针默认支持 exec、tcp 、httpGet
3 种模式,当前使用的是 httpGet,这种方式只支持一个 url, 无法满足这个场景需求。经过组内讨论,
最后大家决定用这个表达式 (checkurl == 200) || (socat process &&
java process alive) 在作为应用的 liveness 检测方式,当 Debug 走到断点的时候,
应用容器就不会阻断了, 完美的解决了这个问题。
以上就是我们落地容器化过程中遇到的几个问题与我们的解决思路。其中很重要的一点是从 KVM 迁移到容器时需要考虑用户的使用习惯、历史功能兼容等要点,要做好兼容和取舍,只有这样容器化落地才会更顺畅。
未来展望
多集群稳定性治理
让可观测性数据更全面、覆盖度更广,进而完善我们的 APM 系统,提升排查问题效率。
通过实施混沌工程来验证、发现和消除容器化场景的稳定性盲区。
提高资源利用率
根据业务指标实现弹性扩缩容。
根据应用的历史数据智能的调整 requests。
ServiceMesh 方案落地
我们是基于 Istio 和 MOSN 以及当前的基础架构做的 mesh 方案,目前在测试阶段,这套方案落地后相信会让基础架构更敏捷。 |