简介:?本 系列 的 用 Hadoop 进行分布式数据处理,第 1 部分:入门 展示了如何在一个单节点集群中使用 Hadoop。本文在此基础之上继续介绍一个更加高级的设置,即使用多个节点进行并行处理。展示了多节点集群所需的各种节点类型,并探讨了一个并行环境中 的 MapReduce 功能。本文还深入探究了 Hadoop 的管理方面 — 同时基于命令行和 Web。
Hadoop 分布式计算架构的真正实力在于其分布性。换句话说,向工作并行分布多个节点的能力使 Hadoop 能够应用于大型基础设施以及大量数据的处理。本文首先对一个分布式 Hadoop 架构进行分解,然后探讨分布式配置和使用。
分布式 Hadoop 架构
根据 用 Hadoop 进行分布式数据处理,第 1 部分:入门,所有 Hadoop 守护进程都在同一个主机上运行。尽管不运用 Hadoop 的并行性,这个伪分布式配置提供一种简单的方式来以最少的设置测试 Hadoop 的功能。现在,让我们使用机器集群探讨一下 Hadoop 的并行性。
根据第 1 部分,Hadoop 配置定义了让所有 Hadoop 守护进程在一个节点上运行。因此,让我们首先看一下如何自然分布 Hadoop 来执行并行操作。在一个分布式 Hadoop 设置中,您有一个主节点和一些从节点(见图 1)。
图 1. Hadoop 主从节点分解
如图 1 所示,主节点包括名称节点、从属名称节点和 jobtracker 守护进程(即所谓的主守护进程)。此外,这 是您为本演示管理集群所用的节点(使用 Hadoop 实用程序和浏览器)。从节点包括 tasktracker 和数据节点(从属守护进程)。两种设置的不同之处在于,主节点包括提供 Hadoop 集群管理和协调的守护进程,而从节点包括实现 Hadoop 文件系统(HDFS)存储功能和 MapReduce 功能(数据处理功能)的守护进程。
对于该演示,在一个 LAN 上创建一个主节点和两个从节点。设置如图 2 所示。现在,我们来探讨用于多节点分布的 Hadoop 的安装和配置。
图 2. Hadoop 集群配置
为简化部署,要运用虚拟化技术,该技术有几个好处。尽管在该设置中使用虚拟化技术看不出性能优势,但是它可以创建一个 Hadoop 安装,然后为其他节点克隆该安装。为此,您的 Hadoop 集群应显示如下:在一个主机上的虚拟机监控程序上下文中将主从节点作为虚拟机(VM)运行(见图 3)。
图 3. 虚拟环境中的 Hadoop 集群配置
升级 Hadoop
在 用 Hadoop 进行分布式数据处理,第 1 部分:入门 中,我们安装了在一个节点上运行的 Hadoop 的一个特殊分布(伪配置)。在本文中,我们要更新分布式配置。如果您没有看过本系列的第 1 部分,那么请阅读第 1 部分,了解如何首先安装 Hadoop 伪配置。
在伪配置中,您没有进行任何配置,因为单个节点已经过预先配置。现在,您需要更新配置。首先,使用 update-alternatives 命令检查当前配置,如清单 1 所示。该命令告诉您,配置在使用 conf.pseudo(最高优先级)。
清单 1. 检查当前 Hadoop 配置
|
$ update-alternatives --display hadoop-0.20-conf
hadoop-0.20-conf - status is auto.
link currently points to /etc/hadoop-0.20/conf.pseudo
/etc/hadoop-0.20/conf.empty - priority 10
/etc/hadoop-0.20/conf.pseudo - priority 30
Current `best' version is /etc/hadoop-0.20/conf.pseudo.
$ |
下一步,通过复制现有配置(本例中为 conf.empty,如清单 1 所示)创建一个新配置:
|
$ sudo cp -r /etc/hadoop-0.20/conf.empty /etc/hadoop-0.20/conf.dist
$ |
最后,激活并检查新配置:
清单 2. 激活并检查 Hadoop 配置
|
$ sudo update-alternatives --install /etc/hadoop-0.20/conf hadoop-0.20-conf \
/etc/hadoop-0.20/conf.dist 40
$ update-alternatives --display hadoop-0.20-conf
hadoop-0.20-conf - status is auto.
link currently points to /etc/hadoop-0.20/conf.dist
/etc/hadoop-0.20/conf.empty - priority 10
/etc/hadoop-0.20/conf.pseudo - priority 30
/etc/hadoop-0.20/conf.dist - priority 40
Current `best' version is /etc/hadoop-0.20/conf.dist.
$ |
现在,您有一个名为 conf.dist 的新配置,您要将其用于您的新分布式配置。此时该节点运行于一个虚拟环境中,将该节点克隆到另外两个要充当数据节点的节点中。
配置 Hadoop 以实现分布式操作
下一步是要使所有节点互联互通。这可以 /etc/hadoop-0.20/conf.dist/ 中的两个名为 masters 和 slaves 的文件中实现。本例中的三个节点的 IP 地址是静态分配的,如清单 3 所示(来自 /etc/hosts):
清单 3. 该设置的 Hadoop 节点(/etc/hosts)
|
master 192.168.108.133
slave1 192.168.108.134
slave2 192.168.108.135 |
因此,在主节点上,更新 /etc/hadoop-0.20/conf.dist/masters 来确定主节点,如下所示:
然后在 /etc/hadoop-0.20/conf.dist/slaves 中确定从节点, 其中包括以下两行:
接下来,从每个节点上,将 Secure Shell (ssh) 连接到所有其他节点,确保 pass-phraseless ssh 在运行。所有这些文件(masters,slaves)都由本系列第 1 部分中使用过的 Hadoop 启动和停止工具使用。
下一步,在 /etc/hadoop-0.20/conf.dist 子目录中继续进行 Hadoop 配置。以下变更需要应用于所有节点(主节点和从节点),如同 Hadoop 文档中所定义的。首先,在 core-site.xml 文件(清单 4)中确定 HDFS 主节点,它定义名称节点的主机和端口(注意主节点的 IP 地址的使用)。core-site.xml 文件定义 Hadoop 的核心属性。
清单 4. 在 core-site.xml 中定义 HDFS 主节点
|
<configuration>
<property>
<name>fs.default.name<name>
<value>hdfs://master:54310<value>
<description>The name and URI of the default FS.</description>
<property>
<configuration> |
下一步,确认 MapReduce jobtracker。jobtracker 位于其自己的节点上,但对于本配置,将其放在主节点上,如清单 5 所示。mapred-site.xml 文件包含 MapReduce 属性。
清单 5. 在 mapred-site.xml 中定义 MapReduce jobtracker
|
<configuration>
<property>
<name>mapred.job.tracker<name>
<value>master:54311<value>
<description>Map Reduce jobtracker<description>
<property>
<configuration> |
最后,定义默认复制因子(清单 6)。该值定义将创建的副本数,一般小于 3。在本例中,将其定义为 2(数据节点的数量)。该值在包含 HDFS 属性的 hdfs-site.xml 中定义。
清单 6. 在 hdfs-site.xml 中定义默认数据副本
|
<configuration>
<property>
<name>dfs.replication<name>
<value>2<value>
<description>Default block replication<description>
<property>
<configuration> |
配置项如 清单 4 所示,分布式设置所需的元素见 清单 5 和 清单 6。Hadoop 在这里提供大量配置选项,支持您按需定制整个环境。参考资料 部分含有关于这些选项的更多信息。
完成配置之后,下一步是要格式化名称节点(HDFS 主节点)。对于该操作,使用 hadoop-0.20 实用程序指定名称节点和操作(-format):
清单 7. 格式化名称节点
|
user@master:~# sudo su -
root@master:~# hadoop-0.20 namenode -format
10/05/11 18:39:58 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = master/127.0.1.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.20.2+228
STARTUP_MSG: build = -r cfc3233ece0769b11af9add328261295aaf4d1ad;
************************************************************/
10/05/11 18:39:59 INFO namenode.FSNamesystem: fsOwner=root,root
10/05/11 18:39:59 INFO namenode.FSNamesystem: supergroup=supergroup
10/05/11 18:39:59 INFO namenode.FSNamesystem: isPermissionEnabled=true
10/05/11 18:39:59 INFO common.Storage: Image file of size 94 saved in 0 seconds.
10/05/11 18:39:59 INFO common.Storage:
Storage directory /tmp/hadoop-root/dfs/name has been successfully formatted.
10/05/11 18:39:59 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master/127.0.1.1
************************************************************/
root@master:~# |
格式化名称节点之后,就可以启动 Hadoop 守护进程了。可以对第 1 部分中的伪分布式配置执行同样的操作,但进程为分布式配置完成同样的工作。注意,这里的代码启动名称节点和从属名称节点(正如 jps 命令所指示):
清单 8. 启动名称节点
|
root@master:~# /usr/lib/hadoop-0.20/bin/start-dfs.sh
starting namenode, logging to
/usr/lib/hadoop-0.20/bin/../logs/hadoop-root-namenode-mtj-desktop.out
192.168.108.135: starting datanode, logging to
/usr/lib/hadoop-0.20/bin/../logs/hadoop-root-datanode-mtj-desktop.out
192.168.108.134: starting datanode, logging to
/usr/lib/hadoop-0.20/bin/../logs/hadoop-root-datanode-mtj-desktop.out
192.168.108.133: starting secondarynamenode,
logging to /usr/lib/hadoop-0.20/logs/hadoop-root-secondarynamenode-mtj-desktop.out
root@master:~# jps
7367 NameNode
7618 Jps
7522 SecondaryNameNode
root@master:~# |
现在,如果使用 jps 节点检测其中一个从节点(数据节点),您会看到每个节点上都有一个数据节点守护进程:
清单 9. 检测其中一个从节点上的数据节点
|
root@slave1:~# jps
10562 Jps
10451 DataNode
root@slave1:~# |
下一步是要启动 MapReduce 守护进程(jobtracker 和 tasktracker)。如 清单 10 所示执行该操作。注意,脚本启动主节点上的 jobtracker(正如配置所定义的;参见 清单 5)和每个从节点上的 tasktrackers。主节点上的一个 jps 命令显示 jobtracker 正在运行。
清单 10. 启动 MapReduce 守护进程
|
root@master:~# /usr/lib/hadoop-0.20/bin/start-mapred.sh
starting jobtracker, logging to
/usr/lib/hadoop-0.20/logs/hadoop-root-jobtracker-mtj-desktop.out
192.168.108.134: starting tasktracker, logging to
/usr/lib/hadoop-0.20/bin/../logs/hadoop-root-tasktracker-mtj-desktop.out
192.168.108.135: starting tasktracker, logging to
/usr/lib/hadoop-0.20/bin/../logs/hadoop-root-tasktracker-mtj-desktop.out
root@master:~# jps
7367 NameNode
7842 JobTracker
7938 Jps
7522 SecondaryNameNode
root@master:~# |
最后,使用 jps 检查一个从节点。这里您可以看到,一个 tasktracker 守护进程将数据节点守护进程联接到每个从数据节点上:
清单 11. 检测其中一个从节点上的数据节点
|
root@slave1:~# jps
7785 DataNode
8114 Jps
7991 TaskTracker
root@slave1:~# |
启动脚本、节点和启动的守护进程之间的关系如图 4 所示。如您所见,start-dfs 脚本启动名称节点和数据节点,而 start-mapred 脚本启动 jobtracker 和 tasktrackers。
图 4. 每个节点的启动脚本和守护进程的关系
测试 HDFS
既然 Hadoop 已经开始在整个集群中运行了,您可以运行一些测试来确保其正常运作(见清单 12)。首先,通过 hadoop-0.20 实用程序发出一个文件系统命令(fs),并请求一个 df(disk free)操作。与在 Linux? 中一样,该命令仅确定特定设备的已用空间和可用空间。因此,对于新格式化的文件系统,就没有已用空间。下一步,在 HDFS 的根上执行一个 ls 操作,创建一个子目录,列出其内容,并删除它。最后,在 hadoop-0.20 实用程序内,您可以使用 fsck 命令在 HDFS 上执行一个 fsck(文件系统检查)。这一切 — 以及各种其他信息(比如检测到两个数据节点)— 都告诉您文件系统是正常的。
清单 12. 检查 HDFS
|
root@master:~# hadoop-0.20 fs -df
File system Size Used Avail Use%
/ 16078839808 73728 3490967552 0%
root@master:~# hadoop-0.20 fs -ls /
Found 1 items
drwxr-xr-x - root supergroup 0 2010-05-12 12:16 /tmp
root@master:~# hadoop-0.20 fs -mkdir test
root@master:~# hadoop-0.20 fs -ls test
root@master:~# hadoop-0.20 fs -rmr test
Deleted hdfs://192.168.108.133:54310/user/root/test
root@master:~# hadoop-0.20 fsck /
.Status: HEALTHY
Total size: 4 B
Total dirs: 6
Total files: 1
Total blocks (validated): 1 (avg. block size 4 B)
Minimally replicated blocks: 1 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 2
Number of racks: 1
The filesystem under path '/' is HEALTHY
root@master:~# |
执行一个 MapReduce 作业
下一步是执行一个 MapReduce 作业,以验证整个设置运作正常(见清单 13)。该进程的第一步是要引入一些数据。因此,首先创建一个目录来容纳您的输入数据(称为 input),创建方式是使用 hadoop-0.20 实用程序的 mkdir 命令。然后,使用 hadoop-0.20 的 put 命令将两个文件放到 HDFS 中。您可以使用 Hadoop 实用程序的 ls 命令检查输入目录的内容。
清单 13. 生成输入数据
|
root@master:~# hadoop-0.20 fs -mkdir input
root@master:~# hadoop-0.20 fs -put \
/usr/src/linux-source-2.6.27/Doc*/memory-barriers.txt input
root@master:~# hadoop-0.20 fs -put \
/usr/src/linux-source-2.6.27/Doc*/rt-mutex-design.txt input
root@master:~# hadoop-0.20 fs -ls input
Found 2 items
-rw-r--r-- 2 root supergroup 78031 2010-05-12 14:16 /user/root/input/memory-barriers.txt
-rw-r--r-- 2 root supergroup 33567 2010-05-12 14:16 /user/root/input/rt-mutex-design.txt
root@master:~# |
下一步,启动 wordcount MapReduce 作业。与在伪分布式模型中一样,指定输入子目录(包含输入文件)和输出目录(不存在,但会由名称节点创建并用结果数据填充):
清单 14. 在集群上运行 MapReduce wordcount 作业
|
root@master:~# hadoop-0.20 jar \
/usr/lib/hadoop-0.20/hadoop-0.20.2+228-examples.jar wordcount input output
10/05/12 19:04:37 INFO input.FileInputFormat: Total input paths to process : 2
10/05/12 19:04:38 INFO mapred.JobClient: Running job: job_201005121900_0001
10/05/12 19:04:39 INFO mapred.JobClient: map 0% reduce 0%
10/05/12 19:04:59 INFO mapred.JobClient: map 50% reduce 0%
10/05/12 19:05:08 INFO mapred.JobClient: map 100% reduce 16%
10/05/12 19:05:17 INFO mapred.JobClient: map 100% reduce 100%
10/05/12 19:05:19 INFO mapred.JobClient: Job complete: job_201005121900_0001
10/05/12 19:05:19 INFO mapred.JobClient: Counters: 17
10/05/12 19:05:19 INFO mapred.JobClient: Job Counters
10/05/12 19:05:19 INFO mapred.JobClient: Launched reduce tasks=1
10/05/12 19:05:19 INFO mapred.JobClient: Launched map tasks=2
10/05/12 19:05:19 INFO mapred.JobClient: Data-local map tasks=2
10/05/12 19:05:19 INFO mapred.JobClient: FileSystemCounters
10/05/12 19:05:19 INFO mapred.JobClient: FILE_BYTES_READ=47556
10/05/12 19:05:19 INFO mapred.JobClient: HDFS_BYTES_READ=111598
10/05/12 19:05:19 INFO mapred.JobClient: FILE_BYTES_WRITTEN=95182
10/05/12 19:05:19 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=30949
10/05/12 19:05:19 INFO mapred.JobClient: Map-Reduce Framework
10/05/12 19:05:19 INFO mapred.JobClient: Reduce input groups=2974
10/05/12 19:05:19 INFO mapred.JobClient: Combine output records=3381
10/05/12 19:05:19 INFO mapred.JobClient: Map input records=2937
10/05/12 19:05:19 INFO mapred.JobClient: Reduce shuffle bytes=47562
10/05/12 19:05:19 INFO mapred.JobClient: Reduce output records=2974
10/05/12 19:05:19 INFO mapred.JobClient: Spilled Records=6762
10/05/12 19:05:19 INFO mapred.JobClient: Map output bytes=168718
10/05/12 19:05:19 INFO mapred.JobClient: Combine input records=17457
10/05/12 19:05:19 INFO mapred.JobClient: Map output records=17457
10/05/12 19:05:19 INFO mapred.JobClient: Reduce input records=3381
root@master:~# |
最后一步是探索输出数据。由于您运行了 wordcount MapReduce 作业,结果是一个文件(从已处理映射文件缩减而来)。该文件包含一个元组列表,表示输入文件中找到的单词和它们在所有输入文件中出现的次数:
清单 15. 检测 MapReduce 作业的输出
|
root@master:~# hadoop-0.20 fs -ls output
Found 2 items
drwxr-xr-x - root supergroup 0 2010-05-12 19:04 /user/root/output/_logs
-rw-r--r-- 2 root supergroup 30949 2010-05-12 19:05 /user/root/output/part-r-00000
root@master:~# hadoop-0.20 fs -cat output/part-r-00000 | head -13
!= 1
"Atomic 2
"Cache 2
"Control 1
"Examples 1
"Has 7
"Inter-CPU 1
"LOAD 1
"LOCK" 1
"Locking 1
"Locks 1
"MMIO 1
"Pending 5
root@master:~# |
Web 管理界面
尽管 hadoop-0.20 实用程序的功能极其丰富,但有时使用一个 GUI 会更方便。在执行文件系统检测时,您可以通过 http://master:50070 链接到名称节点,通过 http://master:50030 连接到 jobtracker 。您可以通过名称节点检测 HDFS,如图 5 所示,在这里您检测输入目录(包含输入数据 — 见上面 清单 13)。
图 5. 通过名称节点检测 HDFS
通过 jobtracker,您可以检测运行中或已完成的作业。在图 6 中,您可以看到对最后一个作业的检测(来自 清单 14)。该图展示了作为 Java 存档(JAR)请求的输出发出的各种数据,以及任务的状态和数量。注意,这里执行了两个映射任务(每个输入文件一个映射)和一个缩减任务(用于缩减两个映射输入)。
图 6. 检查一个已完成作业的状态
最后,您可以通过名称节点检查数据节点的状态。名称节点主页确定活动节点和死节点(作为链接)的数量,且允许您进一步检测它们。图 7 所示的页面显示了活动数据节点以及每个节点的统计数据。
图 7. 检查活动数据节点的状态
通过名称节点和 jobtracker Web 界面,可以查看许多其他视图,但出于简洁,只显示该样例集。在名称节点和 jobtracker Web 页面内,您会找到大量链接,从而引导您获取有关 Hadoop 配置和操作的其他信息(包括运行时日志)。
更进一步
在本期中,您了解了如何将一个伪分布式配置从 Cloudera 转化为一个完全分布式配置。寥寥无几的步骤以及 MapReduce 应用程序的一个相同接口,就使 Hadoop 成为一个能实现分布式处理的有用工具。另一个有趣的部分就是 Hadoop 的可伸缩性探讨。通过添加新数据节点(并更新其 XML 文件和 master 中的 slave 文件),您可以轻松伸缩 Hadoop 来进行更高级别的平行处理。第 3 部分,也就是本 Hadoop 系列的最后一期,将探讨如何为 Hadoop 开发一个 MapReduce 应用程序。
参考资料
学习
获得产品和技术
系列文章:用 Hadoop 进行分布式数据处理第 1 部分: 入门
用 Hadoop 进行分布式数据处理第 2 部分: 进阶
用 Hadoop 进行分布式数据处理第 3 部分: 应用程序开发
|