一、服务端安装部署
我是在虚拟机中的CentOS6.5中进行部署。
1.下载程序
2.tar -xvf alibaba-rocketmq-3.0.7.tar.gz
解压到适当的目录如/opt/目录
3.启动RocketMQ:进入rocketmq/bin 目录 执行
4.启动Broker,设置对应的NameServer
nohup sh mqbroker -n "127.0.0.1:9876" & |
二、编写客户端
可以查看sameple中的quickstart源码 1.Consumer
消息消费者
/** * Consumer,订阅消息 */ public class Consumer { public static void main(String[] args) throws InterruptedException, MQClientException { DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("QuickStartConsumer"); consumer.setNamesrvAddr("127.0.0.1:9876"); consumer.setInstanceName("QuickStartConsumer"); consumer.subscribe("QuickStart", "*"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { System.out.println(Thread.currentThread().getName() + " Receive New Messages: " + msgs); return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); consumer.start(); System.out.println("Consumer Started."); } } |
2.Producer消息生产者
/** * Producer,发送消息 * */ public class Producer { public static void main(String[] args) throws MQClientException, InterruptedException { DefaultMQProducer producer = new DefaultMQProducer("QuickStartProducer"); producer.setNamesrvAddr("127.0.0.1:9876"); producer.setInstanceName("QuickStartProducer"); producer.start(); for (int i = 0; i < 1000; i++) { try { Message msg = new Message("QuickStart",// topic "TagA",// tag ("Hello RocketMQ ,QuickStart" + i).getBytes()// body ); SendResult sendResult = producer.send(msg); System.out.println(sendResult); } catch (Exception e) { e.printStackTrace(); Thread.sleep(1000); } } producer.shutdown(); } } |
3.首先运行Consumer程序,一直在运行状态接收服务器端推送过来的消息
23:18:07.587 [main] DEBUG i.n.c.MultithreadEventLoopGroup - -Dio.netty.eventLoopThreads: 16 23:18:07.591 [main] DEBUG i.n.util.internal.PlatformDependent - Platform: Windows 23:18:07.592 [main] DEBUG i.n.util.internal.PlatformDependent - Java version: 7 23:18:07.592 [main] DEBUG i.n.util.internal.PlatformDependent - -Dio.netty.noUnsafe: false 23:18:07.593 [main] DEBUG i.n.util.internal.PlatformDependent0 - java.nio.ByteBuffer.cleaner: available 23:18:07.593 [main] DEBUG i.n.util.internal.PlatformDependent0 - java.nio.Buffer.address: available 23:18:07.593 [main] DEBUG i.n.util.internal.PlatformDependent0 - sun.misc.Unsafe.theUnsafe: available 23:18:07.593 [main] DEBUG i.n.util.internal.PlatformDependent0 - sun.misc.Unsafe.copyMemory: available 23:18:07.593 [main] DEBUG i.n.util.internal.PlatformDependent0 - java.nio.Bits.unaligned: true 23:18:07.594 [main] DEBUG i.n.util.internal.PlatformDependent - sun.misc.Unsafe: available 23:18:07.594 [main] DEBUG i.n.util.internal.PlatformDependent - -Dio.netty.noJavassist: false 23:18:07.594 [main] DEBUG i.n.util.internal.PlatformDependent - Javassist: unavailable 23:18:07.594 [main] DEBUG i.n.util.internal.PlatformDependent -
You don't have Javassist in your class path or you don't have enough permission to load dynamically generated classes.
Please check the configuration for better performance. 23:18:07.595 [main] DEBUG i.n.util.internal.PlatformDependent - -Dio.netty.noPreferDirect: false 23:18:07.611 [main] DEBUG io.netty.channel.nio.NioEventLoop - -Dio.netty.noKeySetOptimization: false 23:18:07.611 [main] DEBUG io.netty.channel.nio.NioEventLoop - -Dio.netty.selectorAutoRebuildThreshold: 512 23:18:08.355 [main] DEBUG i.n.util.internal.ThreadLocalRandom - -Dio.netty.initialSeedUniquifier: 0x8c0d4793e5820c31 23:18:08.446 [NettyClientWorkerThread_1] DEBUG io.netty.util.ResourceLeakDetector
- -Dio.netty.noResourceLeakDetection: false Consumer Started. |
4.再次运行Producer程序,生成消息并发送到Broker,Producer的日志冲没了,但是可以看到Broker推送到Consumer的一条消息
ConsumeMessageThread-QuickStartConsumer-3 Receive New Messages: [MessageExt [queueId=0, storeSize=150,
queueOffset=244, sysFlag=0, bornTimestamp=1400772029972, bornHost=/10.162.0.7:54234,
storeTimestamp=1400772016017, storeHost=/127.0.0.1:10911, msgId=0A0A0A5900002A9F0000000000063257,
commitLogOffset=406103, bodyCRC=112549959, reconsumeTimes=0, preparedTransactionOffset=0,
toString()=Message [topic=QuickStart, flag=0,
properties={TAGS=TagA, WAIT=true, MAX_OFFSET=245, MIN_OFFSET=0}, body=29]]] |
三、Consumer最佳实践
1.消费过程要做到幂等(即消费端去重)
RocketMQ无法做到消息重复,所以如果业务对消息重复非常敏感,务必要在业务层面去重,有以下一些方式:
(1).将消息的唯一键,可以是MsgId,也可以是消息内容中的唯一标识字段,例如订单ID,消费之前判断是否在DB或Tair(全局KV存储)中存在,如果不存在则插入,并消费,否则跳过。(实践过程要考虑原子性问题,判断是否存在可以尝试插入,如果报主键冲突,则插入失败,直接跳过)
msgid一定是全局唯一的标识符,但是可能会存在同样的消息有两个不同的msgid的情况(有多种原因),这种情况可能会使业务上重复,建议最好使用消息体中的唯一标识字段去重
(2).使业务层面的状态机去重
2.批量方式消费
如果业务流程支持批量方式消费,则可以很大程度上的提高吞吐量,可以通过设置Consumer的consumerMessageBatchMaxSize参数,默认是1,即一次消费一条参数
3.跳过非重要的消息
发生消息堆积时,如果消费速度一直跟不上发送速度,可以选择丢弃不重要的消息
@Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { System.out.println(Thread.currentThread().getName() + " Receive New Messages: " + msgs); long offset=msgs.get(0).getQueueOffset(); String maxOffset=msgs.get(0).getProperty(MessageConst.PROPERTY_MAX_OFFSET); long diff=Long.parseLong(maxOffset)-offset; if(diff>100000){ //处理消息堆积情况 return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } |
如以上代码所示,当某个队列的消息数堆积到 100000 条以上,则尝试丢弃部分或全部消息,这样就可以快速追上发送消息的速度
4.优化没条消息消费过程
举例如下,某条消息的消费过程如下
1. 根据消息从 DB 查询数据 1
2. 根据消息从 DB 查询数据2
3. 复杂的业务计算
4. 向 DB 插入数据3
5. 向 DB 插入数据 4
这条消息的消费过程与 DB 交互了 4 次,如果按照每次 5ms 计算,那么总共耗时
20ms,假设业务计算耗时 5ms,那么总过耗时 25ms,如果能把 4 次 DB 交互优化为 2 次,那么总耗时就可以优化到
15ms,也就是说总体性能提高了 40%。
对于 Mysql 等 DB,如果部署在磁盘,那么与 DB 进行交互,如果数据没有命中
cache,每次交互的 RT 会直线上升, 如果采用 SSD,则 RT 上升趋势要明显好于磁盘。
个别应用可能会遇到这种情况:在线下压测消费过程中,db 表现非常好,每次
RT 都很短,但是上线运行一段时间,RT 就会变长,消费吞吐量直线下降
主要原因是线下压测时间过短,线上运行一段时间后,cache 命中率下降,那么
RT 就会增加。建议在线下压测时,要测试足够长时间,尽可能模拟线上环境,压测过程中,数据的分布也很重要,数据不同,可能
cache 的命中率也会完全不同
四、Producer最佳实践
1.发送消息注意事项
(1) 一个应用尽可能用一个 Topic,消息子类型用 tags 来标识,tags
可以由应用自由设置。只有发送消息设置了tags,消费方在订阅消息时,才可以利用 tags 在 broker
做消息过滤。
(2)每个消息在业务层面的唯一标识码,要设置到 keys 字段,方便将来定位消息丢失问题。服务器会为每个消息创建索引(哈希索引),应用可以通过
topic,key 来查询这条消息内容,以及消息被谁消费。由于是哈希索引,请务必保证 key 尽可能唯一,这样可以避免潜在的哈希冲突。
(3)消息发送成功或者失败,要打印消息日志,务必要打印 sendresult
和 key 字段
(4)send 消息方法,只要不抛异常,就代表发送成功。但是发送成功会有多个状态,在
sendResult 里定义
SEND_OK:消息发送成功
FLUSH_DISK_TIMEOUT:消息发送成功,但是服务器刷盘超时,消息已经进入服务器队列,只有此时服务器宕机,消息才会丢失
FLUSH_SLAVE_TIMEOUT:消息发送成功,但是服务器同步到
Slave 时超时,消息已经进入服务器队列,只有此时服务器宕机,消息才会丢失
SLAVE_NOT_AVAILABLE:消息发送成功,但是此时 slave
不可用,消息已经进入服务器队列,只有此时服务器宕机,消息才会丢失。对于精确发送顺序消息的应用,由于顺序消息的局限性,可能会涉及到主备自动切换问题,所以如果sendresult
中的 status 字段不等于 SEND_OK,就应该尝试重试。对于其他应用,则没有必要这样
(5)对于消息不可丢失应用,务必要有消息重发机制
2.消息发送失败处理
Producer 的 send 方法本身支持内部重试,重试逻辑如下:
(1) 至多重试 3 次
(2) 如果发送失败,则轮转到下一个 Broker
(3) 这个方法的总耗时时间不超过 sendMsgTimeout 设置的值,默认
10s所以,如果本身向 broker 发送消息产生超时异常,就不会再做重试
如果调用 send 同步方法发送失败,则尝试将消息存储到 db,由后台线程定时重试,保证消息一定到达
Broker。
上述 db 重试方式为什么没有集成到 MQ 客户端内部做,而是要求应用自己去完成,基于以下几点考虑:
(1)MQ 的客户端设计为无状态模式,方便任意的水平扩展,且对机器资源的消耗仅仅是
cpu、内存、网络
(2)如果 MQ 客户端内部集成一个 KV 存储模块,那么数据只有同步落盘才能较可靠,而同步落盘本身性能开销较大,所以通常会采用异步落盘,又由于应用关闭过程不受
MQ 运维人员控制,可能经常会发生 kill -9 这样暴力方式关闭,造成数据没有及时落盘而丢失
(3)Producer 所在机器的可靠性较低,一般为虚拟机,不适合存储重要数据。
综上,建议重试过程交由应用来控制。
3.选择 oneway 形式发送
一个 RPC 调用,通常是这样一个过程
(1)客户端发送请求到服务器
(2)服务器处理该请求
(3)服务器向客户端返回应答
所以一个 RPC 的耗时时间是上述三个步骤的总和,而某些场景要求耗时非常短,但是对可靠性要求并不高,例如日志收集类应用,此类应用可以采用
oneway 形式调用,oneway 形式只发送请求不等待应答,而发送请求在客户端实现层面仅仅是一个 os
系统调用的开销,即将数据写入客户端的 socket 缓冲区,此过程耗时通常在微秒级。
RocketMQ不止可以直接推送消息,在消费端注册监听器进行监听,还可以由消费端决定自己去拉取数据
/** * PullConsumer,订阅消息 */ public class PullConsumer { //Java缓存 private static final Map<MessageQueue, Long> offseTable = new HashMap<MessageQueue, Long>(); public static void main(String[] args) throws MQClientException { DefaultMQPullConsumer consumer = new DefaultMQPullConsumer("PullConsumerGroup"); consumer.setNamesrvAddr("127.0.0.1:9876"); consumer.start(); //拉取订阅主题的队列,默认队列大小是4 Set<MessageQueue> mqs = consumer.fetchSubscribeMessageQueues("TopicTestMapBody"); for (MessageQueue mq : mqs) { System.out.println("Consume from the queue: " + mq); SINGLE_MQ:while(true){ try { PullResult pullResult = consumer.pullBlockIfNotFound(mq, null, getMessageQueueOffset(mq), 32); List<MessageExt> list=pullResult.getMsgFoundList(); if(list!=null&&list.size()<100){ for(MessageExt msg:list){ System.out.println(SerializableInterface.deserialize(msg.getBody())); } } System.out.println(pullResult.getNextBeginOffset()); putMessageQueueOffset(mq, pullResult.getNextBeginOffset()); switch (pullResult.getPullStatus()) { case FOUND: // TODO break; case NO_MATCHED_MSG: break; case NO_NEW_MSG: break SINGLE_MQ; case OFFSET_ILLEGAL: break; default: break; } } catch (Exception e) { e.printStackTrace(); } } } consumer.shutdown(); } private static void putMessageQueueOffset(MessageQueue mq, long offset) { offseTable.put(mq, offset); } private static long getMessageQueueOffset(MessageQueue mq) { Long offset = offseTable.get(mq); if (offset != null){ System.out.println(offset); return offset; } return 0; } |
刚开始的没有细看PullResult对象,以为拉取到的结果没有MessageExt对象还跑到群里面问别人,犯2了
特别要注意 静态变量offsetTable的作用,拉取的是按照从offset(理解为下标)位置开始拉取,拉取N条,offsetTable记录下次拉取的offset位置。
|