编辑推荐: |
本文讲述完整的企业架构,Zachman
模型,TOGAF 详细的架构工件模型,DODAF(美国国防部体系架构框架),希望对您有所帮助。
本文来自于博客园,由火龙果软件Delores编辑、推荐。 |
|
“我们大家都知道把一个微服务架构变成一个异步架构只需要加一个MQ,现在市面上有很多MQ的开源框架。到底选择哪一个MQ的开源框架才合适呢 ”
一、什么是MQ?MQ的原理是什么?
MQ就是消息队列,是Message Queue的缩写。消息队列是一种通信方式。消息的本质就是一种数据结构。因为MQ把项目中的消息集中式的处理和存储,所以MQ主要有解耦,并发,和削峰的功能。
1,解耦:
MQ的消息生产者和消费者互相不关心对方是否存在,通过MQ这个中间件的存在,使整个系统达到解耦的作用。
如果服务之间用RPC通信,当一个服务跟几百个服务通信时,如果那个服务的通信接口改变,那么几百个服务的通信接口都的跟着变动,这是非常头疼的一件事。
但是采用MQ之后,不管是生产者或者消费者都可以单独改变自己。他们的改变不会影响到别的服务。从而达到解耦的目的。为什么要解耦呢?说白了就是方便,减少不必要的工作量。
2,并发
MQ有生产者集群和消费者集群,所以客户端是亿级用户时,他们都是并行的。从而大大提升响应速度。
3,削峰
因为MQ能存储的消息量很大,所以他可以把大量的消息请求先存下了,然后再并发的方式慢慢处理。
如果采用RPC通信,每一次请求用调用RPC接口,当请求量巨大的时候,因为RPC的请求是很耗资源的,所以巨大的请求一定会压垮服务器。
削峰的目的是用户体验变好,并且使整个系统稳定。能承受大量请求消息。
二、现在市面上有什么MQ
重点介绍RocketMQ
现在市面上的MQ有很多,主要有RabbitMQ,ActiveMQ,ZeroMQ,RocketMQ,Kafka等等,这些都是开源的MQ产品。以前很多人推荐使用RabbitMQ,他也是非常好用的MQ产品,这里不做过多的介绍。Kafka也是高吞吐量的老大,我们这里也不介绍。
我们重点介绍一下RocketMQ,RocketMQ是阿里巴巴在2012年开源的分布式消息中间件,目前已经捐赠给Apache软件基金会,并于并于2017年9月25日成为 Apache 的顶级项目。
作为经历过多次阿里巴巴双十一这种“超级工程”的洗礼并有稳定出色表现的国产中间件,以其高性能、低延时和高可靠等特性近年来已经也被越来越多的国内企业使用。
功能概览图
可以看见RocketMQ支持定时和延时消息,这是RabbitMQ所没有的能力。
RocketMQ的物理结构
从这里可以看出,RocketMQ涉及到四大集群,producer,Name Server,Consumer,Broker。
Producer集群:
是生产者集群,负责产生消息,向消费者发送由业务应用程序系统生成的消息,RocketMQ提供三种方式发送消息:同步,异步,单向。
一,普通消息
1,同步原理图
同步消息关键代码
try { SendResult
sendResult = producer.send(msg); // 同步发送消息, 只要不抛异常就是成功
if (sendResult != null) { System.out.println (new
Date() + " Send mq message success. Topic
is:" + msg.getTopic() + " msgId is:
" + sendResult.getMessageId()); } catch
(Exception e) { System.out.println (new Date()
+ " Send mq message failed. Topic is:"
+ msg.getTopic()); e.printStackTrace(); }} |
2,异步原理图
异步消息关键代码
producer.sendAsync(msg,
new SendCallback() { @Overridepublic void onSuccess (final
SendResult sendResult) { // 消费发送成功 System.out.println ("send
message success. topic=" + sendResult.getTopic()
+ ", msgId=" + sendResult.getMessageId());
} @Overridepublic void onException (OnExceptionContext
context) { System.out.println("send message
failed. topic=" + context.getTopic() + ",
msgId=" + context.getMessageId()); }}); |
3,单向(Oneway)发送原理图
单向只发送,不等待返回,所以速度最快,一般在微秒级,但可能丢失
单向(Oneway)发送消息关键代码
producer.sendOneway(msg); |
二,定时消息和延时消息
发送定时消息关键代码
try { // 定时消息,单位毫秒(ms), 在指定时间戳(当前时间之后)进行投递, 例如
2016-03-07 16:21:00 投递。 如果被设置成当前时间戳之前的某个时刻, 消息将立刻投递给消费者。
long timeStamp = new SimpleDateFormat("yyyy-MM-dd
HH:mm:ss") .parse("2016-03-07 16:21:00").getTime();
msg.setStartDeliverTime(timeStamp); // 发送消息,只要不抛异常就是成功
SendResult sendResult = producer.send(msg); System.out.println ("MessageId:"+sendResult.getMessageId()); }catch
(Exception e) { // 消息发送失败, 需要进行重试处理,可重新发送这条消息 或持久化这条数据进行补偿处理
System.out.println(new Date() + " Send mq
message failed. Topic is:" + msg.getTopic());
e.printStackTrace(); } |
发送延时消息关键代码
try { // 延时消息,单位毫秒(ms), 在指定延迟时间(当前时间之后)进行投递, 例如消息在
3 秒后投递 long delayTime = System.currentTimeMillis()
+ 3000; // 设置消息需要被投递的时间 msg.setStartDeliverTime(delayTime);
SendResult sendResult = producer.send(msg); //
同步发送消息,只要不抛异常就是成功 if (sendResult != null) { System.out.println(new
Date() + " Send mq message success. Topic
is:" + msg.getTopic() + " msgId is:
" + sendResult.getMessageId()); } } catch
(Exception e) { // 消息发送失败, 需要进行重试处理,可重新发送这条消息 或持久化这条数据进行补偿处理
System.out.println(new Date() + " Send mq
message failed. Topic is:" + msg.getTopic());
e.printStackTrace(); } |
注意事项
1,定时和延时消息的 msg.setStartDeliverTime 参数需要设置成当前时间戳之后的某个时刻(单位毫秒)。如果被设置成当前时间戳之前的某个时刻,消息将立刻投递给消费者。
2,定时和延时消息的 msg.setStartDeliverTime 参数可设置40天内的任何时刻(单位毫秒),超过40天消息发送将失败。
3,StartDeliverTime 是服务端开始向消费端投递的时间。 如果消费者当前有消息堆积,那么定时和延时消息会排在堆积消息后面,将不能严格按照配置的时间进行投递。
4,由于客户端和服务端可能存在时间差,消息的实际投递时间与客户端设置的投递时间之间可能存在偏差。
5,设置定时和延时消息的投递时间后,依然受 3 天的消息保存时长限制。例如,设置定时消息 5 天后才能被消费,如果第 5 天后一直没被消费,那么这条消息将在第8天被删除。
6,除 Java 语言支持延时消息外,其他语言都不支持延时消息。
发布消息原理图
三,事务消息
RocketMQ提供类似X/Open XA的分布式事务功能来确保业务发送方和MQ消息的最终一致性,其本质是通过半消息的方式把分布式事务放在MQ端来处理。
原理图
其中:
1,发送方向消息队列 RocketMQ 服务端发送消息。
2,服务端将消息持久化成功之后,向发送方 ACK 确认消息已经发送成功,此时消息为半消息。
3,发送方开始执行本地事务逻辑。
4,发送方根据本地事务执行结果向服务端提交二次确认(Commit 或是 Rollback),服务端收到 Commit 状态则将半消息标记为可投递,订阅方最终将收到该消息;服务端收到 Rollback 状态则删除半消息,订阅方将不会接受该消息。
5,在断网或者是应用重启的特殊情况下,上述步骤 4 提交的二次确认最终未到达服务端,经过固定时间后服务端将对该消息发起消息回查。
6,发送方收到消息回查后,需要检查对应消息的本地事务执行的最终结果。
7,发送方根据检查得到的本地事务的最终状态再次提交二次确认,服务端仍按照步骤 4 对半消息进行操作。
RocketMQ的半消息机制的注意事项是
1,根据第六步可以看出他要求发送方提供业务回查接口。
2,不能保证发送方的消息幂等,在ack没有返回的情况下,可能存在重复消息
3,消费方要做幂等处理。
核心代码
final BusinessService businessService = new BusinessService(); // 本地业务
TransactionProducer
producer = ONSFactory.createTransactionProducer (properties,new
LocalTransactionCheckerImpl()); producer.start(); Message
msg = new Message ("Topic", "TagA",
"Hello MQ transaction===". getBytes()); try
{ SendResult sendResult = producer.send(msg,
new LocalTransactionExecuter() { @Override public
TransactionStatus execute (Message msg, Object
arg) { // 消息 ID (有可能消息体一样,但消息 ID 不一样, 当前消息 ID 在控制台无法查询)
String msgId = msg.getMsgID(); // 消息体内容进行 crc32,也可以使用其它的如
MD5 long crc32Id = HashUtil.crc32Code (msg.getBody());
// 消息 ID 和 crc32id 主要是用来防止消息重复 // 如果业务本身是幂等的, 可以忽略,否则需要利用
msgId 或 crc32Id 来做幂等 // 如果要求消息绝对不重复,推荐做法是 对消息体
body 使用 crc32 或 MD5 来防止重复消息 Object businessServiceArgs
= new Object(); TransactionStatus transactionStatus
=TransactionStatus.Unknow; try { boolean isCommit
= businessService.execbusinessService (businessServiceArgs);
if (isCommit) { // 本地事务成功则提交消息 transactionStatus
= TransactionStatus.CommitTransaction; } else
{ // 本地事务失败则回滚消息 transactionStatus = TransactionStatus. RollbackTransaction;
} } catch (Exception e) {log.error("Message
Id:{}", msgId, e); } System.out.println(msg.getMsgID()); log.warn("Message
Id:{}transactionStatus:{}", msgId, transactionStatus.name());
return transactionStatus; } }, null); } catch
(Exception e) { // 消息发送失败, 需要进行重试处理,可重新发送这条消息或 持久化这条数据进行补偿处理
System.out.println (new Date() + " Send mq
message failed. Topic is:" + msg.getTopic());
e.printStackTrace(); } |
所有消息发布原理图
producer完全无状态,可以集群部署。
Name Server集群:
NameServer是一个几乎无状态的节点,可集群部署,节点之间无任何信息同步,NameServer很像注册中心的功能。
听说阿里之前的NameServer 是用ZooKeeper做的,可能因为Zookeeper不能满足大规模并发的要求,所以之后NameServer 是阿里自研的。
NameServer其实就是一个路由表,他管理Producer和Comsumer之间的发现和注册。
Broker集群:
Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slaver,但是一个Slaver只能对应一个Master,Master与Slaver的对应关系通过指定相同的BrokerName。
不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slaver。Master可以部署多个。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信息到所有的NameServer。
Consumer集群:
订阅方式
消息队列 RocketMQ 支持以下两种订阅方式:
集群订阅:同一个 Group ID 所标识的所有 Consumer 平均分摊消费消息。 例如某个 Topic 有 9 条消息,一个 Group ID 有 3 个 Consumer 实例,那么在集群消费模式下每个实例平均分摊,只消费其中的 3 条消息。
// 集群订阅方式设置(不设置的情况下, 默认为集群订阅方式)properties.put (PropertyKeyConst.MessageModel,
PropertyValueConst.CLUSTERING); |
广播订阅:同一个 Group ID 所标识的所有 Consumer 都会各自消费某条消息一次。 例如某个 Topic 有 9 条消息,一个 Group ID 有 3 个 Consumer 实例,那么在广播消费模式下每个实例都会各自消费 9 条消息。
// 广播订阅方式设置properties.put (PropertyKeyConst.MessageModel,
PropertyValueConst.BR
OADCASTING); |
订阅消息关键代码:
Consumer consumer
= ONSFactory.create Consumer(properties); consumer.subscribe ("TopicTestMQ",
"TagA||TagB", **new** MessageListener()
{ //订阅多个 Tag public Action consume(Message message,
ConsumeContext context) { System.out.println ("Receive:
" + message); return Action. CommitMessage;}}); //订阅另外一个
Topic consumer.subscribe("TopicTestMQ-Other",
"*", **new** MessageListener() { //订阅全部
Tag public Action consume (Message message, ConsumeContext
context) { System.out.println("Receive:
" + message); return Action.CommitMessage;}}); consumer.start(); |
注意事项:
消费端要做幂等处理,所有MQ基本上都不会做幂等处理,需要业务端处理,原因是如果在MQ端做幂等处理会带来MQ的复杂度,而且严重影响MQ的性能。
消息收发模型
主子账号创建
创建主子账号的原因是权限问题。下面是主账号创建流程图
子账号流程图
三、MQ是微服务架构
非常重要的部分
MQ的诞生把原来的同步架构思维转变到异步架构思维提供一种方法,为大规模,高并发的业务场景的稳定性实现提供了很好的解决思路。
Martin Fowler强调:分布式调用的第一原则就是不要分布式。这句话看似颇具哲理,然而就企业应用系统而言,只要整个系统在不停地演化,并有多个子系统共同存在时,这条原则就会被迫打破。
Martin Fowler提出的这条原则,一方面是希望设计者能够审慎地对待分布式调用,另一方面却也是分布式系统自身存在的缺陷所致。
所以微服务并不是万能药,适合的架构才是最好的架构。
|