您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 
 订阅
分布式计算框架
 
 
   次浏览      
 2022-6-16
 
编辑推荐:
本文主要介绍了分布式计算框架MapReduce和spark的相关概念、原理等。希望能够帮助大家。
本文来自于博客园 ,由火龙果软件Linda编辑、推荐。

MapReduce

简介

概念

面向批处理的分布式计算框架

一种编程模型: MapReduce程序被分为Map(映射)和Reduce(化简)阶段

核心思想

分而治之, 并行计算

移动计算而非移动数据

特点

MapReduce有几个特点:

移动计算而不移动数据:分布式计算,计算跟着数据走,数据存放在哪就在哪里进行计算,极大的减少了IO的开销。

良好的扩展性:分布式计算框架拥有相当良好的扩展性,随着节点数量的增加,单个节点的计算量减小,整体的计算能力近乎线性的递增。

高容错性:计算任务失败,会自动恢复计算,拥有良好的容错性。

状态监控:提交任务之后,任务具体执行在哪个节点,具体执行到哪个阶段,在后台或者监控界面,我们都能实时的进行监控。

适合于海量数据的离线批处理:MapReduce在设计之初的目标就是面向离线批处理,特别是大吞吐量的离线处理场景,更适合于MapReduce。

降低了分布式编程的门槛:大部分操作MapReduce已经实现,我们仅仅需要在特定的部分编写我们自己的业务逻辑,极大的减少了工作量,同时也降低了编程的门槛。

MR原理

1. 作业(job):作业是客户端提交请求执行的一个单元,它包括数据、计算框架以及一些配置信息等。

2. 任务(task):是作业细分之后的细分工作单元,如MapReduce中的Map Task和Reduce Task。

MapReduce划分为四个阶段,分别为:Split、Map、Shuffle、Reduce。

1. Split阶段,主要负责“分”,这个阶段会由MapReduce自动将一个大文件切分成多个小的split文件片段,split只是逻辑概念,仅包含如数据起始位置,长度,所在位置等描述信息。2.x当中默认的切分规则,一个split刚好为一个block大小128M。那么10TB的数据文件,此时就会划分为像图中一样多个小split片段,每一个split交由一个Map Task处理。

2. Map阶段,会处理经过Split阶段切分好的数据片段,每一个split将对应一个Map的任务,也就说像图中所画Split切分为三个片段,分别对应着三个Map Task任务。Map阶段需要开发人员自己按照业务做实现,并且当我们分析的数据是HDFS当中文本数据时,他会一行一行来进行读取,最终需要按照Key-Value形式输出。那在WordCount案例中,读到每行数据时我们按照文本的分隔符将文本切分为一个一个单词,最后以单词作为key、1作为value进行输出。这样输出之后,最终对于每一个单词我们只要将1做累加就可以得到结果。

3. Shuffle阶段,他会完成分区、排序、分组等操作,分区决定了Map任务交由哪个Reduce任务处理,Reduce任务决定了有多少个分区。先分析WordCount,默认Shuffle阶段会将Map阶段输出的Key-Value键值对按照单词的顺序做排序、分组,最终将相同的单词划分到一组,交给下个阶段Reduce来处理。

4. Reduce阶段,和Map一样都需要开发人员自己实现,它所处理的数据是Map输出之后经过Shuffle排好序、分好组的数据,那么在WordCount当中,Reduce任务每次处理的都是单词相同的一组数据,这段代码实现就很简单我只要对于这一组数据当中的Value进行累加,即可得到一个单词的数量,当Reduce所有任务执行完成即把每组单词数据处理完成之后,即可拿到最终的结果。

图中展示了Mapreduce的执行流程。首先数据要被Split切分,但是因为存储在HDFS上,所以数据已经被切分成了Block块,那接下来就会在每个Block块上分发一个Map作业进行中间结果的计算,计算结果保存为key-value的形式。此时shuffle阶段负责将Key值相同的数据分发到同一个Reduce节点上进行计算。Shuffle对Key值进行Hash取模,然后按照Reduce的个数形成对应的文件。Reduce节点会去Map节点去取自己的文件,取到之后进行合并。合并成大文件之后,在Reduce节点进行结果的汇总,最终结果保存到HDFS中。

Shuffle详解

Shuffle连接了Map以及Reduce,它在Map以及Reduce两台服务器上都有执行。

作业运行管理

TaskTracker 和DataNode放在同一个节点: 移动计算

Spark

简介

原理

编程模型

RDD(Resilient Distributed Datesets、弹性分布式数据集)是Spark特有的数据模型,Spark当中的计算都是通过操作RDD来完成的。DAG(有向无环图),RDD各项操作之间的相互依赖会被转成DAG,DAG划分不同的stage阶段,由不同的task任务运行。

RDD同时也是Spark的基本计算单元,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。对应用透明,开发人员只需要对于RDD进行操作即可不需要其他的处理。RDD的创建操作只能是基于稳定的数据集或者已有的RDD,整个Job任务在计算过程中如果出现错误,可以通过这一系列的转换、算子追述到之前的操作,自动重构从而保证计算的正确性。

在程序运行的时候,首先会运行Driver,Driver相当于是整个任务的管理程序,负责对任务进行解析、分发、监控等。Driver中包含的SparkContext是Spark的运行环境。

Driver运行起来之后,会向ClusterManager主节点去申请资源,申请到的资源是在WorkerNode上封装好的Executor容器,容器包含了程序运行的CPU、内存等资源。

然后Driver会将Task分发到这些Executor中进行执行,执行过程中,会时刻监控这些Task的运行情况,并做实时的管理和调度。

Yarn模式是比较常见的一种模式,Spark将任务提交到yarn上去运行。这种模式根据Driver的位置不同,又细分为Client和Cluster两种模式。

Executor拿到我们分发的这些个任务,开始任务的真正执行。

逻辑查询计划的生成基本上就是我们所写的计算逻辑,根据RDD之间的流程关系等,生成对应的逻辑查询计划。

物理查询计划的生成,依赖于我们的逻辑查询计划。首先根据我们RDD的种类以及对应的宽窄依赖关系,生成多个Stage,每个Stage之间也会有对应的逻辑关系,如图所示。最后由我们的多个Stage,组成了我们最后的DAG。

当拿到了多个Stage,提交给Driver来执行的时候,基本就是这个样子。以图为例,首先Stage1中全部是一些Transformation操作,而Stage1到Stage2之间出现了宽依赖关系,也就是出现了Action操作。这些个动作转换,就是要提交给Executor来执行的Task任务,所有Task任务的分配以及监控,都是由SparkContext来完成的。

DAG任务规划与调度

RDD操作中的一系列依赖关系,Spark后期会转换为DAG来进行表示。

   
次浏览       
相关文章

企业架构、TOGAF与ArchiMate概览
架构师之路-如何做好业务建模?
大型网站电商网站架构案例和技术架构的示例
完整的Archimate视点指南(包括示例)
相关文档

数据中台技术架构方法论与实践
适用ArchiMate、EA 和 iSpace进行企业架构建模
Zachman企业架构框架简介
企业架构让SOA落地
相关课程

云平台与微服务架构设计
中台战略、中台建设与数字商业
亿级用户高并发、高可用系统架构
高可用分布式架构设计与实践

最新活动计划
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
LLM大模型应用与项目构建 12-26[特惠]
UML和EA进行系统分析设计 12-20[线上]
数据建模方法与工具 12-3[北京]
SysML建模专家 1-16[北京]
 
 
最新文章
架构设计-谈谈架构
实现SaaS(软件及服务)架构三大技术挑战
到底什么是数据中台?
响应式架构简介
业务架构、应用架构与云基础架构
最新课程
软件架构设计方法、案例与实践
从大型电商架构演进看互联网高可用架构设计
大型互联网高可用架构设计实践
企业架构师 (TOGAF官方认证)
嵌入式软件架构设计—高级实践
更多...   
成功案例
某新能源电力企业 软件架构设计方法、案例与实践
中航工业某研究所 嵌入式软件开发指南
某轨道交通行业 嵌入式软件高级设计实践
北京 航天科工某子公司 软件测试架构师
北京某领先数字地图 架构师(设计案例)
更多...