您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
PHP实现常用排序算法(含示意动图)
 
作者:歪麦
   次浏览      
  2020-1-7
 
编辑推荐:
本文主要介绍了一些常用的排序算法,以及PHP的代码实现等,希望对您能有所帮助。
本文来自于awaimai.com,由火龙果软件Luca编辑推荐。

作为phper,一般接触算法的编程不多。

但基本的排序算法还是应该掌握。

毕竟算法作为程序的核心,算法的好坏决定了程序的质量。

本文将依次介绍一些常用的排序算法,以及PHP实现。

1 快速排序

快速排序是由东尼·霍尔发展的一种排序算法。

在平均状况下,排序 n 个项目要Ο(n log n)次比较。

在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环可以在大部分的架构上,很有效率地被实现出来。

快速排序采用分治法实现排序,具体步骤:

从数列中挑出一个数作为基准元素。通常选择第一个或最后一个元素。

扫描数列,以基准元素为比较对象,把数列分成两个区。规则是:小的移动到基准元素前面,大的移到后面,相等的前后都可以。分区完成之后,基准元素就处于数列的中间位置。

然后再用同样的方法,递归地排序划分的两部分。

递归的结束条件是数列的大小是0或1,也就是永远都已经被排序好了。

PHP代码实现:

function quickSort($arr)
{
$len = count($arr);
// 先设定结束条件,判断是否需要继续进行
if($len <= 1) {
return $arr;
}

// 选择第一个元素作为基准元素
$pivot = $arr[0];

// 初始化左数组
$left = $right = array();

// 初始化大于基准元素的右数组
$right = array();

// 遍历除基准元素外的所有元素,按照大小关系放入左右数组内
for ($i = 1; $i < $len ; $i++) {
if ($arr[$i] < $pivot) {
$left[] = $arr[$i];
} else {
$right[] = $arr[$i];
}
}

// 再分别对左右数组进行相同的排序
$left = quickSort($left);
$right = quickSort($right);

// 合并基准元素和左右数组
return array_merge($left, array($pivot), $right);
}

原地排序版本,不需要额外的存储空间:

function partition(&$arr, $leftIndex, $rightIndex)
{
$pivot = $arr[($leftIndex + $rightIndex) / 2];
while ($leftIndex <= $rightIndex) {
while ($arr[$leftIndex] < $pivot) {
$leftIndex++;
}

while ($arr[$rightIndex] > $pivot) {
$rightIndex--;
}

if ($leftIndex <= $rightIndex) {
list($arr[$leftIndex], $arr[$rightIndex]) = [$arr[$rightIndex], $arr[$leftIndex]];

$leftIndex++;
$rightIndex--;
}
}

return $leftIndex;
}

function quickSort(&$arr, $leftIndex, $rightIndex)
{
if ($leftIndex < $rightIndex) {
$index = partition($arr, $leftIndex, $rightIndex);

quickSort($arr, $leftIndex, $index - 1);
quickSort($arr, $index, $rightIndex);
}
}

2 冒泡排序

冒泡排序是一种简单的排序算法。

算法重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

走访数列的工作重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。

因为排序过程让较大的数往下沉,较小的往上冒,故而叫冒泡法。

算法步骤:

从第一个元素开始,比较相邻的元素,如果第一个比第二个大,就交换他们两个。

从开始第一对到结尾的最后一对,对每一对相邻元素作同样的工作。比较结束后,最后的元素应该会是最大的数。

对所有的元素重复以上的步骤,除了最后一个。

重复上面的步骤,每次比较的对数会越来越少,直到没有任何一对数字需要比较。

PHP代码实现:

function bubbleSort($arr)
{
$len = count($arr);

for($i = 1; $i < $len; $i++) {
for($k = 0; $k < $len - $i; $k++) {
if($arr[$k] > $arr[$k + 1]) {
$tmp = $arr[$k + 1];
$arr[$k + 1] = $arr[$k];
$arr[$k] = $tmp;
}
}
}
return $arr;
}

3 插入排序

插入排序是一种简单直观的排序算法。

插入排序的工作原理是:将需要排序的数,与前面已经排好序的数据从后往前进行比较,使其插入到相应的位置。

插入排序在实现上,通常采用in-place排序,即只需用到O(1)的额外空间的排序。

因而,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

算法步骤:

从第一个元素开始,该元素可以认为已经被排序;

取出下一个元素,在已经排序的元素序列中从后向前扫描;

如果以排序的元素大于新元素,将该元素移到下一位置;

重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;

将新元素插入到该位置中;

重复步骤2。

PHP代码实现:

function insertSort($arr)
{
$len = count($arr);

for ($i = 1; $i < $len; $i++) {
$tmp = $arr[$i];
for ($j = $i - 1; $j >= 0; $j--) {
if ($tmp < $arr[$j]) {
$arr[$j + 1] = $arr[$j];
$arr[$j] = $tmp;
} else {
break;
}
}
}

return $arr;
}

4 选择排序

选择排序是一种简单直观的排序算法。

算法步骤:

首先,在序列中找到最小元素,存放到排序序列的起始位置;

接着,从剩余未排序元素中继续寻找最小元素,放到已排序序列的末尾。

重复第二步,直到所有元素均排序完毕。

PHP代码实现:

function selectSort($arr)
{
$len = count($arr);
for ($i = 0; $i < $len; $i++) {
$p = $i;

for ($j = $i + 1; $j < $len; $j++) {
if ($arr[$p] > $arr[$j]) {
$p = $j;
}
}

$tmp = $arr[$p];
$arr[$p] = $arr[$i];
$arr[$i] = $tmp;
}

return $arr;
}

5 归并排序

归并排序是建立在归并操作上的一种有效的排序算法。

归并排序将待排序的序列分成若干组,保证每组都有序,然后再进行合并排序,最终使整个序列有序。

该算法是采用分治法的一个非常典型的应用。

算法步骤:

申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

设定两个指针,最初位置分别为两个已经排序序列的起始位置

比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

重复步骤3直到某一指针达到序列尾

将另一序列剩下的所有元素直接复制到合并序列尾

排序效果:

PHP实现代码:

/**
* 归并排序
*
* @param array $lists
* @return array
*/
function merge_sort(array $lists)
{
$n = count($lists);
if ($n <= 1) {
return $lists;
}
$left = merge_sort(array_slice($lists, 0, floor($n / 2)));
$right = merge_sort(array_slice($lists, floor($n / 2)));
$lists = merge($left, $right);
return $lists;
}
function merge(array $left, array $right)
{
$lists = [];
$i = $j = 0;
while ($i < count($left) && $j < count($right)) {
if ($left[$i] < $right[$j]) {
$lists[] = $left[$i];
$i++;
} else {
$lists[] = $right[$j];
$j++;
}
}
$lists = array_merge($lists, array_slice($left, $i));
$lists = array_merge($lists, array_slice($right, $j));
return $lists;
}

6 堆排序

堆排序是指利用堆这种数据结构所设计的一种排序算法。

堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

创建一个堆H[0..n-1];

把堆首(最大值)和堆尾互换;

把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置;

重复步骤2,直到堆的尺寸为1。

PHP实现代码:

/**
* 堆排序
*
* @param array $lists
* @return array
*/
function heap_sort(array $lists)
{
$n = count($lists);
build_heap($lists);
while (--$n) {
$val = $lists[0];
$lists[0] = $lists[$n];
$lists[$n] = $val;
heap_adjust($lists, 0, $n);
//echo "sort: " . $n . "\t" . implode(', ', $lists) . PHP_EOL;
}
return $lists;
}
function build_heap(array &$lists)
{
$n = count($lists) - 1;
for ($i = floor(($n - 1) / 2); $i >= 0; $i--) {
heap_adjust($lists, $i, $n + 1);
//echo "build: " . $i . "\t" . implode(', ', $lists) . PHP_EOL;
}
//echo "build ok: " . implode(', ', $lists) . PHP_EOL;
}

function heap_adjust(array &$lists, $i, $num)
{
if ($i > $num / 2) {
return;
}
$key = $i;
$leftChild = $i * 2 + 1;
$rightChild = $i * 2 + 2;

if ($leftChild < $num && $lists[$leftChild] > $lists[$key]) {
$key = $leftChild;
}
if ($rightChild < $num && $lists[$rightChild] > $lists[$key]) {
$key = $rightChild;
}
if ($key != $i) {
$val = $lists[$i];
$lists[$i] = $lists[$key];
$lists[$key] = $val;
heap_adjust($lists, $key, $num);
}
}

7 希尔排序

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。

但希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率

但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位

算法步骤:

先将整个待排序的记录序列分割成为若干子序列,分别进行直接插入排序

待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

PHP实现代码:

/**
* 希尔排序 标准
*
* @param array $lists
* @return array
*/
function shell_sort(array $lists)
{
$n = count($lists);
$step = 2;
$gap = intval($n / $step);
while ($gap > 0) {
for ($gi = 0; $gi < $gap; $gi++) {
for ($i = $gi; $i < $n; $i += $gap) {
$key = $lists[$i];
for ($j = $i - $gap; $j >= 0 && $lists[$j] > $key; $j -= $gap) {
$lists[$j + $gap] = $lists[$j];
$lists[$j] = $key;
}
}
}
$gap = intval($gap / $step);
}
return $lists;
}

8 基数排序

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

说基数排序之前,我们简单介绍桶排序:

桶排序是将阵列分到有限数量的桶子里。

每个桶子再个别排序,有可能再使用别的排序算法,或是以递回方式继续使用桶排序进行排序。

桶排序是鸽巢排序的一种归纳结果。

当要被排序的阵列内的数值是均匀分配的时候,桶排序使用线性时间O(n)。

但桶排序并不是 比较排序,他不受到 O(n log n) 下限的影响。

简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。

例如,要对大小为[1..1000]范围内的n个整数A[1..n]排序

首先,可以把桶设为大小为10的范围,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储 (10..20]的整数,……集合B[i]存储( (i-1)*10, i*10]的整数,i = 1,2,..100。总共有 100个桶。

然后,对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。 再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任 何排序法都可以。

最后,依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这 样就得到所有数字排好序的一个序列了。

假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。

如果对每个桶中的数字采用快速排序,那么整个算法的复杂度是

O(n + m * n/m*log(n/m)) = O(n + nlogn – nlogm)

从上式看出,当m接近n的时候,桶排序复杂度接近O(n)

当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的 ,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的排序了。

前面说的几大排序算法 ,大部分时间复杂度都是O(n2),也有部分排序算法时间复杂度是O(nlogn)。而桶式排序却能实现O(n)的时间复杂度。但桶排序的缺点是:

1)首先是空间复杂度比较高,需要的额外开销大。排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。

2)其次待排序的元素都要在一定的范围内等等。

/**
* 基数排序
*
* @param array $lists
* @return array
*/
function radix_sort(array $lists)
{
$radix = 10;
$max = max($lists);
$k = ceil(log($max, $radix));
if ($max == pow($radix, $k)) {
$k++;
}
for ($i = 1; $i <= $k; $i++) {
$newLists = array_fill(0, $radix, []);
for ($j = 0; $j < count($lists); $j++) {
$key = $lists[$j] / pow($radix, $i - 1) % $radix;
$newLists[$key][] = $lists[$j];
}
$lists = [];
for ($j = 0; $j < $radix; $j++) {
$lists = array_merge($lists, $newLists[$j]);
}
}
return $lists;
}

9 总结

各种排序的稳定性,时间复杂度、空间复杂度、稳定性总结如下图:

关于时间复杂度:

(1)平方阶(O(n2))排序

各类简单排序:直接插入、直接选择和冒泡排序;

(2)线性对数阶(O(nlog2n))排序

快速排序、堆排序和归并排序;

(3)O(n1+§))排序,§是介于0和1之间的常数。

希尔排序

(4)线性阶(O(n))排序

基数排序,此外还有桶、箱排序。

关于稳定性:

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序

 
   
次浏览       
相关文章

深度解析:清理烂代码
如何编写出拥抱变化的代码
重构-使代码更简洁优美
团队项目开发"编码规范"系列文章
相关文档

重构-改善既有代码的设计
软件重构v2
代码整洁之道
高质量编程规范
相关课程

基于HTML5客户端、Web端的应用开发
HTML 5+CSS 开发
嵌入式C高质量编程
C++高级编程