编辑推荐: |
本文来自于daniellaah.github.io,文中描述了机器学习力的监督学习和无监督学的的分类、以及通过案例的讲述。 |
|
监督学习(Supervised Learning)
在监督学习中,给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系。这么说可能理解起来不是很清晰,没关系,后面有具体的例子。
监督学习的分类
监督学习可分为“回归”和“分类”问题。监督学习分类
在回归问题中,我们会预测一个连续值。也就是说我们试图将输入变量和输出用一个连续函数对应起来;而在分类问题中,我们会预测一个离散值,我们试图将输入变量与离散的类别对应起来。
下面举两个例子,就会非常清楚这几个概念了。
监督学习举例
回归
通过房地产市场的数据,预测一个给定面积的房屋的价格就是一个回归问题。这里我们可以把价格看成是面积的函数,它是一个连续的输出值。
但是,当把上面的问题改为“预测一个给定面积的房屋的价格是否比一个特定的价格高或者低”的时候,这就变成了一个分类问题,
因为此时的输出是‘高’或者‘低’两个离散的值。
分类
给定医学数据,通过肿瘤的大小来预测该肿瘤是恶性瘤还是良性瘤(课程中给的是乳腺癌的例子),这就是一个分类问题,它的输出是0或者1两个离散的值。(0代表良性,1代表恶性)。
分类问题的输出可以多于两个,比如在该例子中可以有{0,1,2,3}四种输出,分别对应{良性, 第一类肿瘤,
第二类肿瘤, 第三类肿瘤}。
下图中上下两个图只是两种画法。第一个是有两个轴,Y轴表示是否是恶性瘤,X轴表示瘤的大小;
第二个是只用一个轴,但是用了不同的标记,用O表示良性瘤,X表示恶性瘤。
在这个例子中特征只有一个,那就是瘤的大小。 有时候也有两个或者多个特征, 例如下图, 有“年龄”和“肿瘤大小”两个特征。(还可以有其他许多特征,如下图右侧所示)
无监督学习
在无监督学习中,我们基本上不知道结果会是什么样子,但我们可以通过聚类的方式从数据中提取一个特殊的结构。在无监督学习中给定的数据是和监督学习中给定的数据是不一样的。在无监督学习中给定的数据没有任何标签或者说只有同一种标签。如下图所示:
如下图所示,在无监督学习中,我们只是给定了一组数据,我们的目标是发现这组数据中的特殊结构。例如我们使用无监督学习算法会将这组数据分成两个不同的簇,,这样的算法就叫聚类算法。
无监督学习举例
新闻分类
第一个例子举的是Google News的例子。Google News搜集网上的新闻,并且根据新闻的主题将新闻分成许多簇,
然后将在同一个簇的新闻放在一起。如图中红圈部分都是关于BP Oil Well各种新闻的链接,当打开各个新闻链接的时候,展现的都是关于BP
Oil Well的新闻。
根据给定基因将人群分类
如图是DNA数据,对于一组不同的人我们测量他们DNA中对于一个特定基因的表达程度。然后根据测量结果可以用聚类算法将他们分成不同的类型。这就是一种无监督学习,
因为我们只是给定了一些数据,而并不知道哪些是第一种类型的人,哪些是第二种类型的人等等。
鸡尾酒派对效应
详见课程: Unsupervised Learning
其他
这里又举了其他几个例子,有组织计算机集群,社交网络分析,市场划分,天文数据分析等。具体可以看一下视频:Unsupervised
Learning
|