您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
深度学习基础:为什么神经网络的感知机中的神经元需要偏置项?
 
作者:deephub
   次浏览      
 2020-5-28  
 
编辑推荐:
本文主要介绍了为什么要使用偏置项呢,从一些基础概念讲起,如何对它分类?有偏置项和无偏置项的结果分别是怎样的呢?
本文来自于腾讯云,由火龙果软件Anna编辑、推荐。

神经元中不添加偏置项可以吗?答案是,不可以

每个人都知道神经网络中的偏置(bias)是什么,而且从人类实现第一个感知器开始,每个人都知道神经元需要添加偏置项。但你是否考虑过我们为什么要使用偏置项呢?就我而言,直到不久前我才弄清楚这个问题。当时我和一个本科生讨论了一些神经网络模型,但不知何故她把“偏置输入”(bias input)和“统计基差”( statistical bias)搞混了。对我来说,向她解释这些概念当然很容易,但我却很难进一步地告诉她我们为什么要使用偏置项。过了一段时间,我决定尝试写代码来研究这一问题。

让我们先从一些简单的概念开始。

感知器是多层感知器(MLP)和人工神经网络的前身。众所周知,感知器是一种用于监督学习的仿生算法。它本质上是一个线性分类器,如图所示:

一个简单的感知器示意图

下面让我们考察一下这个模型的数学方程:

在这里,f(x)代表激活函数(通常是一个阶跃函数)。b是偏置项, p和w分别是输入和权重。

你可能会注意到它与线性函数的标准形式是相似的。如果我们不适用激活函数,或将激活函数替换为恒等映射,这些公式将是相同的(在这里为了方便描述,我们只考虑单一输入):

在这里偏置项的权重是1

比较这两个公式,很明显我们的偏置项就对应了线性函数中的b。现在的问题就转化为,线性函数中的b为什么那么重要?如果你过去几年没有上过任何线性代数课程(就像我一样),可能对一些概念不够了解。但是下面的内容是很容易理解的:

我们很容易就注意到,当b=0时,函数总是通过原点[0,0]。当我们保持a不变的情况下引入b时,新的函数总是相互平行的。那么,我们能从中得到什么信息呢?

我们可以说,系数a决定了函数的角度,而分量b决定了函数与x轴的交点。

此时我想你已经注意到了一些问题,对吧?如果没有b,函数将会失去很多灵活性。只不过对一些分布进行分类时偏置项可能有用,但不是对所有情况都有用。怎样测试它的实际效果呢?让我们使用一个简单的例子:OR函数。让我们先来看看它的分布:

绘制在笛卡尔坐标系中的OR函数:

我想你已经想明白了这个问题。图中两个点([0,0]和[1,0])是两个不同的类,但任何一条过[0,0]的直线都没有办法将这两个点分开。那么感知机如何对它分类呢?有偏置项和无偏置项的结果分别是怎样的呢?让我们通过编程,看看将会发生什么!下面是用Python实现的感知器神经元:

classPerceptron():def__init__ (self, n_input, alpha= 0.01, has_bias=True):
self.has_bias = has_bias
self.bias_weight = random.uniform(-1,1)
self.alpha = alpha
self.weights = []
for i in range(n_input):
self.weights.append(random.uniform (-1,1))defclassify(self, input):
summation = 0if(self.has_bias):
summation += self.bias_weight * 1for i in range(len(self.weights)):
summation += self.weights[i] * input[i]
return self.activation (summation)defactivation(self, value):if(value < 0):
return0else:
return1deftrain(self, input, target):
guess = self.classify(input)
error = target - guess
if(self.has_bias):
self.bias_weight += 1 * error * self.alpha
for i in range(len(self.weights)):
self.weights[i] += input[i] * error * self.alpha

 

没有偏置项的感知器

首先,让我们训练无偏置项的感知器。我们知道,分类器(在本例中是我们的函数)总是通过[0,0]的。正如我们之前所说的那样,分类器无法分开这两类。在这种情况下尽管一直在向分离平面逼近,但它还是不能将[0,0]和[1,0]分开,

有偏置项的感知器

现在我们来看一下有偏置项的感知器。首先,注意分类器的灵活性。如前所述,在这种情况下感知器具有更大的灵活性。此外我们可以注意到,它正在寻找与上一个示例相同的判别平面,但是现在它能够找到分离数据的最佳位置。

所以,偏置项的重要性现在已经很清楚了。我知道你现在可能在思考激活函数,我们在python例子中使用了一个阶跃函数作为激活函数,如果我们使用sigmoid作为激活函数,它的效果可能会更好?相信我:不会的。让我们看看当我们将sigmoid函数作为线性函数的激活函数(σ(f (x)))会发生什么:

你是否注意到这里的例子和线性函数的例子很相似?sigmoid函数虽然改变了输出的形状,但是我们仍然遇到同样的问题:如果没有偏置项,所有的函数都会经过原点。当我们试图用曲线分离OR函数中时,它仍然得不到满意的结果。如果您想尝试一下,看看它是如何工作的,您只需要对python代码做一些小小的修改。

   
次浏览       
相关文章

基于图卷积网络的图深度学习
自动驾驶中的3D目标检测
工业机器人控制系统架构介绍
项目实战:如何构建知识图谱
 
相关文档

5G人工智能物联网的典型应用
深度学习在自动驾驶中的应用
图神经网络在交叉学科领域的应用研究
无人机系统原理
相关课程

人工智能、机器学习&TensorFlow
机器人软件开发技术
人工智能,机器学习和深度学习
图像处理算法方法与实践
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]
 
最新文章
多目标跟踪:AI产品经理需要了解的CV通识
深度学习架构
卷积神经网络之前向传播算法
从0到1搭建AI中台
工业机器人控制系统架构介绍
最新课程
人工智能,机器学习和深度学习
人工智能与机器学习应用实战
人工智能-图像处理和识别
人工智能、机器学习& TensorFlow+Keras框架实践
人工智能+Python+大数据
更多...   
成功案例
某综合性科研机构 人工智能与机器学习应用
某银行 人工智能+Python+大数据
北京 人工智能、机器学习& TensorFlow框架实践
某领先数字地图提供商 Python数据分析与机器学习
中国移动 人工智能、机器学习和深度学习
更多...