您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
python数字图像处理:图像简单滤波
 
作者:徐其华
   次浏览      
 2020-9-27
 
编辑推荐:
本文主要介绍python数字图像处理,图像简单滤波,图文并茂介绍skimage库中通过filters模块进行滤波操作,希望对您的学习有所帮助。
本文来自于博客园,由火龙果软件Alice编辑、推荐。

对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声;另一种是微分算子,可以用来检测边缘和特征提取。

skimage库中通过filters模块进行滤波操作。

1、sobel算子

sobel算子可用来检测边缘

函数格式为:skimage.filters.sobel(image, mask=None)

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
edges = filters.sobel(img)
plt.imshow(edges,plt.cm.gray)

2、roberts算子

roberts算子和sobel算子一样,用于检测边缘

调用格式也是一样的:

edges = filters.roberts(img)

3、scharr算子

功能同sobel,调用格式:

edges = filters.scharr(img)

4、prewitt算子

功能同sobel,调用格式:

edges = filters.prewitt(img)

5、canny算子

canny算子也是用于提取边缘特征,但它不是放在filters模块,而是放在feature模块

函数格式:skimage.feature.canny(image,sigma=1.0)

可以修改sigma的值来调整效果

from skimage import data,filters,feature
import matplotlib.pyplot as plt
img = data.camera()
edges1 = feature.canny(img) #sigma=1
edges2 = feature.canny(img,sigma=3) #sigma=3

plt.figure('canny',figsize=(8,8))
plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

从结果可以看出,sigma越小,边缘线条越细小。

6、gabor滤波

gabor滤波可用来进行边缘检测和纹理特征提取。

函数调用格式:skimage.filters.gabor_filter(image, frequency)

通过修改frequency值来调整滤波效果,返回一对边缘结果,一个是用真实滤波核的滤波结果,一个是想象的滤波核的滤波结果。

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
filt_real, filt_imag = filters.gabor_filter(img,frequency=0.6)

plt.figure('gabor',figsize=(8,8))
plt.subplot(121)
plt.title('filt_real')
plt.imshow(filt_real,plt.cm.gray)

plt.subplot(122)
plt.title('filt-imag')
plt.imshow(filt_imag,plt.cm.gray)

plt.show()

以上为frequency=0.6的结果图。

以上为frequency=0.1的结果图

7、gaussian滤波

多维的滤波器,是一种平滑滤波,可以消除高斯噪声。

调用函数为:skimage.filters.gaussian_filter(image, sigma)

通过调节sigma的值来调整滤波效果

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.astronaut()
edges1 = filters.gaussian_filter(img,sigma=0.4) #sigma=0.4

edges2 = filters.gaussian_filter(img,sigma=5) #sigma=5
plt.figure('gaussian',figsize=(8,8))
plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

可见sigma越大,过滤后的图像越模糊

8.median

中值滤波,一种平滑滤波,可以消除噪声。

需要用skimage.morphology模块来设置滤波器的形状。

from skimage import data,filters
import matplotlib.pyplot as plt
from skimage.morphology import disk
img = data.camera()
edges1 = filters.median(img,disk(5))
edges2= filters.median(img,disk(9))

plt.figure('median',figsize=(8,8))

plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

从结果可以看出,滤波器越大,图像越模糊。

9、水平、垂直边缘检测

上边所举的例子都是进行全部边缘检测,有些时候我们只需要检测水平边缘,或垂直边缘,就可用下面的方法。

水平边缘检测:sobel_h, prewitt_h, scharr_h

垂直边缘检测: sobel_v, prewitt_v, scharr_v

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
edges1 = filters.sobel_h(img)
edges2 = filters.sobel_v(img)

plt.figure('sobel_v_h',figsize=(8,8))

plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

上边左图为检测出的水平边缘,右图为检测出的垂直边缘。

10、交叉边缘检测

可使用Roberts的十字交叉核来进行过滤,以达到检测交叉边缘的目的。这些交叉边缘实际上是梯度在某个方向上的一个分量。

其中一个核:

0 1

-1 0

对应的函数:

roberts_neg_diag(image)

例:

from skimage import data,filters
import matplotlib.pyplot as plt
img =data.camera()
dst =filters.roberts_neg_diag(img)

plt.figure('filters',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)

plt.subplot(122)
plt.title('filted image')
plt.imshow(dst,plt.cm.gray)

另外一个核:

1 0

0 -1

对应函数为:

roberts_pos_diag(image)

from skimage import data,filters
import matplotlib.pyplot as plt
img =data.camera()
dst =filters.roberts_pos_diag(img)

plt.figure('filters',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)

plt.subplot(122)
plt.title('filted image')
plt.imshow(dst,plt.cm.gray)

   
次浏览       
相关文章

基于图卷积网络的图深度学习
自动驾驶中的3D目标检测
工业机器人控制系统架构介绍
项目实战:如何构建知识图谱
 
相关文档

5G人工智能物联网的典型应用
深度学习在自动驾驶中的应用
图神经网络在交叉学科领域的应用研究
无人机系统原理
相关课程

人工智能、机器学习&TensorFlow
机器人软件开发技术
人工智能,机器学习和深度学习
图像处理算法方法与实践
最新活动计划
LLM大模型应用与项目构建 12-26[特惠]
QT应用开发 11-21[线上]
C++高级编程 11-27[北京]
业务建模&领域驱动设计 11-15[北京]
用户研究与用户建模 11-21[北京]
SysML和EA进行系统设计建模 11-28[北京]
 
最新文章
多目标跟踪:AI产品经理需要了解的CV通识
深度学习架构
卷积神经网络之前向传播算法
从0到1搭建AI中台
工业机器人控制系统架构介绍
最新课程
人工智能,机器学习和深度学习
人工智能与机器学习应用实战
人工智能-图像处理和识别
人工智能、机器学习& TensorFlow+Keras框架实践
人工智能+Python+大数据
更多...   
成功案例
某综合性科研机构 人工智能与机器学习应用
某银行 人工智能+Python+大数据
北京 人工智能、机器学习& TensorFlow框架实践
某领先数字地图提供商 Python数据分析与机器学习
中国移动 人工智能、机器学习和深度学习
更多...